In this paper, we give some xed point theorems for '-weak contractivetype mappings on complete G-metric space, which was given by Zaed andSims [1]. Also a homotopy result is given.

In this paper, we give some xed point theorems for '-weak contractivetype mappings on complete G-metric space, which was given by Zaed andSims [1]. Also a homotopy result is given.

In this paper, we introduce and study a new iterative scheme toapproximate a common xed point for a nite family of generalized asymptoticallyquasi-nonexpansive nonself-mappings in Banach spaces. Several strong and weakconvergence theorems of the proposed iteration are established. The main resultsobtained in this paper generalize and rene some known results in the currentliterature.

In this paper we obtain a unique common xed point theorem for sixweakly compatible mappings in G-metric spaces.

Let (X; d) be a complete metric space and let f; g : X ! X betwo mappings which satisfy a ( ')-weak contraction condition or generalized( ')-weak contraction condition. Then f and g have a unique common xedpoint. Our results extend previous results given by Ciric (1971), Rhoades (2001),Branciari (2002), Rhoades (2003), Abbas and Ali Khan (2009), Zhang and Song(2009) and Moradi at. el. (2011).

In the present paper, the ne spectrum of the Zweier matrix as anoperator over the weighted sequence space `p(w); have been examined.

We show that every approximate solution of the Hosszu's functionalequationf(x + y + xy) = f(x) + f(y) + f(xy) for any x; y 2 R;is an additive function and also we investigate the Hyers-Ulam stability of thisequation in the following settingjf(x + y + xy) f(x) f(y) f(xy)j + '(x; y)for any x; y 2 R and > 0.

Let A = (an;k)n;k1 and B = (bn;k)n;k1 be two non-negative ma-trices. Denote by Lv;p;q;B(A), the supremum of those L, satisfying the followinginequality:k Ax kv;B(q) L k x kv;B(p);where x 0 and x 2 lp(v;B) and also v = (vn)1n=1 is an increasing, non-negativesequence of real numbers. In this paper, we obtain a Hardy-type formula forLv;p;q;B(H), where H is the Hausdor matrix and 0 < q p 1. Also for thecase p = 1, we obtain kAkw;B(1), and for the case p 1, we obtain Lw;B(p)(A).

In this paper, using a generalized Dunkl translation operator, we obtain an analog of Titchmarsh's Theorem for the Dunkl transform for functions satisfying the Lipschitz-Dunkl condition in $mathrm{L}_{2,alpha}=mathrm{L}_{alpha}^{2}(mathbb{R})=mathrm{L}^{2}(mathbb{R}, |x|^{2alpha+1}dx), alpha>frac{-1}{2}$.

In this paper, the solution of the evolutionaryfourth-order in space, Sivashinsky equation is obtained by meansof homotopy perturbation method (textbf{HPM}). The results revealthat the method is very effective, convenient and quite accurateto systems of nonlinear partial differential equations.

We consider the coupled system$F(x,y)=G(x,y)=0$,where$$F(x, y)=bs 0 {m_1} A_k(y)x^{m_1-k}mbox{ and } G(x, y)=bs 0 {m_2} B_k(y)x^{m_2-k}$$with entire functions $A_k(y), B_k(y)$.We derive a priory estimates for the sums of the rootsof the considered system andfor the counting function of roots.