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Abstract

We prove the generalized Hyers–Ulam stability of n-th order linear differential equation of the form
y(n)+p1(x)y(n−1)+· · ·+pn−1(x)y′+pn(x)y = f(x), with condition that there exists a non–zero solution
of corresponding homogeneous equation. Our main results extend and improve the corresponding
results obtained by many authors.
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1. Introduction and preliminaries

The stability problem of functional equations started with the question concerning stability of group
homomorphisms proposed by S.M. Ulam [14] during a talk before a Mathematical Colloquium at the
University of Wisconsin, Madison. In 1941, D. H. Hyers [5] gave a partial solution of Ulam,s problem
for the case of approximate additive mappings in the context of Banach spaces. In 1978, Th. M.
Rassias [12] generalized the theorem of Hyers by considering the stability problem with unbounded
Cauchy differences ‖f(x + y)− f(x)− f(y)‖ ≤ ε(‖x‖p + ‖y‖p), (ε > 0, p ∈ [0, 1)). This phenomenon
of stability that was introduced by Th. M. Rassias [12] is called the Hyers–Ulam–Rassias stability
(or the generalized Hyers–Ulam stability).

Let X be a normed space over a scalar field K and let I be an open interval. Assume that for
any function f : I → X satisfying the differential inequality

‖an(t)y(n)(t) + an−1(t)y
(n−1)(t) + ...+ a1(t)y

′(t) + a0(t)y(t) + h(t)‖ ≤ ε

for all t ∈ I and for some ε ≥ 0, there exists a function f0 : I → X satisfying

an(t)y(n)(t) + an−1(t)y
(n−1)(t) + ...+ a1(t)y

′(t) + a0(t)y(t) + h(t) = 0
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and
‖f(t)− f0(t)‖ ≤ K(ε)

for all t ∈ I, here K(t) is an expression for ε with limε→0K(ε) = 0. Then, we say that the above
differential equation has the Hyers–Ulam stability.

If the above statement is also true when we replace ε and K(ε) by ϕ(t) and φ(t), where ϕ, φ :
I → [0,∞) are functions not depending on f and f0 explicitly, then we say that the corresponding
differential equation has the Hyers–Ulam–Rassias stability (or the generalized Hyers–Ulam stability).

The Hyers–Ulam stability of differential equation y′ = y was first investigated by Alsina and Ger
[2]. This result has been generalized by Takahasi et al. [13] for the Banach space valued differential
equation y′ = λy. In [10], Miura et al. proved the Hyers–Ulam–Rassias stability of linear differential
of first order, y′ + g(t)y(t) = 0, where g(t) is a continuous function, while the author [6] proved the
Hyers–Ulam–Rassias stability of linear differential equation of the form c(t)y′(t) = y(t). Soon-Mo
Jung [7] proved the Hyers–Ulam–Rassias stability of linear differential equation of first order of the
form y′(t)+g(t)y(t)+h(t) = 0. We refer the interested readers for more information on such problems
to the papers [1, 3, 4, 8, 9, 11] and [15].

In this paper, we investigate the generalized Hyers–Ulam stability of differential equations of the
form

y(n) + p1(x)y(n−1) + · · ·+ pn−1(x)y′ + pn(x)y = f(x). (1.1)

From now on, we assume that X is a complex Banach space and I = (a, b) is an arbitrary interval,
where a, b ∈ R

⋃
{±∞} are arbitrarily given with a < b, and y1 : I → X is a non–zero solution of

corresponding homogeneous equation of (1.1), which

y
(n)
1 + p1(x)y

(n−1)
1 + · · ·+ pn−1(x)y′! + pn(x)y1 = 0. (1.2)

2. Main results

Using the induction method, we are going to investigate the stability of n-th order linear differential
equations. For the sake of convenience, all the integrals and derivations will be viewed as existing.

Theorem 2.1. Assume that p1, p2, · · · , pn : I → C and f : I → X are continuous functions and y1 :
I → X is a non–zero n–times continuously differentiable function satisfies the differential equation
(1.2). If an n–times continuously differentiable function y : I → X satisfies

‖y(n) + p1(x)y(n−1) + · · ·+ pn−1(x)y′ + pn(x)y − f(x)‖ ≤ ϕ(x) (2.1)

for all x ∈ I, where ϕ : I → (0,∞) is a continuous function, then differential equation (1.1) has the
generalized Hyers–Ulam stability.

Proof .
For k = 1, see [7]. We assume that the linear differential equation of order k, with condition that

there exists a non–zero solution of corresponding homogeneous equation, satisfying the generalized
Hyers–Ulam stability for 1 ≤ k < n. We will show that the linear differential equation of order n,
with condition that there exists a non–zero solution of corresponding homogeneous equation, satisfies
the generalized Hyers–Ulam stability.

Let k = n and let

v(x) =
y(x)

y1(x)
(2.2)
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for all x ∈ I. It follows from (1.2),(2.1) and (2.2) that

‖y(n)(x) + p1(x)y(n−1)(x) + · · ·+ pn−1(x)y′(x) + pn(x)y(x)− f(x)‖
= ‖ (y1(x)v(x))(n) + p1(x) (y1(x)v(x))(n−1) + . . .+ pn(x) (y1(x)v(x))− f(x)‖
= ‖(v(x))(n)y1(x) + (v(x))(n−1) (n(y1(x))′ + p1(x)y1(x))

+ (v(x))(n−2) (n(y1(x))′′ + (n− 1)p1(x)(y1(x))′ + p2(x)y1(x))

+ (v(x))(n−3)
(
n(y1(x))(3) + (n− 1)p1(x)(y1(x))′′ + (n− 2)p2(x)(y1(x))′ + p3(x)y1(x)

)
+ (v(x))′

(
n(y1(x))(n−1) + (n− 1)p1(x)(y1(x))(n−2) + · · ·+ p1(x)y1(x)

)
+
(
(y1(x))(n) + p1(x)(y1(x))(n−1) + p2(x)(y1(x))(n−2) + · · ·+ pn(x)y1(x)

)
− f(x)‖

≤ ϕ(x).

Hence, we have

‖(v(x))(n) + (v(x))(n−1)
(
n

(y1(x))′

y1(x)
+ p1(x)

)
+ (v(x))(n−2)

(
n

(y1(x))′′

y1(x)
+ (n− 1)p1(x)

(y1(x))′

y1(x)
+ p2(x)

)
+ (v(x))(n−3)

(
n

(y1(x))(3)

y1(x)
+ (n− 1)p1(x)

(y1(x))′′

y1(x)
+ (n− 2)p2(x)

(y1(x))′

y1(x)
+ p3(x)

)
+ · · ·

+ (v(x))′
(
n

(y1(x))(n−1)

y1(x)
+ (n− 1)p1(x)

(y1(x))(n−2)

y1(x)
+ · · ·+ p1(x)

)
− f(x)

y1(x)
‖ ≤ ϕ(x)

‖y1(x)‖
.

(2.3)

We suppose that
(v(x))′ = w(x) (2.4)

for all x ∈ I. It follows from (2.3) and (2.4) that

‖(w(x))(n−1) + (w(x))(n−2)
(
n

(y1(x))′

y1(x)
+ p1(x)

)
+ (w(x))(n−3)

(
n

(y1(x))′′

y1(x)
+ (n− 1)p1(x)

(y1(x))′

(y1(x))
+ p2(x)

)
+ (w(x))(n−4)

(
n

(y1(x))(3)

(y1(x)
+ (n− 1)p1(x)

(y1(x))′′

y1(x)
+ (n− 2)p2(x)

(y1(x))′

(y1(x)
+ p3(x)

)
+ · · ·

+ w(x)

(
n

(y1(x))(n−1)

(y1(x)
+ (n− 1)p1(x)

(y1(x))(n−2)

(y1(x)
+ · · ·+ p1(x)

)
− f(x)‖ ≤ ϕ(x)

‖y1(x)‖

(2.5)

we define a n− 1 order differential equation of the form

(y(x))(n−1) + (y(x))(n−2)
(
n

(y1(x))′

y1(x)
+ p1(x)

)
+ (y(x))(n−3)

(
n

(y1(x))′′

y1(x)
+ (n− 1)p1(x)

(y1(x))′

(y1(x))
+ p2(x)

)
+ (y(x))(n−4)

(
n

(y1(x))(3)

(y1(x)
+ (n− 1)p1(x)

(y1(x))′′

y1(x)
+ (n− 2)p2(x)

(y1(x))′

(y1(x)
+ p3(x)

)
+ · · ·

+ (y(x))

(
n

(y1(x))(n−1)

(y1(x)
+ (n− 1)p1(x)

(y1(x))(n−2)

(y1(x)
+ · · ·+ p1(x)

)
=

f(x)

y1(x)
.

(2.6)
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It follows from (1.1), (2.6) and replacing y(x) by y1(x) that

(y1(x)) · ((y1(x))(n−1) + (y1(x))(n−2)
(
n

(y1(x))′

y1(x)
+ p1(x)

)
+ (y1(x))(n−3)

(
n

(y1(x))′′

y1(x)
+ (n− 1)p1(x)

(y1(x))′

(y1(x))
+ p2(x)

)
+ (y1(x))(n−4)

(
n

(y1(x))(3)

(y1(x)
+ (n− 1)p1(x)

(y1(x))′′

y1(x)
+ (n− 2)p2(x)

(y1(x))′

(y1(x)
+ p3(x)

)
+ · · ·

+ y1(x))

(
n

(y1(x))(n−1)

(y1(x)
+ (n− 1)p1(x)

(y1(x))(n−2)

(y1(x)
+ · · ·+ p1(x)

)
)

= (y1(x))(n) + p1(x)(y1(x))(n−1) + · · ·+ pn(x)(y1(x)) = 0

according to assumption, y1 : I → X is a non–zero function. Hence, it follows that

(y1(x))(n−1) + (y1(x))(n−2)
(
n

(y1(x))′

y1(x)
+ p1(x)

)
+ (y1(x))(n−3)

(
n

(y1(x))′′

y1(x)
+ (n− 1)p1(x)

(y1(x))′

(y1(x))
+ p2(x)

)
+ (y1(x))(n−4)

(
n

(y1(x))(3)

(y1(x)
+ (n− 1)p1(x)

(y1(x))′′

y1(x)
+ (n− 2)p2(x)

(y1(x))′

(y1(x)
+ p3(x)

)
+ · · ·

+ y1(x))

(
n

(y1(x))(n−1)

(y1(x)
+ (n− 1)p1(x)

(y1(x))(n−2)

(y1(x)
+ · · ·+ p1(x)

)
= 0.

(2.7)

So y1(x) is a non–zero solution of corresponding homogeneous equation of (2.6). Thus, it follows
from assumption of induction and (2.5) that there exists w0(x) : I → X satisfying (2.6) and

‖w(x)− w0(x)‖ ≤ ψ(x) (2.8)

where ψ : I → (0,∞) is a continuous function. For simplicity, we use the following notation:

z(x) :=

(
y(x)

(y1(x)

)
−
∫ x

a

w0(t)dt

for each x ∈ I. By making use of this notation and by (2.8), we get

‖z(x)− z(l)‖ = ‖
(
y(x)

(y1(x)

)
−
∫ x

a

w0(t)dt−
(
y(l)

(y1(l)

)
−
∫ l

a

w0(t)dt‖

= ‖
∫ x

l

dt

((
y(t)

(y1(t)

)
−
∫ t

a

w0(u)du

)
‖ = ‖

∫ x

l

((
y(t)

(y1(t)

)′
− w0(t)

)
dt‖

= ‖
∫ x

l

((v(t)′)− w0(t)) dt‖ ≤
∫ x

l

‖w(t)− w0(t)‖dt ≤
∫ x

l

ψ(t)dt

(2.9)

for all l, x ∈ I. Since ψ(x) is integrable on I, we may select l0 ∈ I, for any given ε > 0, such that
l, x ≥ l0 implies that ‖z(x) − z(l)‖ < ε. That is, {z(l)}l∈I is a Cauchy net. By completeness of X,
there exists an x0 ∈ X such that z(l) converges to x0 as l → b. It follows from (2.9) and the above
argument that for any x ∈ I,

‖y(x)− y1(x)
(
x0 +

∫ x
a
w0(t)dt

)
‖ = ‖y1(x)

(
z(x) +

∫ x
a
w0(t)dt

)
− y1(x)

(
x0 +

∫ x
a
w0(t)dt

)
‖

= ‖y1(x) (z(x)− x0) ‖ ≤ ‖y1(x)‖. (‖z(x)− z(l)‖+ ‖z(l)− x0‖)
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≤ ‖y1(x)‖.
(
|
∫ x

l

ψ(t)dt|+ ‖z(l)− x0‖
)
‖ → ‖y1(x)‖.|

∫ b

x

ψ(t)dt| (2.10)

as l → b. Moreover, y1(x)
(
x0 +

∫ x
a
w0(t)dt

)
is a solution of (1.1). Now, we prove the uniqueness

property of x0. Assume that x1 ∈ X satisfies the inequality (2.10). Then, we have
‖y(x)− y1(x)

(
x0 +

∫ x
a
w0(t)dt

)
− y(x) + y1(x)

(
x1 +

∫ x
a
w0(t)dt

)
‖

≤ ‖y1(x)‖.‖x0 − x1‖ ≤ 2.‖y1(x)‖.|
∫ b
x
ψ(t)dt| → 0

as s→ b. It follows that x1 = x0. �

Remark 2.2. If we replace C by R in the proof of Theorem 2.1 and we assume that p1, p2, · · · , pn are
real–valued continuous functions, then we can see that Theorem 2.1 is true for a real Banach space
X. Hence, all n-th order linear differential equations have the generalized Hyers–Ulam stability with
condition that there exist a solution of corresponding homogeneous equation or the general solution
in the ordinary differential equations.

Remark 2.3. Linear differential equations of n-th order with constant coefficients have the general-
ized Hyers–Ulam stability with condition that there exist a solution of corresponding homogeneous
equation in C. That is, all linear differential equations with constant coefficients that are solved in
ordinary differential equations satisfy the generalized Hyers–Ulam stability.
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