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Abstract

In this paper, we prove some coupled coincidence point theorems for mappings satisfying generalized
contractive conditions under a new invariant set in ordered cone metric spaces. In fact, we obtain
sufficient conditions for existence of coupled coincidence points in the setting of cone metric spaces.
Some examples are provided to verify the effectiveness and applicability of our results.
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1. Introduction

Since the concept of a cone metric was introduced by Huang and Zhang [5], many fixed point the-
orems have been proved by some authors. The existence of fixed points for certain mappings in
ordered metric spaces has been studied by Ran and Reurings [16]. Afterwards, Nieto and López [11]
extended the result of Ran and Reurings [16] for nondecreasing mappings and applied their results
to obtain a unique solution for a first order differential equation. In 2006, Bhaskar and Laksmikan-
tham [3] first studied the existence of coupled fixed points in partially ordered metric spaces. So
far, many mathematicians have studied coupled fixed point results for mappings under various con-
tractive conditions in different metric spaces. Recently, Sintunavarat et.al.[19] established coupled
fixed points for weak contraction mappings by using the concept of F -invariant set. In this paper we
introduce the concept of strongly (F, g)-invariant set and obtain sufficient conditions for existence
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of coupled coincidence points for mappings satisfying generalized contractive conditions related to
ψ and ϕ-maps under strongly (F, g)-invariant set in ordered cone metric spaces. Finally, we supply
some examples to illustrate our obtained results.

2. Preliminaries

In this section we present some basic notations, definitions, and necessary results from existing
literature.

Definition 2.1. [3] Let (X,v) be a partially ordered set and F : X ×X → X be a self-map. One
can say that F has the mixed monotone property if F (x, y) is monotone nondecreasing in x and is
monotone nonincreasing in y, that is, for all x1, x2 ∈ X, x1 v x2 implies F (x1, y) v F (x2, y) for any
y ∈ X, and for all y1, y2 ∈ X, y1 w y2 implies F (x, y1) v F (x, y2) for any x ∈ X.

Definition 2.2. [4] Let (X,v) be a partially ordered set and F : X × X → X and g : X → X
be two self-mappings. F has the mixed g-monotone property if F is monotone g-nondecreasing in
its first argument and is monotone g-nonincreasing in its second argument, that is, for all x1, x2 ∈
X, gx1 v gx2 implies F (x1, y) v F (x2, y) for any y ∈ X, and for all y1, y2 ∈ X, gy1 v gy2 implies
F (x, y1) w F (x, y2) for any x ∈ X.

Definition 2.3. [3] An element (x, y) ∈ X × X is called a coupled fixed point of the mapping
F : X ×X → X if x = F (x, y) and y = F (y, x).

Definition 2.4. [8] An element (x, y) ∈ X ×X is called

(i) a coupled coincidence point of the mappings F : X ×X → X and g : X → X if gx = F (x, y)
and gy = F (y, x),

(ii) a common coupled fixed point of the mappings F : X ×X → X and g : X → X if x = gx =
F (x, y) and y = gy = F (y, x).

Definition 2.5. [4] Let X be a nonempty set. One can say that the mappings F : X × X → X
and g : X → X are commutative if g(F (x, y)) = F (gx, gy), for all x, y ∈ X.

Let E be a real Banach space and θ denote the zero element in E. A cone P is a subset of E
such that

(i) P is closed, nonempty and P 6= {θ};

(ii) a, b ∈ R, a, b ≥ 0, x, y ∈ P ⇒ ax+ by ∈ P ;

(iii) P ∩ (−P ) = {θ}.

For any cone P ⊆ E, we can define a partial ordering � on E with respect to P by x � y if and only
if y − x ∈ P . We shall write x ≺ y (equivalently, y � x) if x � y and x 6= y, while x� y will stand
for y − x ∈ int(P ), where int(P ) denotes the interior of P . The cone P is called normal if there is a
number k > 0 such that for all x, y ∈ E,

θ � x � y implies ‖x‖ ≤ k ‖y‖.

The least positive number satisfying the above inequality is called the normal constant of P . Rezapour
and Hamlbarani [13] proved that there are no normal cones with normal constant k < 1.



142 Mohanta, Maitra

Definition 2.6. [2] Let P be a cone. A nondecreasing mapping ϕ : P → P is called a ϕ-map if

(ϕ1) ϕ(θ) = θ and θ ≺ ϕ(w) ≺ w for w ∈ P \ {θ},
(ϕ2) w − ϕ(w) ∈ int(P ) for every w ∈ int(P ),
(ϕ3) lim

n→∞
ϕn(w) = θ for every w ∈ P \ {θ}.

Definition 2.7. [17] Let P be a cone and let (wn) be a sequence in P . One says that wn → θ if for
every ε ∈ P with θ � ε there exists n0 ∈ N such that wn � ε for all n ≥ n0.
A nondecreasing mapping ψ : P → P is called a ψ-map if

(ψ1)ψ(w) = θ if and only if w = θ,
(ψ2) for every wn ∈ P, wn → θ if and only if ψ(wn)→ θ,
(ψ3) for every w1, w2 ∈ P, ψ(w1 + w2) � ψ(w1) + ψ(w2).

Definition 2.8. [5] Let X be a nonempty set. Suppose the mapping d : X ×X → E satisfies

(i) θ � d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y;

(ii) d(x, y) = d(y, x) for all x, y ∈ X;

(iii) d(x, y) � d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a cone metric on X, and (X, d) is called a cone metric space.

Definition 2.9. [5] Let (X, d) be a cone metric space. Let (xn) be a sequence in X and x ∈ X. If
for every c ∈ E with θ � c there is a natural number n0 such that for all n > n0, d(xn, x)� c, then
(xn) is said to be convergent and (xn) converges to x, and x is the limit of (xn). We denote this by
lim
n→∞

xn = x or xn → x (n→∞).

Definition 2.10. [5] Let (X, d) be a cone metric space, (xn) be a sequence in X. If for any c ∈ E
with θ � c, there is a natural number n0 such that for all n,m > n0, d(xn, xm) � c, then (xn) is
called a Cauchy sequence in X.

Definition 2.11. [5] Let (X, d) be a cone metric space, if every Cauchy sequence is convergent in
X, then X is called a complete cone metric space.

Lemma 2.12. [21] Every cone metric space (X, d) is a topological space. For c� θ, c ∈ E, x ∈ X
let B(x, c) = {y ∈ X : d(y, x) � c} and β = {B(x, c) : x ∈ X, c � θ}. Then τc = {U ⊆ X : ∀x ∈
U,∃B ∈ β, x ∈ B ⊆ U} is a topology on X.

Definition 2.13. [21] Let (X, d) be a cone metric space. A map T : (X, d) → (X, d) is called
sequentially continuous if xn ∈ X, xn → x implies Txn → Tx.

Lemma 2.14. [21] Let (X, d) be a cone metric space, and T : (X, d) → (X, d) be any map. Then,
T is continuous if and only if T is sequentially continuous.

Lemma 2.15. [14] Let E be a real Banach space with a cone P . Then

(i) If a� b and b� c, then a� c.
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(ii) If a � b and b� c, then a� c.

Lemma 2.16. [5] Let E be a real Banach space with a cone P . Then one has the following.

(i) If θ � c, then there exists δ > 0 such that ‖b‖ < δ implies b� c.

(ii) If an, bn are sequences in E such that an → a, bn → b and an � bn for all n ≥ 1, then a � b.

Proposition 2.17. [6] If E is a real Banach space with a cone P and if a � λa where a ∈ P and
0 ≤ λ < 1 then a = θ.

Definition 2.18. [20] Let (X, d) be a metric space and F : X ×X → X be a given mapping. Let
M be a nonempty subset of X4. We say that M is an F -invariant subset of X4 if and only if for all
x, y, z, w ∈ X we have

(i) (x, y, z, w) ∈M ⇔ (w, z, y, x) ∈M and

(ii) (x, y, z, w) ∈M ⇒ (F (x, y), F (y, x), F (z, w), F (w, z)) ∈M .

3. Main Results

In this section we always suppose that E is a real Banach space equipped with the partial ordering �
with respect to the cone P where int(P ) 6= ∅. Also, we mean by ϕ the ϕ-map and by ψ the ψ-map,
unless otherwise stated.

Definition 3.1. Let (X, d) be a cone metric space and F : X × X → X, g : X → X be given
mappings. A nonempty subset M of X4 is called strongly (F, g)-invariant if and only if for all
x, y, z, w ∈ X we have

(i) (x, y, z, w) ∈M ⇔ (w, z, y, x) ∈M and

(ii) (gx, gy, gz, gw) ∈M ⇒ (F (x, y), F (y, x), F (z, w), F (w, z)) ∈M and
(F (x, y), F (y, x), gz, gw) ∈M .

We observe that the set M = X4 is trivially strongly (F, g)-invariant.
The following examples illustrate that a strongly (F, g)-invariant set need not be an F -invariant set.

Example 3.2. Let X = R, and F : X×X → X, g : X → X be defined as F (x, y) = 3−x, gx =
x
2
. Also let M = {(a, b, c, d) : b = c = 1; a, b, c, d ∈ X}. Then M is not an F -invariant set as

(0, 1, 1, 0) ∈M but (F (0, 1), F (1, 0), F (1, 0), F (0, 1)) = (3, 2, 2, 3) /∈M . We can easily verify that M
is a strongly (F, g)-invariant set.

Example 3.3. Let X = R and F : X ×X → X be defined by F (x, y) = 1− x2. Let g : X → X be
given by gx = 1 + x. Then M = {(x, y, z, w) ∈ X4 : y = z = 0} is not F -invariant as (1, 0, 0, 1) ∈M
but (F (1, 0), F (0, 1), F (0, 1), F (1, 0)) = (0, 1, 1, 0) /∈ M . It is easy to see that M is strongly (F, g)-
invariant.
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Theorem 3.4. Let (X,v) be a partially ordered set and (X, d) be a complete cone metric space.
Suppose F : X × X → X and g : X → X be two continuous and commuting functions with
F (X ×X) ⊆ g(X). Let M be a strongly (F, g)-invariant subset of X4 such that

ψ(d(F (x, y), F (u, v)) + d(F (y, x), F (v, u))) � ϕ(ψ(d(gx, gu) + d(gy, gv))) (3.1)

for all x, y, u, v ∈ X with (gx, gy, gu, gv) ∈ M or (gu, gv, gx, gy) ∈ M . If there exist x0, y0 ∈ X
satisfying (F (x0, y0), F (y0, x0), gx0, gy0) ∈M , then F and g have a coupled coincidence point.

Proof . Let x0, y0 ∈ X be such that (F (x0, y0), F (y0, x0), gx0, gy0) ∈M . We choose x1, y1 ∈ X such
that gx1 = F (x0, y0) and gy1 = F (y0, x0) which is possible since F (X × X) ⊆ g(X). Continuing
this process one can construct sequences (xn) and (yn) in X that satisfy gxn+1 = F (xn, yn) and
gyn+1 = F (yn, xn) for all n ≥ 0. We shall show that

(gxn+1, gyn+1, gxn, gyn) ∈M (3.2)

for all n ≥ 0.
We shall use the mathematical induction. For n = 0, (3.2) follows by the choice of x0 and y0.

Suppose now (3.2) holds for n = k, k ≥ 0. Then (gxk+1, gyk+1, gxk, gyk) ∈ M . By using strongly
(F, g)-invariance of M , we have

(F (xk+1, yk+1), F (yk+1, xk+1), F (xk, yk), F (yk, xk)) ∈M,

which implies that, (gxk+2, gyk+2, gxk+1, gyk+1) ∈ M . Thus (3.2) follows for k + 1. Hence, by the
mathematical induction we conclude that (3.2) holds for n ≥ 0.
Again, we shall show that

(gxr+1, gyr+1, gxn, gyn) ∈M (3.3)

for all r ≥ n.
Obviously, (3.3) holds for r = n. Let us assume that (3.3) holds for some r = k, k ≥ n. Then
(gxk+1, gyk+1, gxn, gyn) ∈M and so by strongly (F, g)-invariance of M , we have

(F (xk+1, yk+1), F (yk+1, xk+1), gxn, gyn) ∈M,

which implies that, (gxk+2, gyk+2, gxn, gyn) ∈ M . Thus (3.3) follows for k + 1. Hence, by the math-
ematical induction we conclude that (3.3) holds for r ≥ n.

Now for all n ∈ N,

ψ(d(gxn, gxn+1) + d(gyn, gyn+1)) = ψ

 d(F (xn−1, yn−1), F (xn, yn))

+d(F (yn−1, xn−1), F (yn, xn))


� ϕ(ψ(d(gxn−1, gxn) + d(gyn−1, gyn)))

� ϕ2(ψ(d(gxn−2, gxn−1) + d(gyn−2, gyn−1)))

·
·
·
� ϕn(ψ(d(gx0, gx1) + d(gy0, gy1))).
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Let ε ∈ int(P ), then by (ϕ2), ε0 = ε− ϕ(ε) ∈ int(P ). By (ϕ3),

lim
n→∞

ϕn(ψ(d(gx0, gx1) + d(gy0, gy1))) = θ.

So, there exists n0 ∈ N such that for all m ≥ n0,

ψ(d(gxm, gxm+1) + d(gym, gym+1))� ε− ϕ(ε).

We show that
ψ(d(gxm, gxn+1) + d(gym, gyn+1))� ε, (3.4)

for a fixed m ≥ n0 and n ≥ m.
Clearly, this holds for n = m. We now suppose that (3.4) holds for some n ≥ m. Then by using
(ψ3), conditions (3.3) and (3.1), we obtain

ψ(d(gxm, gxn+2) + d(gym, gyn+2)) � ψ

 d(gxm, gxm+1) + d(gxm+1, gxn+2)

+d(gym, gym+1) + d(gym+1, gyn+2)


� ψ(d(gxm, gxm+1) + d(gym, gym+1))

+ψ(d(gxm+1, gxn+2) + d(gym+1, gyn+2))

� ψ(d(gxm, gxm+1) + d(gym, gym+1))

+ϕ(ψ(d(gxm, gxn+1) + d(gym, gyn+1)))

� ε− ϕ(ε) + ϕ(ε) = ε.

Therefore, by induction (3.4) holds.
Since ψ is nondecreasing, it follows from (3.4) that

ψ(d(gxm, gxn+1)) � ψ(d(gxm, gxn+1) + d(gym, gyn+1))� ε

for a fixed m ≥ n0 and n ≥ m.
Similarly,

ψ(d(gym, gyn+1))� ε

for a fixed m ≥ n0 and n ≥ m.
Therefore, by using (ψ2) we deduce that (gxn) and (gyn) are Cauchy sequences in X. Since X is
complete, there exist x∗, y∗ ∈ X such that gxn → x∗ and gyn → y∗ as n → ∞. By continuity of g
we get lim

n→∞
ggxn = gx∗ and lim

n→∞
ggyn = gy∗. Commutativity of F and g now implies that

ggxn = g(F (xn−1, yn−1)) = F (gxn−1, gyn−1), for all n ∈ N

and
ggyn = g(F (yn−1, xn−1) = F (gyn−1, gxn−1), for all n ∈ N.

Since F is continuous,

gx∗ = lim
n→∞

ggxn = lim
n→∞

F (gxn−1, gyn−1)

= F ( lim
n→∞

gxn−1, lim
n→∞

gyn−1)

= F (x∗, y∗)
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and

gy∗ = lim
n→∞

ggyn = lim
n→∞

F (gyn−1, gxn−1)

= F ( lim
n→∞

gyn−1, lim
n→∞

gxn−1)

= F (y∗, x∗).

Thus, F and g have a coupled coincidence point. �

Taking ψ = I, the identity map in Theorem 3.4, we have the following Corollary.

Corollary 3.5. Let (X,v) be a partially ordered set and (X, d) be a complete cone metric space.
Suppose F : X × X → X and g : X → X be two continuous and commuting functions with
F (X ×X) ⊆ g(X). Let M be a strongly (F, g)-invariant subset of X4 such that

d(F (x, y), F (u, v)) + d(F (y, x), F (v, u)) � ϕ(d(gx, gu) + d(gy, gv))

for all x, y, u, v ∈ X with (gx, gy, gu, gv) ∈ M or (gu, gv, gx, gy) ∈ M . If there exist x0, y0 ∈ X
satisfying (F (x0, y0), F (y0, x0), gx0, gy0) ∈M , then F and g have a coupled coincidence point.

Corollary 3.6. Let (X,v) be a partially ordered set and (X, d) be a complete cone metric space.
Suppose F : X × X → X and g : X → X be two continuous and commuting functions with
F (X ×X) ⊆ g(X). Let M be a strongly (F, g)-invariant subset of X4 such that

d(F (x, y), F (u, v)) + d(F (y, x), F (v, u)) � k(d(gx, gu) + d(gy, gv))

for some k ∈ [0, 1) and all x, y, u, v ∈ X with (gx, gy, gu, gv) ∈ M or (gu, gv, gx, gy) ∈ M . If
there exist x0, y0 ∈ X satisfying (F (x0, y0), F (y0, x0), gx0, gy0) ∈ M , then F and g have a coupled
coincidence point.

Proof . The proof can be obtained from Theorem 3.4 by taking ψ = I, the identity map and
ϕ(x) = kx, where k ∈ [0, 1) is a constant. �

Corollary 3.7. Let (X,v) be a partially ordered set and (X, d) be a complete cone metric space.
Suppose F : X × X → X and g : X → X be two continuous and commuting functions with
F (X ×X) ⊆ g(X). Let M be a strongly (F, g)-invariant subset of X4 such that

d(F (x, y), F (u, v)) � ad(gx, gu) + bd(gy, gv) (3.5)

for some a, b ∈ [0, 1) with a+b < 1 and all x, y, u, v ∈ X with (gx, gy, gu, gv) ∈M or (gu, gv, gx, gy) ∈
M .
If there exist x0, y0 ∈ X satisfying (F (x0, y0), F (y0, x0), gx0, gy0) ∈M , then F and g have a coupled
coincidence point.

Proof . Let x, y, u, v ∈ X with (gx, gy, gu, gv) ∈M or (gu, gv, gx, gy) ∈M . Using (3.5), we have

d(F (x, y), F (u, v)) � ad(gx, gu) + bd(gy, gv)

and
d(F (y, x), F (v, u)) � ad(gy, gv) + bd(gx, gu).

Therefore,

d(F (x, y), F (u, v)) + d(F (y, x), F (v, u)) � (a+ b)(d(gx, gu) + d(gy, gv)),

where a+ b < 1. The result follows from Corollary 3.6. �
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Theorem 3.8. Let (X,v) be a partially ordered set and (X, d) be a cone metric space. Suppose
F : X ×X → X and g : X → X be two functions such that F (X ×X) ⊆ g(X) and (g(X), d) is a
complete subspace of X. Let M be a strongly (F, g)-invariant subset of X4 such that

ψ(d(F (x, y), F (u, v)) + d(F (y, x), F (v, u))) � ϕ(ψ(d(gx, gu) + d(gy, gv)))

for all x, y, u, v ∈ X with (gx, gy, gu, gv) ∈M or (gu, gv, gx, gy) ∈M . Suppose (xn, yn, xn−1, yn−1) ∈
M for all n ∈ N and xn → x, yn → y implies (x, y, xn−1, yn−1) ∈ M for all n ∈ N. If there exist
x0, y0 ∈ X satisfying (F (x0, y0), F (y0, x0), gx0, gy0) ∈ M , then F and g have a coupled coincidence
point.

Proof . Consider Cauchy sequences (gxn) and (gyn) as in the proof of Theorem 3.4. Since (g(X), d)
is complete, there exist x∗, y∗ ∈ X such that gxn → gx∗ and gyn → gy∗. It is to be noted that
(gxn+1, gyn+1, gxn, gyn) ∈M for all n ≥ 0 and so by the given condition (gx∗, gy∗, gxn, gyn) ∈M for
all n ≥ 0.

By (ψ2), for θ � c, one can choose a natural number n0 such that
ψ(d(gxn, gx

∗))� c
4

and ψ(d(gyn, gy
∗))� c

4
for all n ≥ n0.

Then,

ψ

 d(F (x∗, y∗), gx∗)

+d(F (y∗, x∗), gy∗)

 � ψ

 d(F (x∗, y∗), gxn+1) + d(gxn+1, gx
∗)

+d(F (y∗, x∗), gyn+1) + d(gyn+1, gy
∗)


� ψ(d(gxn+1, gx

∗) + d(gyn+1, gy
∗))

+ψ

 d(F (x∗, y∗), F (xn, yn))

+d(F (y∗, x∗), F (yn, xn))


� ψ(d(gxn+1, gx

∗)) + ψ(d(gyn+1, gy
∗))

+ϕ(ψ(d(gxn, gx
∗) + d(gyn, gy

∗)))

≺ ψ(d(gxn+1, gx
∗)) + ψ(d(gyn+1, gy

∗))

+ψ(d(gxn, gx
∗) + d(gyn, gy

∗))

� ψ(d(gxn+1, gx
∗)) + ψ(d(gyn+1, gy

∗))

+ψ(d(gxn, gx
∗)) + ψ(d(gyn, gy

∗))

� c

4
+
c

4
+
c

4
+
c

4
= c.

So, c
i
− ψ(d(F (x∗, y∗), gx∗) + d(F (y∗, x∗), gy∗)) ∈ P , for all i ≥ 1. Since c

i
→ θ as i → ∞ and P

is closed, −ψ(d(F (x∗, y∗), gx∗) + d(F (y∗, x∗), gy∗)) ∈ P . But P ∩ (−P ) = θ gives that

ψ(d(F (x∗, y∗), gx∗) + d(F (y∗, x∗), gy∗)) = θ.

By (ψ1), we get
d(F (x∗, y∗), gx∗) + d(F (y∗, x∗), gy∗) = θ.

This shows that d(F (x∗, y∗), gx∗) = d(F (y∗, x∗), gy∗) = θ and so F (x∗, y∗) = gx∗, F (y∗, x∗) = gy∗.
Thus, F and g have a coupled coincidence point. �

If we let ψ be the identity map in Theorem 3.8, then we have the following Corollary.
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Corollary 3.9. Let (X,v) be a partially ordered set and (X, d) be a cone metric space.
Suppose F : X × X → X and g : X → X be two functions such that F (X × X) ⊆ g(X) and
(g(X), d) is a complete subspace of X. Let M be a strongly (F, g)-invariant subset of X4 such that

d(F (x, y), F (u, v)) + d(F (y, x), F (v, u)) � ϕ(d(gx, gu) + d(gy, gv))

for all x, y, u, v ∈ X with (gx, gy, gu, gv) ∈M or (gu, gv, gx, gy) ∈M . Suppose (xn, yn, xn−1, yn−1) ∈
M for all n ∈ N and xn → x, yn → y implies (x, y, xn−1, yn−1) ∈ M for all n ∈ N. If there exist
x0, y0 ∈ X satisfying (F (x0, y0), F (y0, x0), gx0, gy0) ∈ M , then F and g have a coupled coincidence
point.

Corollary 3.10. Let (X,v) be a partially ordered set and (X, d) be a cone metric space. Suppose
F : X ×X → X and g : X → X be two functions such that F (X ×X) ⊆ g(X) and (g(X), d) is a
complete subspace of X. Let M be a strongly (F, g)-invariant subset of X4 such that

d(F (x, y), F (u, v)) + d(F (y, x), F (v, u)) � k(d(gx, gu) + d(gy, gv))

for some k ∈ [0, 1) and all x, y, u, v ∈ X with (gx, gy, gu, gv) ∈ M or (gu, gv, gx, gy) ∈ M . Suppose
(xn, yn, xn−1, yn−1) ∈ M for all n ∈ N and xn → x, yn → y implies (x, y, xn−1, yn−1) ∈ M for all
n ∈ N. If there exist x0, y0 ∈ X satisfying (F (x0, y0), F (y0, x0), gx0, gy0) ∈ M , then F and g have a
coupled coincidence point.

Proof . The proof can be obtained from Theorem 3.8 by taking ψ = I, the identity map and
ϕ(x) = kx, where k ∈ [0, 1) is a constant. �

Corollary 3.11. Let (X,v) be a partially ordered set and (X, d) be a cone metric space. Suppose
F : X ×X → X and g : X → X be two functions such that F (X ×X) ⊆ g(X) and (g(X), d) is a
complete subspace of X. Let M be a strongly (F, g)-invariant subset of X4 such that

d(F (x, y), F (u, v)) � ad(gx, gu) + bd(gy, gv)

for some a, b ∈ [0, 1) with a+b < 1 and all x, y, u, v ∈ X with (gx, gy, gu, gv) ∈M or (gu, gv, gx, gy) ∈
M . Suppose (xn, yn, xn−1, yn−1) ∈ M for all n ∈ N and xn → x, yn → y implies (x, y, xn−1, yn−1) ∈
M for all n ∈ N. If there exist x0, y0 ∈ X satisfying (F (x0, y0), F (y0, x0), gx0, gy0) ∈M , then F and
g have a coupled coincidence point.

Proof . The proof follows from Theorem 3.8 by an argument similar to that used in Corollary 3.7.
�

Theorem 3.12. In addition to hypothesis of either Theorem 3.4 or Theorem 3.8, suppose that any
two elements x and y of X satisfy (gx, gy, gy, gx) ∈ M or (gy, gx, gx, gy) ∈ M and g is one-one.
Then F and g have a coupled coincidence point of the form (x∗, x∗) for some x∗ ∈ X.

Proof . We first note that the set of coupled coincidence points of F and g is nonempty. We
will show that if (x∗, y∗) is a coupled coincidence point of F and g, then x∗ = y∗. Suppose that
d(gx∗, gy∗) 6= θ. Then, by using (ϕ1) we have

ψ(d(gx∗, gy∗) + d(gy∗, gx∗)) = ψ(d(F (x∗, y∗), F (y∗, x∗)) + d(F (y∗, x∗), F (x∗, y∗)))

� ϕ(ψ(d(gx∗, gy∗) + d(gy∗, gx∗)))

≺ ψ(d(gx∗, gy∗) + d(gy∗, gx∗)),

a contradiction. Therefore, d(gx∗, gy∗) = θ which gives that gx∗ = gy∗. Since g is one-one, it follows
that x∗ = y∗. �

Now, we present some examples to support our results.
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Example 3.13. Let E = R2, the Euclidean plane and P = {(x, x) ∈ R2 : x ≥ 0} a cone in E. Let
X = R with usual order and define d : X ×X → E by

d(x, y) = (| x− y |, | x− y |)

for all x, y ∈ X. Then (X, d) is a partially ordered complete cone metric space. Consider F (x, y) =
−x

9
for all x, y ∈ X and gx = x

3
for all x ∈ X. Then F (X ×X) ⊆ g(X) = X. Further F and g are

continuous and commuting.
Let ψ, ϕ : P → P be defined by ψ(x, x) = (x

4
, x
4
) and ϕ(x, x) = (3x

5
, 3x

5
).

We show that for all (x, y, u, v) ∈ X4 = M ,

ψ(d(F (x, y), F (u, v)) + d(F (y, x), F (v, u))) � ϕ(ψ(d(gx, gu) + d(gy, gv))).

Now, we have
ψ(d(F (x, y), F (u, v)) + d(F (y, x), F (v, u)))

= ψ

(
d

(
−x
9
,
−u
9

)
+ d

(
−y
9
,
−v
9

))
= ψ

((
| x− u |

9
,
| x− u |

9

)
+

(
| y − v |

9
,
| y − v |

9

))
=

(
| x− u |

36
+
| y − v |

36
,
| x− u |

36
+
| y − v |

36

)
. (3.6)

Again,

ϕ(ψ(d(gx, gu) + d(gy, gv))) = ϕ
(
ψ
(
d
(
x
3
, u
3

)
+ d

(
y
3
, v
3

)))
= ϕ

(
ψ

((
| x− u |

3
,
| x− u |

3

)
+

(
| y − v |

3
,
| y − v |

3

)))
=

(
| x− u |

20
+
| y − v |

20
,
| x− u |

20
+
| y − v |

20

)
. (3.7)

It follows from conditions (3.6) and (3.7) that

ψ(d(F (x, y), F (u, v)) + d(F (y, x), F (v, u))) � ϕ(ψ(d(gx, gu) + d(gy, gv)))

for all (x, y, u, v) ∈ X4 = M . Thus, we have all the conditions of Theorem 3.4. Moreover, F and g
have a coupled coincidence point at (0, 0).

Example 3.14. Let E = R2, the Euclidean plane a and P = {(x, x) ∈ R2 : x ≥ 0} a cone in E. Let
X = R with usual order and define d : X ×X → E by

d(x, y) = (| x− y |, | x− y |)

for all x, y ∈ X. Then (X, d) is a partially ordered complete cone metric space. Define F : X×X → X
as follows:

F (x, y) =


x−y
6
, if x ≥ y

0, if x < y,
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for all x, y ∈ X and g : X → X with gx = 1− x
2

for all x ∈ X. Then F (X ×X) ⊆ g(X) = X.
Let ψ, ϕ : P → P be defined by ψ(x, x) = (x

2
, x
2
) and ϕ(x, x) = (3x

4
, 3x

4
).

We show that for all (x, y, u, v) ∈ X4 = M ,

ψ(d(F (x, y), F (u, v)) + d(F (y, x), F (v, u))) � ϕ(ψ(d(gx, gu) + d(gy, gv))).

Now, we have
Case-I (y > x and v > u). Then
ψ(d(F (x, y), F (u, v)) + d(F (y, x), F (v, u)))

= ψ

(
d(0, 0) + d

(
y − x

6
,
v − u

6

))
= ψ

(
| y − x− v + u |

6
,
| y − x− v + u |

6

)
=

(
| y − x− v + u |

12
,
| y − x− v + u |

12

)
�

(
| x− u |

12
+
| y − v |

12
,
| x− u |

12
+
| y − v |

12

)
. (3.8)

Again,

ϕ(ψ(d(gx, gu) + d(gy, gv))) = ϕ
(
ψ
(
d
(
1− x

2
, 1− u

2

)
+ d

(
1− y

2
, 1− v

2

)))
= ϕ

(
ψ

((
| x− u |

2
,
| x− u |

2

)
+

(
| y − v |

2
,
| y − v |

2

)))
=

(
3
| x− u |

16
+ 3
| y − v |

16
, 3
| x− u |

16
+ 3
| y − v |

16

)
. (3.9)

It follows from conditions (3.8) and (3.9) that

ψ(d(F (x, y), F (u, v)) + d(F (y, x), F (v, u))) � ϕ(ψ(d(gx, gu) + d(gy, gv))).

Case-II (y > x and u ≥ v). Then

ψ(d(F (x, y), F (u, v)) + d(F (y, x), F (v, u)))

= ψ

(
d

(
0,
u− v

6

)
+ d

(
y − x

6
, 0

))
= ψ

((
u− v

6
,
u− v

6

)
+

(
y − x

6
,
y − x

6

))
=

(
u− v + y − x

12
,
u− v + y − x

12

)
�

(
| x− u |

12
+
| y − v |

12
,
| x− u |

12
+
| y − v |

12

)
≺

(
3
| x− u |

16
+ 3
| y − v |

16
, 3
| x− u |

16
+ 3
| y − v |

16

)
= ϕ(ψ(d(gx, gu) + d(gy, gv))).
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Case-III (x ≥ y and u ≥ v). Then

ψ(d(F (x, y), F (u, v)) + d(F (y, x), F (v, u)))

= ψ

(
d

(
x− y

6
,
u− v

6

)
+ d(0, 0)

)
=

(
| x− y − u+ v |

12
,
| x− y − u+ v |

12

)
�

(
| x− u |

12
+
| y − v |

12
,
| x− u |

12
+
| y − v |

12

)
�

(
3
| x− u |

16
+ 3
| y − v |

16
, 3
| x− u |

16
+ 3
| y − v |

16

)
= ϕ(ψ(d(gx, gu) + d(gy, gv))).

The case x ≥ y and v > u is similar to Case-II. It is easy to see that all other conditions of Theorem
3.8 are satisfied for M = X4. Thus, we have all the conditions of Theorem 3.8 and (2, 2) is a coupled
coincidence point of F and g.

Remark 3.15. It is worth mentioning that in above two examples F does not satisfy mixed g-
monotone property.
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