Common Fixed Point Theorems for Maps under a New Contractive Condition

S. Moradia, E. Analouee Audeganib, D. Alimohammadic,*

aDepartment of Mathematics, Faculty of Science, Arak University, P. O. Box: 38156-8-8349, Arak, Iran.
bDepartment of Mathematics, Faculty of Science, Arak University, P. O. Box: 38156-8-8349, Arak, Iran.
cDepartment of Mathematics, Faculty of Science, Arak University, P. O. Box: 38156-8-8349, Arak, Iran.

\begin{abstract}
In this paper fixed point and coincidence results are presented for two and three single-valued mappings. These results extend previous results given by Rhoades (2003) and Djoudi and Merghadi (2008).

\textbf{Keywords:} Common Fixed Point, Contractive Mapping, Weakly Compatible, Nondecreasing.
\textbf{2010 MSC:} Primary 47H10; 47H09; 54H25; 55M20.
\end{abstract}

\section{Introduction and preliminaries}

Let \((X, d)\) be a metric space and let \(f, g : X \rightarrow X\) be two single valued mappings. \(f, g\) are said to be:

\begin{enumerate}[(a)]
\item Weakly commuting if for all \(x \in X\)
\[d(fgx,gfx) \leq d(fx,gx). \] \tag{1.1}
\item Weakly compatible if for all \(t \in X\) such that \(ft = gt\) then \(f gt = g ft\).
\[ft = gt \text{ then } f gt = g ft. \] \tag{1.2}
\end{enumerate}

Clearly, every pair of weakly commuting mappings is weakly compatible. But the converse is not true.(see [4; Example 3])

Let \(f, g\) be self-mappings on \(X\) satisfying the following condition
\[g(X) \subset f(X). \] \tag{1.3}
Let now x_0 be an arbitrary point of X and generate inductively the sequence $\{y_n\}_{n=0}^{\infty}$ as follow,
\[g(x_n) = f(x_{n+1}) = y_n, \quad n = 0, 1, 2, \ldots \]

$O(y_k, r)$ is called the rth orbit of y_k and defines as follow:
\[O(y_k, r) := \{y_k, y_{k+1}, \ldots, y_{k+r}\}, \quad k = 0, 1, 2, \ldots \]

Also we define,
\[O(y_0, \infty) := \{y_0, y_1, \ldots, y_n, \ldots\}. \]

For any set A, $\delta(A)$ will denote the diameter of A. Furthermore, we put for every $x, y \in X$,
\[M(x, y) := \max\{d(fx, fy), d(fx, gx), d(fy, gy), d(fy, gx)\}. \]

and
\[N(x, y) := \max\{d(fx, fy), d(fx, gx), d(fy, gy), \frac{1}{2}[d(fx, gy) + d(fy, gx)]\}. \]

We introduce the notation Φ for all nondecreasing and continuous from the right mapping $\varphi : \mathbb{R}_+ \to [0, +\infty]$ with $\varphi(t) < t$ for every $t > 0$.

Also we introduce the notation Ψ for all nondecreasing continuous mapping $F : \mathbb{R}_+ \to [0, +\infty]$ with $F^{-1}(0) = \{0\}$.

In [10], S. Sessa generalized an elegant result due to G. Jungck [7] and proved the following theorem.

Theorem 1.1. Let f be a continuous self-mapping of X and $g : X \to X$ verifying the conditions:

(a) $d(fgx,gfx) \leq d(fx,gx)$,
(b) $g(X) \subset f(X)$,
(c) $d(gx,gy) \leq \varphi(M(x,y))$.

If there exists $x_0 \in X$ such that $\delta(O(y_0, \infty)) < \infty$, then f and g have a unique common fixed point.

In [9], trying to extend a theorem of Branciari [1] and theorem of Ćirić [2], B.E. Rhoades established two fixed point theorems satisfying a contractive inequality of integral type. In particular he proved the following theorem.

Theorem 1.2. Let (X, d) be a complete metric space, $k \in [0, 1)$, $g : X \to X$ and $f = I : X \to X$ be the identity mapping of X. Suppose that for all $x, y \in X$, the condition
\[\int_0^{d(gx,gy)} \varphi(t) \, dt \leq k \int_0^{M(x,y)} \varphi(t) \, dt, \tag{1.4} \]

is valid where,
(i) $\varphi : \mathbb{R}_+ \to [0, \infty]$ is a Lebesgue-integrable mapping which is summable, nonnegative, and satisfies
\[\int_0^\varepsilon \varphi(t) \, dt > 0 \quad \text{for each} \quad \varepsilon > 0. \]

If there is a point $x \in X$ with bounded orbit, then g has a unique fixed point in X.

A. Djoudi and F. Merghadi [4] (2008) proved the following two theorems in particular, they extended theorem 2 for maps which are not necessary continuous, that extended [5] and [6].
Theorem 1.3. Let \((X, d)\) be a complete metric space and let \(f, g : X \rightarrow X\) be to mappings verifying conditions (1.2), (1.3). Suppose that
\[
\int_0^\infty \varphi(t) \, dt \leq \phi \left(\int_0^\infty \varphi(t) \, dt \right),
\]
for all \(x, y \in X\), where \(\phi \in \Phi\) and \(\varphi\) is a functions having the property (i). Assume that \(f(X)\) is a closed subset of \(X\), and that there exists \(x_0 \in X\), such that \(\delta(O(y_0, \infty)) < \infty\). Then \(f\) and \(g\) have a unique common fixed point.

Theorem 1.4 (see [4; Theorem 11]). Let \(f\) and \(g\) be two self-mappings of complete metric space \((X, d)\) verifying conditions (1.1), (1.3) and (1.5). Assume that \(f\) is a continuous function on \(X\) and that there exists \(x_0 \in X\), such that \(\delta(O(y_0, \infty)) < \infty\). Then \(f\) and \(g\) have a unique common fixed point.

Zang and Song [12] proved the following theorem that extended Theorem 1.3 where \(\phi(t) \equiv t\).

Theorem 1.5. Let \((X, d)\) be a complete metric space, and \(T, S : X \rightarrow X\) two mapping such that for all \(x, y \in X\)
\[
d(Tx, Sy) \leq N(x, y) - \varphi(N(x, y))
\]
where \(\varphi : \mathbb{R}_+ \rightarrow [0, \infty)\) is a lower semi-continuous function with \(\varphi(t) > 0\) for \(t \in (0, \infty)\) and \(\varphi(0) = 0\) and
\[
N(x, y) := \max\{d(x, y), d(x, Tx), d(y, Sy), \frac{1}{2}[d(y, Tx) + d(x, Sy)]\}.
\]
Then there exists a unique point \(u \in X\) such that \(u = Tu = Su\).

In the proof of our main results, we will use the following lemma and refer to [11] for its proof.

Lemma 1.6. Let \(\varphi : \mathbb{R}_+ \rightarrow \mathbb{R}_+\) is a nondecreasing function and continuous from right. Then for all \(t > 0\), \(\varphi(t) < t\) if and only if \(\lim_{t \to 0} \phi^k(t) = 0\), where \(\phi^k\) denotes the \(k\)-times repeated composition of \(\phi\) with itself.

In section 2, we extend Djoudi-Merghadi’s Theorem [Theorem 1.3 and Theorem 1.4].
In section 3, by same method in [12] we extend another type of Theorem 1.4 and Theorem 1.4 without assuming \(\delta(O(y_0, \infty)) < +\infty\). These results extend extend the Rhoades Theorem (Theorem 1.2).

2. Extension of Djoudi-Merghadi’s Theorem

The following theorem extends Djoudi and Merghadi’s Theorem (Theorem 1.3).

Theorem 2.1. Let \(f\) and \(g\) be two self-mappings of complete metric space \((X, d)\) fulfilling conditions (1.1), (1.3). Suppose that,
\[
F(d(gx, gy)) \leq \phi(F(M(x, y))),
\]
for all \(x, y \in X\), where \(\phi \in \Phi\) and \(F \in \Psi\). Assume that \(f(X)\) is a closed subset of \(X\) and there exists \(x_0 \in X\), such that \(\delta(O(y_0, \infty)) < \infty\). Then \(f\) and \(g\) have a unique common fixed point.
Proof. We may assume that $\delta(O(y_k, r)) > 0$ for all $k \geq 0$ and $r \geq 1$, since, if there exist $k \geq 0$ and $r \geq 1$ such that $\delta(O(y_k, r)) = 0$, we immediately get, $y_k = y_{k+1} = y$ that is $f(x_{k+1}) = g(x_{k+1}) = y$, then from (1.2), $fy = gy$.

Hence

$$M(y, x_{k+1}) = \max \{d(fy, fx_{k+1}), d(fy, gy), d(fx_{k+1}, gx_{k+1}), \}
\{d(fy, gx_{k+1}, d(fx_{k+1}, gy))\}
\leq \max \{d(fy, y), d(gy, y)\} = d(gy, y).$$

Therefore from (2.1)

$$F(d(gy, y)) = F(d(gy, gx_{k+1})) \leq \phi(F(M(y, x_{k+1})))
= \phi(F(d(gy, y))).$$

Since $\phi(t) < t$ for all $t > 0$, $F(d(gy, y)) = 0$ and since $F^{-1}(0) = \{0\}$, $d(gy, y) = 0$. Hence, $gy = y$ and so $fy = gy = y$.

So we may assume that $\delta(O(y_k, r)) > 0$ for all $k \geq 0$ and $r \geq 1$.

We break the argument into four steps.

Step 1. $\{y_n\}$ is Cauchy.

Proof. From the definition of $\delta(O(y_k, r))$, there exist m, n satisfying $k \leq n < m \leq k + r$ such that $\delta(O(y_k, r)) = d(y_n, y_m)$. So

$$F(\delta(O(y_k, r))) = F(d(y_n, y_m)) = F(d(gx_n, gx_m))
\leq \phi(F(x_n, x_m)), \quad (2.2)$$

where

$$M(x_n, x_m) = \max \{d(y_{n-1}, y_{m-1}), d(y_{n-1}, y_n), d(y_{m-1}, y_m),
\{d(y_{n-1}, y_m), d(y_{m-1}, y_n)\}\}
\leq \delta(O(y_{k-1}, r + 1)). \quad (2.3)$$

From (2.2), (2.3) and using induction we conclude that

$$F(\delta(O(y_k, r))) \leq \phi(F(\delta(O(y_{k-1}, r + 1))))
\leq \phi^2(F(\delta(O(y_{k-2}, r + 2))))
\leq \ldots
\leq \phi^k(F(\delta(O(y_0, r + k)))) \quad (2.4)$$

For every m, n integer with $m > n$, $d(y_m, y_n) \leq \delta(O(y_n, m))$. So from (2.4) and $\delta(O(y_0, \infty) < \infty$

$$F(d(y_m, y_n)) \leq \phi(F(\delta(O(y_m, m))))
\leq \phi^n(F(\delta(O(y_0, n + m)))) \quad (2.5)$$

Using Lemma 1.6, $\lim_{n \to \infty} \phi^n(t) = 0$ and hence, from (2.5), $\lim_{n,m \to \infty} F(d(y_n, y_m)) = 0$. Since $F \in \Psi$, $\lim_{n,m \to \infty} d(y_n, y_m) = 0$. Therefore $\{y_n\}$ is Cauchy. \(\square\)
Step 2. $g z = f z$ for some $z \in X$.

Proof. By Step 1 and completeness of X, there exists $z \in X$ such that $\lim_{n \to \infty} y_n = z$. That is

$$z = \lim_{n \to \infty} y_n = \lim_{n \to \infty} g x_n = \lim_{n \to \infty} f x_{n+1}.$$

Since $f(X)$ is closed, there exists a point $u \in X$ such that $z = f(u)$. Using (2.1),

$$F(d(gu, gx_n)) \leq \phi(F(M(u, x_n))),$$

where

$$M(u, x_n) = \max\{d(fu, fx_n), d(fu, gu), d(fx_n, gx_n),$$

$$d(fu, gx_n), d(fx_n, gu)\}$$

$$= \max\{d(z, y_{n-1}), d(z, gu), d(y_{n-1}, y_n),$$

$$d(z, y_n), d(y_{n-1}, gu)\},$$

and this shows that $\lim_{n \to \infty} M(u, x_n) = d(z, gu)$. Hence from (2.6)

$$F(d(gu, z)) \leq \phi(F(M(z, gu))),$$

and so $d(gu, z) = 0$. Therefore $gu = z$. From $fu = gu = z$ and (1.2) we obtain $fz = gz$. \qed

Step 3. f and g have a common fixed point.

Proof. Using (1.2) and $fz = gz = t$, we get $ft = gt$. From (1.6) we conclude that

$$F(d(gt, gz)) \leq \phi(F(M(t, z))),$$

where

$$M(t, z) = \max\{d(ft, fz), d(ft, gt), d(fz, gz),$$

$$d(ft, fz), d(fz, gt)\}$$

$$= d(gt, gz),$$

and this shows that $d(gt, gz) = 0$. So $gt = gz$. Hence $g(t) = t$ and so $f(t) = g(t) = t$. Therefore f and g have a common fixed point. Unicity of the common fixed point follows from (2.1) and this completes the proof. \qed

Remark 2.2. One can check without great difficulty that Theorem 2.2 is still true if we have "$g(X)$ is closed" instead of "$f(X)$ is closed". Moreover, the theorem also remains valid if we have g or f is surjective instead of "$g(X)$ is closed".

Remark 2.3. We derive Theorem 8 of A. Djoudi and F. Merghadi [4] (Theorem 1.4) if we let, in Theorem 2.2, $F(t) = \int_0^t \phi(s)ds$.

The following theorem extends Theorem 1.4 ([5; Theorem 11]).

Theorem 2.4. Let f and g be two self-mappings of complete metric space (X, d) verifying conditions (1.1), (1.3) and (2.1), for ϕ and F that introduced in Theorem 2.1 and let f be a continuous function of X, such that $\delta(O(y_0, \infty)) < \infty$ for some $y_0 \in X$. Then f and g have a unique common fixed point.
Proof. Unicity of the common fixed point follows from (2.1). Following the proof of Theorem 2.1 we may conclude that \(\{y_n\} \) is a Cauchy sequence converging to some \(z \) in \(X \) and

\[
z = \lim_{n \to \infty} y_n = \lim_{n \to \infty} gx_n = \lim_{n \to \infty} fx_{n+1}.
\]

Since \(f \) is continuous \(fy_n \) converges to \(fz \). Furthermore, condition (1.1) triangular inequality imply

\[
\begin{align*}
d(gy_n, fz) & \leq d(gy_n, fy_{n+1}) + d(fy_{n+1}, fz) \\
& = d(gfx_{n+1}, gfx_{n+1}) + d(fy_{n+1}, fz) \\
& \leq d(fx_{n+1}, gx_{n+1}) + d(fy_{n+1}, fz) \\
& = d(y_n, y_{n+1}) + d(fy_{n+1}, fz).
\end{align*}
\]

(2.8)

Letting \(n \to \infty \) in the above inequality, we conclude that \(\lim_{n \to \infty} gy_n = fz \).

\[
M(y_n, z) = \max\{d(fy_n, fz), d(fy_n, gy_n), d(fz, gz), d(fy_n, gz), d(fz_n, gy_n)\},
\]

converges from the right to \(d(fz, gz) \). Consequently, we obtain from (2.1),

\[
F(d(gy_n, gz)) \leq \phi(F(M(y_n, z))),
\]

(2.9)

and by taking the limit of (2.9), as \(n \to \infty \), gives

\[
F(d(fz, gz)) \leq \phi(F(M(fz, z))).
\]

So \(F(d(fz, gz)) = 0 \). Hence, \(d(fz, gz) = 0 \) and therefore \(fz = gz \). Thus \(fgz = gfz = ggz \). Now we show that \(gz \) is a common fixed point for \(f \) and \(g \). Using (2.9),

\[
F(d(ggz, gz)) \leq \phi(F(M(gz, z))
\]

and hence \(d(ggz, gz) = 0 \). Therefore, \(ggz = gz \). Thus \(fgz = ggz = gz \). This shows that \(gz \) is common fixed point for \(f \) and \(g \). \(\square \)

Remark 2.5. By define \(F(t) = \int_0^t \phi(s)ds \) we can conclude Theorem 1.4. Also by define \(\phi(t) = t \) we can extend Ćirić theorem [2].

3. Extension of Rhoade’s Theorem

By the same method in Zang and Song [12] we have two extension of Rhoads Theorem. In particular \(M(x, y) \) in Theorem 2.1 and Theorem 2.4 is replaced by \(N(x, y) \) without assuming \(\delta(O(y_0, \infty)) < \infty \).

Theorem 3.1. Let \(f, g_1 \) and \(g_2 \) be three self-mappings of complete metric space \((X, d) \) verifying the conditions :

(a) \(\forall t \in X \) if \(ft = g_it \) Then \(fg_it = g_itf \) \((i = 1, 2)\),

(b) \(g_1(X) \subseteq f(X) \) and \(g_2(X) \subseteq f(X) \),

(c) \(F(d(g_1x, g_2y)) \leq \phi(F(N(x, y))) \).

where $\phi, F \in \Psi$, $\phi(t) < t$ for all $t > 0$ and where

$$N(x, y) = \max \{d(fx, fy), d(fx, g_1x), d(fy, g_2y), \frac{1}{2}[d(fx, g_2y) + d(fy, g_1x)]\}.$$

Assume that $f(X)$ is a closed subset of X. Then, g_1, g_2 have a unique common fixed point.

Proof. If for some $x, y \in X$, $d(g_1x, g_2y) \geq N(x, y)$ then

$$F(d(g_1x, g_2y)) \geq F(N(x, y)) \geq \phi(F(N(x, y))).$$

Since $\phi(t) < t$ for all $t > 0$, $F(N(x, y)) = 0$. So $N(x, y) = 0$. Hence $f(x) = f(y) = g_1(x) = g_2(y) = t$. Using (a) we conclude that $g_1t = ft = g_2t$. From (c),

$$F(d(g_1x, g_2y)) \leq \phi(F(N(x, t))).$$

where

$$N(x, t) = \max \{d(fx, ft), d(fx, g_1x), d(ft, g_2t), \frac{1}{2}[d(fx, g_2t) + d(ft, g_1x)]\}$$

and this shows that $F(d(g_1x, g_2t)) = 0$. So $d(g_1x, g_2t) = 0$ and hence $t = g_1x = g_2t$. Therefore, $g_1t = ft = g_2t = t$. So we may assume that for all $x, y \in X$, $d(g_1x, g_2y) < N(x, y)$. Let $x_0 \in X$.

Using (b) there exist $\{x_n\}_{n=0}^{\infty}$ and $\{y_n\}_{n=0}^{\infty}$ such that $y_0 = g_1(x_0) = f(x_1)$, $y_1 = g_2(x_1) = f(x_2)$, ... $y_{2n} = g_1(x_{2n})$, $y_{2n+1} = g_2(x_{2n+1}) = f(x_{2n+2})$, ...

We break the proof into four steps.

Step 1. $\lim_{n,m \to \infty} d(y_n, y_m) = 0$.

Proof. For all $n \in \mathbb{N}$

$$d(y_{2n}, y_{2n+1}) = d(g_1x_{2n}, g_2x_{2n+1}) < N(x_{2n}, x_{2n+1})$$

$$= \max \{d(y_{2n-1}, y_{2n}), d(y_{2n-1}, y_{2n}), d(y_{2n}, y_{2n+1}), \frac{1}{2}[d(y_{2n-1}, y_{2n+1}) + d(y_{2n}, y_{2n})]\}$$

$$\leq \max \{d(y_{2n-1}, y_{2n}), d(y_{2n-1}, y_{2n}), d(y_{2n}, y_{2n+1}), \frac{1}{2}[d(y_{2n-1}, y_{2n}) + d(y_{2n}, y_{2n+1})]\}$$

$$= \max \{d(y_{2n-1}, y_{2n}), d(y_{2n}, y_{2n+1})\}.$$

So

$$d(y_{2n}, y_{2n+1}) < N(x_{2n}, x_{2n+1})$$

$$= \max \{d(y_{2n-1}, y_{2n}), d(y_{2n}, y_{2n+1})\}$$

$$= d(y_{2n-1}, y_{2n}). \quad (3.1)$$

Similarly,

$$d(y_{2n+2}, y_{2n+1}) < N(x_{2n+2}, x_{2n+1}) = d(y_{2n+1}, y_{2n}). \quad (3.2)$$
Therefore by (3.1) and (3.2) we conclude that
\[d(y_{k+1}, y_k) < d(y_k, y_{k-1}), \]
for all \(k \in \mathbb{N} \). Therefore the sequence \(\{d(y_{n+1}, y_n)\} \) is decreasing and bounded below. So there exists \(r \geq 0 \) such that \(\lim_{n \to \infty} d(y_{n+1}, y_n) = r \). We need to show that \(r = 0 \). Using (3.1), (3.2) and condition (c) we have
\[F(d(y_{n+1}, y_n)) \leq \phi(F(N(x_n, x_{n+1}))) = \phi(F(d(y_n, y_{n-1}))), \quad (3.3) \]
for all \(n \in \mathbb{N} \). Letting \(n \to \infty \) in (3.3), \(F(r) \leq \phi(F(r)) \). So \(F(r) = 0 \) and hence \(r = 0 \). \(\square \)

Step 2. \(\{y_n\} \) is a bounded sequence.

Proof. If \(\{y_n\} \) is an unbounded, then by Step 1, \(\{y_{2n}\} \) and \(\{y_{2n-1}\} \) are unbounded. We choose the sequence \(\{n(k)\}_{k=1}^{\infty} \) such that \(n(1) = 1 \), \(n(2) > n(1) \) is even and minimal in sense such that \(d(y_{n(2)}, y_{n(1)}) > 1 \) and similarly \(n(3) > n(2) \) is odd and minimal in sense such that \(d(y_{n(3)}, y_{n(2)}) > 1 \), ..., \(n(2k) > n(2k-1) \) is even and minimal in sense such that \(d(y_{n(2k)}, y_{n(2k-1)}) > 1 \) and \(n(2k+1) > n(2k) \) is odd and minimal in sense such that \(d(y_{n(2k+1)}, y_{n(2k)}) > 1 \). Obviously \(n(k) \geq k \) for every \(k \in \mathbb{N} \). By Step 1 there exists \(N_0 \in \mathbb{N} \) such that for all \(k \geq N_0 \), \(d(y_{k+1}, y_k) < \frac{1}{k} \). So for \(k \geq N_0 \) we have \(n(k+1) - n(k) \geq 2 \) and
\[
1 < d(y_{n(k+1)}, y_{n(k)}) \leq d(y_{n(k+1)}, y_{n(k)-2}) + d(y_{n(k)-2}, y_{n(k)}) \leq d(y_{n(k)+1}, y_{n(k)-2}) + 1.
\]
Hence \(\lim_{k \to \infty} d(y_{n(k+1)}, y_{n(k)}) = 1 \). Also
\[
1 < d(y_{n(k)+1}, y_{n(k)}) \leq d(y_{n(k)+1}, y_{n(k)+1}) + d(y_{n(k)+1}, y_{n(k)}) \leq d(y_{n(k)+1}, y_{n(k)+1}) + d(y_{n(k)+1}, y_{n(k)}) + d(y_{n(k)}, y_{n(k)+1}) + d(y_{n(k)}, y_{n(k)})
\]
\[
= 2d(y_{n(k)+1}, y_{n(k)+1}) + d(y_{n(k)+1}, y_{n(k)}) + 2d(y_{n(k)+1}, y_{n(k)}),
\]
and this shows that \(\lim_{k \to \infty} d(y_{n(k)+1}, y_{n(k)+1}) = 1 \).

Using (c),
\[F(d(y_{n(k)+1}, y_{n(k)+1})) \leq \phi(F(N(x_{n(k)+1}, x_{n(k)+1}))), \quad (3.4) \]
where
\[
d(y_{n(k)+1}, y_{n(k)}) \leq N(x_{n(k)+1}, x_{n(k)+1}) = \max \left\{ d(y_{n(k)+1}, y_{n(k)}), d(y_{n(k)}, y_{n(k)+1}) \right\} \leq \frac{1}{2} \left[d(y_{n(k)+1}, y_{n(k)+1}) + d(y_{n(k)}, y_{n(k)+1}) \right]
\]
\[
\leq \max \left\{ d(y_{n(k)+1}, y_{n(k)}), d(y_{n(k)}, y_{n(k)+1}) \right\} \leq \frac{1}{2} \left[2d(y_{n(k)+1}, y_{n(k)}) + d(y_{n(k)}, y_{n(k)+1}) + d(y_{n(k)+1}, y_{n(k)+1}) \right],
\]
and this shows that \(\lim_{k \to \infty} N(x_{n(k)+1}, x_{n(k)+1}) = 1 \). Since (3.4) holds and \(F \in \Psi \), \(F(1) \leq \phi(F(1)) \). So \(F(1) = 0 \) and this is a contradiction. \(\square \)

Step 3. \(\{y_n\} \) is Cauchy.

Proof. Let \(C_n = \sup \{d(y_i, y_i) : i, j \geq n\} \). Since \(\{y_n\} \) is bounded, \(C_n < +\infty \) for all \(n \in \mathbb{N} \). Obviously \(\{C_n\} \) is decreasing. So there exists \(C \geq 0 \) such that \(\lim_{n \to \infty} C_n = C \). We need to show that \(C = 0 \).

For every \(k \in \mathbb{N} \), there exists \(n(k), m(k) \in \mathbb{N} \) such that \(m(k) > n(k) \geq k \) and

\[
C_k - \frac{1}{k} \leq d(y_{m(k)}, y_{n(k)}) \leq C_k. \tag{3.5}
\]

By (3.5), we conclude that

\[
\lim_{k \to \infty} d(y_{m(k)}, y_{n(k)}) = C. \tag{3.6}
\]

From Step 1 and (3.6), we have

\[
\lim_{k \to \infty} d(y_{m(k)+1}, y_{n(k)+1}) = \lim_{k \to \infty} d(y_{m(k)+1}, y_{n(k)}) = \lim_{k \to \infty} d(y_{m(k)}, y_{n(k)+1}) = \lim_{k \to \infty} d(y_{m(k)}, y_{n(k)}) = C.
\]

So we can assume that for every \(k \in \mathbb{N} \), \(m(k) \) is odd and \(n(k) \) is even. Hence,

\[
F(d(y_{m(k)}, y_{n(k)})) \leq \phi(F(M(x_{m(k)}, x_{n(k)}))), \tag{3.7}
\]

where

\[
N(x_{m(k)}, x_{n(k)}) = \max \{d(y_{m(k)-1}, y_{n(k)-1}), d(y_{m(k)-1}, y_{m(k)}), d(y_{n(k)-1}, y_{n(k)}), \frac{1}{2}[d(y_{m(k)-1}, y_{n(k)}) + d(y_{n(k)-1}, y_{m(k)})]\}.
\]

This inequality shows that \(\lim_{k \to \infty} N(x_{m(k)}, x_{n(k)}) = C \). and from (3.7) we get \(F(C) \leq \phi(F(C)) \). So \(C = 0 \). \(\square \)

Step 4. \(f_1 \) and \(g_2 \) have a common fixed point.

Proof. Since \((X, d)\) is complete and \(\{y_n\} \) is Cauchy there exists \(z \in X \) such that \(\lim_{n \to \infty} y_n = z \). Since \(f(X) \) is closed, there exists a point \(u \in X \) such that \(z = f(u) \). For all \(n \in \mathbb{N} \) For all \(n \in \mathbb{N} \)

\[
F(d(g_1 u, y_{2n+1})) = F(d(g_1 u, g_2 x_{2n+1})) \leq \phi(F(N(u, x_{2n+1})))), \tag{3.8}
\]

where

\[
N(u, x_{2n+1}) = \max \{d(f u, f x_{2n+1}), d(f u, g_1 u), d(f x_{2n+1}, g_2 x_{2n+1}), \frac{1}{2}[d(f u, g_2 x_{2n+1}) + d(f x_{2n+1}, g_1 u)]\}
\begin{align*}
&= \max \{d(z, y_{2n}), d(z, g_1 u), d(y_{2n}, y_{2n+1}), \frac{1}{2}[d(z, y_{2n+1}) + d(y_{2n}, g_1 u)]\},
\end{align*}
\]
and this shows that \(\lim_{n \to \infty} N(u, x_{2n+1}) = d(z, g_1 u) \). Letting \(n \to \infty \) in (3.8), we conclude that
\[
F(d(g_1 u, z)) \leq \phi(F(d(g_1 u, z))),
\]
and so \(F(d(g_1 u, z)) = 0 \). Hence \(d(g_1 u, z) = 0 \) and therefore \(g_1 u = z \). Similarly, \(g_2 u = z \). Therefore \(f u = g_1 u = g_2 u = z \). Using condition (a) we conclude that \(g_1 z = f z = g_2 z \). Now we prove that \(z \) is a common fixed point for \(f, g_1 \) and \(g_2 \).
For all \(n \in \mathbb{N} \),
\[
F(d(g_1 z, y_{2n+1})) = F(d(g_1 z, g_2 x_{2n+1})) \leq \phi(F(N(z, x_{2n+1}))),
\]
(3.9)
where
\[
N(z, x_{2n+1}) = \max \{ d(fz, fx_{2n+1}), d(fz, g_1 z), d(fx_{2n+1}, g_2 x_{2n+1}),
\]
\[
\frac{1}{2} [d(fz, g_2 x_{2n+1}) + d(fx_{2n+1}, g_1 z)] \}
\]
= \max \{ d(g_1 z, y_{2n}), 0, d(y_{2n}, y_{2n+1}),
\]
\[
\frac{1}{2} [d(g_1 z, y_{2n+1}) + d(y_{2n}, g_1 z)] \},
\]
and this shows that \(\lim_{n \to \infty} N(z, x_{2n+1}) = d(z, g_1 z) \). Letting \(n \to \infty \) in (3.9), we get
\[
F(d(g_1 z, z)) \leq \phi(F(d(g_1 z, z))),
\]
This shows that \(F(d(g_1 z, z)) = 0 \) and so \(d(g_1 z, z) = 0 \). Hence \(g_1 z = z \). Therefore \(f(z) = g_1(z) = g_2(z) = z \). Unicity of the common fixed point follows from (c). □ □

Theorem 3.2. Let \(f, g_1 \) and \(g_2 \) be three self-mappings of complete metric space \((X, d) \) verifying the conditions (b) and (c) of Theorem 3.1, where \(\phi, F \in \Psi \) and where \(\phi(t) < t \) for all \(t > 0 \). Assume that \(f \) is a continuous function of \(X \). If for all \(x \in X \),
\[
d(fg_1 x, g_1 f x) \leq d(fx, g_1 x), \quad i = 1, 2.
\]
(3.10)
Then \(f, g_1, g_2 \) have a unique common fixed point.

Proof. Following the proof of Theorem 3.1 we may conclude that \(\{y_n\} \) is Cauchy sequence converging to some \(z \) in \(X \) and
\[
z = \lim_{n \to \infty} y_n = \lim_{n \to \infty} g_1 x_{2n} = \lim_{n \to \infty} g_2 x_{2n+1} = \lim_{n \to \infty} f x_n.
\]
Since \(f \) is continuous, \(f y_n \) converges \(f z \). Using (3.10) and triangular inequality for all \(n \in \mathbb{N} \)
\[
d(g_1 y_{2n+1}, f z) \leq d(g_1 y_{2n+1}, f y_{2n+2}) + d(f y_{2n+2}, f z)
\]
\[
= d(g_1 f x_{2n+2}, g_1 x_{2n+2}) + d(f y_{2n+2}, f z)
\]
\[
\leq d(f x_{2n+2}, g_1 x_{2n+2}) + d(f y_{2n+2}, f z)
\]
\[
= d(y_{2n+2}, g_1 x_{2n+2}) + d(f y_{2n+2}, f z).
\]
This shows that \(\lim_{n \to \infty} d(g_1 y_{2n+1}, f z) = 0 \).
From (c)
\[
F(d(g_1 y_{2n+1}, g_2 z)) \leq \phi(F(N(y_{2n+1}, z))),
\]
(3.11)
where
\[N(y_{2n+1}, z) = \max \{d(fy_{2n+1}, fz), d(fy_{2n+1}, g_1y_{2n+1}), d(fz, g_2z), \]
\[\frac{1}{2}[d(fy_{2n+1}, g_2z) + d(fz, g_1y_{2n+1})] \}, \]
and this shows that \(\lim_{n \to \infty} N(y_{2n+1}, z) = d(fz, g_2z) \). Hence, from (3.11) we conclude that \(F(d(fz, g_2z)) \leq \phi(F(d(fz, g_2z))) \). So \(F(d(fz, g_2z)) = 0 \) and hence \(d(fz, g_2z) = 0 \). Therefore \(fz = g_2z \). Similarly \(fz = g_1z \). Therefore \(fz = g_1z = g_2z = t \).

Now we prove that \(t \) is common fixed point for \(f, g_1 \) and \(g_2 \). Using \(fz = g_1z = g_2z = t \) and condition (3.10), we have \(ft = g_1t = g_2t \). So from (c)
\[F(d(g_1t, t)) = F(d(g_1g_1t, g_2t)) \leq \phi(F(N(g_1z, z))), \]
where
\[N(g_1z, z) = \max \{d(ft, fz), d(ft, g_1t), d(fz, g_2z), \]
\[\frac{1}{2}[d(ft, g_2z) + d(fz, g_1t)] \}, \]
\[= d(ft, fz) = d(g_1t, t). \]
Hence \(F(d(g_1t, t)) \leq \phi(F(d(g_1t, t))) \) and so \(F(d(g_1t, t)) = 0 \). Therefore \(d(g_1t, t) = 0 \) and this shows that \(g_1t = t \). Hence \(ft = g_1t = g_2t = t \). By (c) we conclude that the common fixed point is unique and this completes the proof. □

4. Conclusion

We have extended Djoudi-Merghadi’s Theorem by replacing \(\int_0^t \phi(s)ds \) with \(F \) where \(F \in \Psi \). We have also extended Rhoades theorem by assuming \(f, g_1 \) and \(g_2 \) verifying the condition (c) in Theorem 3.1 and 3.2, and found the common fixed point of \(f, g_1 \) and \(g_2 \). For the future directions of research we can consider three maps \(f, g_1 \) and \(g_2 \) in Theorem 2.1 and Theorem 2.4.

References