COMMON FIXED POINTS OF FOUR MAPS USING GENERALIZED WEAK CONTRACTIVITY AND WELL-POSEDNESS

MOHAMED AKKOUCHI 1 *

Abstract. In this paper, we introduce the concept of generalized φ-contractivity of a pair of maps w.r.t. another pair. We establish a common fixed point result for two pairs of self-mappings, when one of these pairs is generalized φ-contraction w.r.t. the other and study the well-posedness of their fixed point problem. In particular, our fixed point result extends the main result of a recent paper of Qingnian Zhang and Yisheng Song.

1. Introduction

The concept of the weak contraction was defined by Alber and Guerre-Delabriere [1] in 1997. Actually in [1], the authors defined such mappings for single-valued maps on Hilbert spaces and proved the existence of fixed points.

Definition 1.1. Let (X, d) be a metric space and S be self-mapping of X. Let φ : [0, ∞) → [0, ∞) be a function such that φ(0) = 0 and φ is positive on (0, ∞). We say that T is a φ-weak contraction if we have

\[d(Tx, Ty) \leq d(fx, fy) - \phi(d(fx, fy)) \] \hspace{1cm} (1.1)

for all x, y in X

Rhoades [9] showed that most results of [1] are still true for any Banach space. Also Rhoades [9] proved the following important fixed point theorem which is one of generalizations of the Banach contraction principle [3], because it contains contractions as special case (φ(t) = (1 − k)t).

Theorem 1.2. (Rhoades [9], Theorem 2). Let (X, d) be a complete metric space, and let T be a φ-weak contraction on X. If φ : [0, ∞) → [0, ∞) is a continuous and nondecreasing function such that φ(0) = 0 and φ is positive on (0, ∞), then T has a unique fixed point.

Two generalizations of this result were given by I. Beg and M. Abbas in [4] and by A. Azam and M. Shakeel in [2].

Date: Received: June 2010 ; Revised: September 2010.
2000 Mathematics Subject Classification. 54H25, 47H10.
Key words and phrases. Common fixed point for four mappings; generalized φ—contractions; lower semi-continuity; weakly compatible mappings; well-posed common fixed point problem.
*: Corresponding author.
Recently, this theorem was recently extended by Qingnian Zhang and Yisheng Song (see [12]) to the context of generalized weak contractions. More precisely, the following result was established in [12].

Theorem 1.3. ([12]) Let \((X, d)\) be a complete metric space and \(S, T : X \to X\) be self-mappings of \(X\) such that
\[
d(Tx, Sy) \leq N(x, y) - \phi(N(x, y)), \quad \forall \, x, y \in X,
\]
where \(\phi : [0, \infty) \to [0, \infty)\) is a lower semi-continuous function with \(\phi(t) > 0\) for all \(t \in (0, \infty)\) and \(\phi(0) = 0\) and
\[
N(x, y) = \max\{d(x, y), d(Tx, x), d(Sy, y), \frac{1}{2}[d(y, Tx) + d(x, Sy)]\}.
\]
Then there exists a unique point \(u \in X\) such that \(u = Tu = Su\).

In this paper, we introduce the concept of a pair of mappings which is generalized weakly contractive w.r.t. another pair of mappings by means of a function \(\phi\) in the class \(\Phi\) of functions considered in Theorem 1.3. We establish a common fixed point result for two pairs of self-mappings, when one of these pairs is generalized \(\phi\)-contraction w.r.t. the other and study the well-posedness of their fixed point problem. In particular, our fixed point result (see Theorem 2.4 below) extends Theorem 1.3 of Qingnian Zhang and Yisheng Song (see [12]).

The main result of the second section is Theorem 2.4.

In the third section, we study the well-posedness of the common fixed point problem for two pairs of self-mappings of a metric space such that one of them is \(\phi\)-weakly contractive w.r.t. the other. The main result of this section is Theorem 3.3.

2. Coincidence and common fixed points

We start with some definitions.

Definition 2.1. Let \(X\) be a nonempty set and \(S, T\) self-mappings on \(X\).

A point \(x \in X\) is called a coincidence point of \(S\) and \(T\) if \(Sx = Tx\).

A point \(w \in X\) is called a point of coincidence of \(S\) and \(T\) if there exists a coincidence point \(x \in X\) of \(S\) and \(T\) such that \(w = Sx = Tx\).

S and \(T\) are weakly compatible if they commute at their coincidence points, that is if \(STx = TSx\), whenever \(Sx = Tx\).

We recall that the concept of weak compatibility was introduced by Jungck and Rhoades [6].

Definition 2.2. Let \(\Phi\) be the set of functions \(\phi : [0, \infty) \to [0, \infty)\) satisfying the following properties:

\((\phi_1)\): \(\phi\) is lower semi-continuous.

\((\phi_2)\): \(\phi(0)\) and \(\phi(t) > 0\) for all \(t > 0\).

Definition 2.3. Let \((X, d)\) be a metric space. Let \(S, T, I, J : X \to X\) be four self-mappings of \(X\).

Let \(\phi \in \Phi\). The pair \((S, T)\) is called generalized \(\phi\)-weakly contractive with respect to the pair \((I, J)\) if we have
\[
d(Sx, Ty) \leq M(x, y) - \phi(M(x, y)),
\]
where \(\phi : [0, \infty) \to [0, \infty)\) is a lower semi-continuous function with \(\phi(t) > 0\) for all \(t > 0\) and \(\phi(0) = 0\) and
\[
M(x, y) = \max\{d(x, y), d(Sx, x), d(Ty, y), \frac{1}{2}[d(y, Tx) + d(x, Ty)]\}.
\]
for all \(x, y \in X\), where
\[
M(x, y) := \max\{d(Ix, Jy), d(Ix, Sx), d(Jy, Ty), \frac{1}{2}[d(Ix, Ty) + d(Jy, Sx)]\}.
\]

The pair \((S, T)\) is called generalized weakly contractive with respect to the pair \((I, J)\) if it is generalized \(\phi\)-weakly contractive with respect to \((I, J)\) with some \(\phi \in \Phi\).

We observe that if \(I = J = Id_X\) is the identity mapping, then \(N(x, y) = M(x, y)\) for all \(x, y \in X\).

The main result of this section reads as follows.

Theorem 2.4. Let \((X, d)\) be a metric space and let \(S, T, I, J\) be four self-mappings of \(X\). Let \(\phi \in \Phi\).

We suppose that:

1. \((H1): \text{The pair } (S, T) \text{ is generalized } \phi\text{-weakly contractive with respect to the pair } (I, J), \text{ that is}
 \[
 d(Sx, Ty) \leq M(x, y) - \phi(M(x, y)),
 \]
2. \((H2): S(X) \subset J(X) \text{ and } T(X) \subset I(X).
3. \((H3): \text{One of the subsets } S(X), T(X), I(X) \text{ or } J(X) \text{ is a complete subspace of } X.

Then,

a) the pair \(\{S, I\}\) has a point of coincidence,

b) the pair \(\{T, J\}\) has a point of coincidence.

Moreover, if the pairs \(\{S, I\}\) and \(\{T, J\}\) are weakly compatible, then the mappings \(S, T, I\) and \(J\) have a unique common fixed point in \(X\).

Proof. Let \(x_0\) be an arbitrary point in \(X\). Set \(y_0 = Sx_0\). Since \(S(X) \subset J(X)\), then we can find a point \(x_1 \in X\) such that \(y_0 = Sx_0 = Jx_1\). Set \(y_1 = Tx_1\). Since \(T(X) \subset I(X)\), then there exists a point \(x_2 \in X\) such that \(y_1 = Tx_1 = Ix_2\). By induction, we construct two sequences \((x_n)\) and \((y_n)\) in \(X\) satisfying for each nonnegative integer \(n\),
\[
y_{2n} = Sx_{2n} = Jx_{2n+1} \quad \text{and} \quad y_{2n+1} = Tx_{2n+1} = Ix_{2n+2}
\]
(3.3)

To simplify notation, for each nonnegative integer \(n\), we set \(t_n := d(y_n, y_{n+1})\).

For all nonnegative integer \(n\) we have
\[
t_{2n+1} = d(y_{2n+2}, y_{2n+1}) = d(Sx_{2n+2}, Tx_{2n+1})
\leq M(x_{2n+2}, x_{2n+1}) - \phi(M(x_{2n+2}, x_{2n+1}))
= \max\{t_{2n}, t_{2n+1}, \frac{1}{2}d(y_{2n}, y_{2n+2})\} - \phi(\max\{t_{2n}, t_{2n+1}, \frac{1}{2}d(y_{2n}, y_{2n+2})\}).
\]
(4.4)

Since \(\frac{1}{2}d(y_{2n}, y_{2n+2}) \leq \frac{1}{2}(t_{2n} + t_{2n+1})\), then
\[
\max\{t_{2n}, t_{2n+1}, \frac{1}{2}d(y_{2n}, y_{2n+2})\} = \max\{t_{2n}, t_{2n+1}\}.
\]
Suppose that \(t_{2n} < t_{2n+1}\). Then by (4.4) we obtain
\[
0 < t_{2n+1} \leq t_{2n+1} - \phi(t_{2n+1}) < t_{2n+1},
\]
a contradiction. Thus \(t_{2n} \geq t_{2n+1}\), and
\[
0 < t_{2n+1} \leq t_{2n} - \phi(t_{2n}).
\]
We conclude that for all nonnegative integer \(n \), we have
\[
\phi(t) \leq \lim \inf \phi(t_n) \leq \lim (t_n - t_{n+1}) = 0.
\]
Thus \(0 \leq \phi(t) \leq 0 \), which implies that \(\phi(t) = 0 \). By property \((\phi_2)\), we obtain \(t = 0 \).

Let us show that \(\{y_n\} \) is a Cauchy sequence. Since \(\lim_{n \to \infty} d(y_n, y_{n+1}) = 0 \), then we need only to show that \(\{y_{2n}\} \) is a Cauchy sequence. To get a contradiction, let us suppose that there is a number \(\epsilon > 0 \) and two sequences \(\{2n(k)\}, \{2m(k)\} \) with \(2k \leq 2m(k) < 2n(k), (k \in \mathbb{N}) \) verifying
\[
d(y_{2n(k)}, y_{2m(k)}) > \epsilon.
\]
For each integer \(k \), we shall denote \(2n(k) \) the least even integer exceeding \(2m(k) \) for which \((2.6)\) holds. Then we have
\[
d(y_{2m(k)}, y_{2n(k)-2}) \leq \epsilon \quad \text{and} \quad d(y_{2m(k)}, y_{2n(k)}) > \epsilon.
\]
For each integer \(k \), we set \(p_k := d(y_{2m(k)}, y_{2n(k)}) \), then we have
\[
\epsilon < p_k = d(y_{2m(k)}, y_{2n(k)}) \leq d(y_{2m(k)}, y_{2n(k)-2}) + d(y_{2n(k)-2}, y_{2n(k)-1}) + d(x_{2n(k)-1}, y_{2n(k)}) \leq \epsilon + t_{2n(k)-2} + t_{2n(k)-1}.
\]

Since the sequence \(\{t_n\} \) converges to 0, we deduce from \((2.8)\) that \(\{p_k\} \) converges to \(\epsilon \). For every integer \(k \in \mathbb{N} \) we set
\[
q_k := d(y_{2m(k)+1}, y_{2n(k)+2}), \quad r_k := d(y_{2m(k)}, y_{2n(k)+1}),
\]
\[
s_k := d(y_{2m(k)+1}, y_{2n(k)+1}), \quad v_k := d(y_{2m(k)}, y_{2n(k)+2}).
\]
By using the triangle inequality, for all integer \(k \), we obtain the following estimates:
\[
|r_k - p_k| \leq t_{2n(k)} \leq t_k,
\]
\[
|r_k - s_k| \leq t_{2m(k)} \leq t_k,
\]
\[
|s_k - q_k| \leq t_{2n(k)+1} \leq t_k,
\]
\[
|v_k - q_k| \leq t_{2m(k)} \leq t_k.
\]
Since the sequence \(\{t_n\} \) converges to 0, we deduce that the sequences: \(\{q_k\}, \{r_k\}, \{s_k\} \) and \(\{v_k\} \) converge to \(\epsilon \).

For all nonnegative integer \(k \), we have
\[
M(x_{2n(k)+2}, x_{2m(k)+1}) = \max\{d(y_{2n(k)+1}, y_{2m(k)}), d(y_{2n(k)+1}, y_{2n(k)+2}),
\]
\[
d(y_{2m(k)}, y_{2m(k)+2}), d(y_{2n(k)+1}, y_{2m(k)+1}), d(y_{2m(k)}, y_{2n(k)+2})\}
\]
\[
= \max\{r_k, t_{2n(k)+1}, t_{2m(k)}, s_k, v_k\}.
\]
Then, by using the condition (2.1), for every non-negative integer k, we have the following estimates:

$$q_k = d(y_{2n(k)+2}, y_{2m(k)+1}) = d(Sx_{2n(k)+2}, Tx_{2m(k)+1})$$

$$\leq M(x_{2n(k)+2}, x_{2m(k)+1}) - \phi(M(x_{2n(k)+2}, x_{2m(k)+1}))$$

$$\leq \max\{r_k, t_{2n(k)+1}, t_{2m(k)}, s_k, v_k\} - \phi(\max\{r_k, t_{2n(k)+1}, t_{2m(k)}, s_k, v_k\}).$$

Then, we obtain

$$\phi(\max\{r_k, t_{2n(k)+1}, t_{2m(k)}, s_k, v_k\}) \leq \max\{r_k, t_{2n(k)+1}, t_{2m(k)}, s_k, v_k\} - q_k.$$

Letting k tend to ∞ and using the lower semicontinuity of ϕ, we get

$$\phi(\epsilon) \leq \liminf_{k \to \infty} \phi(\max\{r_k, t_{2n(k)+1}, t_{2m(k)}, s_k, v_k\})$$

$$\leq \lim_{k \to \infty} (\max\{r_k, t_{2n(k)+1}, t_{2m(k)}, s_k, v_k\} - q_k) = 0,$$

which implies $\phi(\epsilon) = 0$ a contradiction to property (ϕ_2). Thus $\{y_n\}$ is a Cauchy sequence.

Suppose that $J(X)$ is a complete subspace of X, Since M is complete, then the sequence $\{y_n\}$ converges to a point (say) $z \in J(X)$. Thus we have

$$z = \lim_{n \to \infty} Sx_{2n} = \lim_{n \to \infty} Jx_{2n+1} = \lim_{n \to \infty} Tx_{2n+1} = \lim_{n \to \infty}Ix_{2n}.$$ \hfill (2.9)

Let $u \in X$ such that $z = Ju$. By inequality (2.1), we obtain

$$d(y_{2n}, Tu) = d(Sx_{2n}, Tu)$$

$$\leq M(x_{2n}, u) - \phi(d(x_{2n}, u))$$

$$= \max\{d(Ix_{2n}, z), d(Ix_{2n}, Sx_{2n}), d(z, Tu), \frac{1}{2}[d(Ix_{2n}, Tu) + d(z, Sx_{2n})]\}$$

$$- \phi(\max\{d(Ix_{2n}, z), d(Ix_{2n}, Sx_{2n}), d(z, Tu), \frac{1}{2}[d(Ix_{2n}, Tu) + d(z, Sx_{2n})]\}),$$

from which, we get

$$\phi(\max\{d(Ix_{2n}, z), d(Ix_{2n}, Sx_{2n}), d(z, Tu), \frac{1}{2}[d(Ix_{2n}, Tu) + d(z, Sx_{2n})]\})$$

$$\leq \max\{d(Ix_{2n}, z), d(Ix_{2n}, Sx_{2n}), d(z, Tu), \frac{1}{2}[d(Ix_{2n}, Tu) + d(Sx_{2n}, z)]\} - d(y_{2n}, Tu).$$

By letting n tend to infinity and using lower semi-continuity, we obtain

$$\phi(d(z, Tu))$$

$$\leq \liminf_{n \to \infty} \phi(\max\{d(Ix_{2n}, z), d(Ix_{2n}, Sx_{2n}), d(z, Tu), \frac{1}{2}[d(Ix_{2n}, Tu) + d(z, Sx_{2n})]\})$$

$$\leq \phi(d(z, Tu)) - d(z, Tu),$$

which implies that $d(z, Tu)$. Hence we have $z = Ju = Tu$. Since $T(X) \subset I(X)$, then there exists $w \in X$ such that $z = Tu = Tw$. By using inequality (2.1), we have

$$d(Sw, z) = d(Sw, Tu) \leq M(w, u) - \phi(M(w, u)).$$
Since
\[M(w, u) = \max\{d(Iw, Ju), d(Iw, Sw), d(Ju, Tu), \frac{1}{2}[d(Iw, Tu) + d(Ju, Sw)]\} \]
\[= \max\{0, d(z, Sw), 0, \frac{1}{2}[d(z, Sw)]\} \]
\[= d(z, Sw). \]
We deduce that
\[d(Sw, z) \leq d(z, Sw) - \phi(d(z, Sw)), \]
from which, we get \(\phi(d(z, Sw)) = 0 \), which implies that \(d(Sw, z) = 0 \), thus \(z = Sw = Iw \). We conclude that
\[Sw = Iw = z = Ju = Tu. \] (2.10)
So the conclusions a) and b) are obtained. By similar arguments, the same conclusions will be obtained if we suppose that one of \(S(X) \), \(T(X) \) or \(I(X) \) is a complete subspace of \(X \).

Suppose that the pairs \(\{S, I\} \) and \(\{T, J\} \) are weakly compatible, then by (2.10), we have
\[Sz = Iz \quad \text{and} \quad Tz = Jz. \]
Since
\[M(w, z) = \max\{d(Iw, Jz), d(Iw, Sw), d(Jz, Tz), \frac{1}{2}[d(Iw, Tz) + d(Jz, Sw)]\} \]
\[= \max\{d(z, Jz), 0, 0, \frac{1}{2}[d(z, Tz) + d(Jz, z)]\} \]
\[= d(z, Tz), \]
then by inequality (2.1), we obtain
\[d(z, Tz) = d(Sw, Tz) \leq M(w, z) - \phi(M(w, z)) = d(z, Tz) - \phi(d(z, Tz)), \]
which implies that \(\phi(d(z, Tz)) = 0 \). Thus, by property \((\phi_2) \), we obtain \(d(z, Tz) = 0 \). So we have \(z = Tz = Jz \).

Again, by inequality (2.1), we obtain
\[d(Sz, z) = d(Sz, Tz) \leq M(z, z) - \phi(M(z, z)) = d(Sz, z) - \phi(d(Sz, z)). \]
Hence \(\phi(d(Sz, z)) = 0 \), which by property \((\phi_2) \), implies that \(d(Sz, z) = 0 \). So we have \(z = Sz = Iz \). Thus \(z \) is a common fixed point of the mappings \(S, T, I \) and \(J \).

Let \(q \) be another common fixed point of the mappings \(S, T, I \) and \(J \). Then, by using the inequality (2.1), we obtain
\[d(z, q) = d(Sz, Tq) \leq M(z, q) - \phi(d(z, q)) = d(z, q) - \phi(d(z, q)), \]
which gives \(\phi(d(z, q)) = 0 \). By property \((\phi_2) \), we conclude that \(z = q \). This completes the proof. \(\square \)
3. Well-posedness

The notion of well-posedness of a fixed point problem has evoked much interest to a several mathematicians, for examples, F.S. De Blasi and J. Myjak (see [5]), S. Reich and A. J. Zaslavski (see [8]), B.K. Lahiri and P. Das (see [7]) and V. Popa (see [10] and [11]).

Definition 3.1. Let \((X, d)\) be a metric space and \(T : (X, d) \to (X, d)\) a mapping. The fixed point problem of \(T\) is said to be well posed if:

(a) \(T\) has a unique fixed point \(z\) in \(X\);

(b) for any sequence \(\{x_n\}\) of points in \(X\) such that \(\lim_{n \to \infty} d(Tx_n, x_n) = 0\), we have \(\lim_{n \to \infty} d(x_n, z) = 0\).

For a set of mappings, it is natural to introduce the following definition.

Definition 3.2. Let \((X, d)\) be a metric space and let \(T\) be a set of self-mappings of \(X\). The fixed point problem of \(T\) is said to be well-posed if:

(a) \(T\) has a unique fixed point \(z\) in \(X\);

(b) for any sequence \(\{x_n\}\) of points in \(X\) such that \(\lim_{n \to \infty} d(Tx_n, x_n) = 0\), \(\forall T \in T\), we have \(\lim_{n \to \infty} d(x_n, z) = 0\).

Concerning the well-posedness of the common fixed point problem for four mappings satisfying the conditions of Theorem 2.4, we have the following result.

Theorem 3.3. Let \((X, d)\) be a metric space and let \(S, T, I, J\) be four self-mappings of \(X\). Let \(\phi \in \Phi\).

We suppose that:

\((H1)\) : The pair \((S, T)\) is \(\phi\)-weakly contractive with respect to the pair \((I, J)\), that is

\[
d(Sx, Ty) \leq M(x, y) - \phi(M(x, y)),
\]

for all \(x, y\) in \(X\).

\((H2)\) : \(S(X) \subset J(X)\) and \(T(X) \subset I(X)\).

\((H3)\) : The pairs \(\{S, I\}\) and \(\{T, J\}\) are weakly compatible.

\((H4)\) : One of the subsets \(S(X), T(X), I(X)\) or \(J(X)\) is a complete subspace of \(X\).

\((H5)\) : The function \(\phi\) is nondecreasing on \([0, \infty)\).

Then, the common fixed point problem for the set of mappings \(\{S, T, I, J\}\) is well-posed.

Proof. We know, by Theorem 2.4, that the mappings \(S, T, I\) and \(J\) have a unique common fixed point (say) \(z \in X\). Let \(\{x_n\}\) of points in \(X\) such that

\[
\lim_{n \to \infty} d(Sx_n, x_n) = \lim_{n \to \infty} d(Tx_n, x_n) = \lim_{n \to \infty} d(Ix_n, x_n) = \lim_{n \to \infty} d(Tx_n, x_n) = 0. \tag{3.2}
\]

We observe that for all nonnegative integer \(n\), we have

\[
M(z, x_n) = \max\{d(z, Jx_n), d(Jx_n, Tx_n), \frac{1}{2}[d(z, Tx_n) + d(Jx_n, z)]\} \\
\leq d(z, x_n) + d(x_n, Jx_n) + d(x_n, Tx_n).
\]
By the triangle inequality and inequality (3.1), we have
\[d(z, x_n) \leq d(Sz, Tx_n) + d(Tx_n, x_n) \]
\[\leq M(z, x_n) - \phi(M(z, x_n)) + d(Tx_n, x_n) \]
\[\leq d(z, x_n) + d(x_n, Jx_n) + 2d(Tx_n, x_n) - \phi(M(z, x_n)). \]
We deduce that
\[\phi(M(z, x_n)) \leq d(x_n, Jx_n) + 2d(Tx_n, x_n). \]
Thus we have
\[\lim_{n \to \infty} \phi(M(z, x_n)) = 0. \] (3.4)
To get a contradiction, let us suppose that the sequence \(\{x_n\} \) does not converge to \(z \). Then the sequence \(\{Jx_n\} \) does not converge to \(z \). Then, there exists a positive number \(\epsilon > 0 \) and a subsequence \(\{x_{n_k}\} \) such that
\[d(z, Jx_{n_k}) \geq \epsilon, \quad \text{for all integer } k. \] (3.5)
Since \(\phi \) is nondecreasing, from (3.3) and (3.5), we obtain
\[\phi(\epsilon) \leq \phi(d(z, Jx_{n_k})) \leq \phi(M(z, Jx_{n_k})) \leq d(x_{n_k}, Jx_{n_k}) + 2d(Tx_{n_k}, x_{n_k}). \]
By letting \(k \) to infinity, we get
\[\phi(\epsilon) = 0, \]
a contradiction to the property \((\phi_2) \). This completes the proof. \(\Box \)

As a consequence, we have the following improvement to Theorem 1.3 of [12].

Corollary 3.4. Let \((X, d)\) be a complete metric space and \(S, T : X \to X\) be self mappings of \(X\) such that
\[d(Tx, Sy) \leq N(x, y) - \phi(N(x, y)), \quad \forall \ x, y \in X. \] (1.2)
where \(\phi : [0, \infty) \to [0, \infty) \) is a lower semi-continuous function with \(\phi(t) > 0 \) for all \(t \in (0, \infty) \) and \(\phi(0) = 0 \) and
\[N(x, y) = \max\{d(x, y), d(Tx, x), d(Sy, y), \frac{1}{2}[d(y, Tx) + d(x, Sy)]\}. \]
Then, there exists a unique point \(u \in X \) such that \(u = Tu = Su \).
Moreover, if \(\phi \) is nondecreasing then the common fixed point problem for the pair \(\{S, T\} \) is well-posed.

References

1 Department of Mathematics, Faculty of Sciences-Semlalia, University Cadi Ayyad, Av. Prince My. Abdellah, P. O. Box, 2390, Marrakech, Morocco (Maroc). E-mail address: akkouchimo@yahoo.fr