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Abstract

This paper studies the existence of solutions for a coupled system of nonlinear fractional differential
equations. New existence and uniqueness results are established using Banach fixed point theorem.
Other existence results are obtained using Schaefer and Krasnoselskii fixed point theorems. Some
illustrative examples are also presented.
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1. Introduction

The differential equations of fractional order arise in many scientific disciplines, such as physics,
chemistry, control theory, signal processing and biophysics. For more details, we refer the reader
to [7, 9, 12] and the references therein. Recently, there has been an important progress in the
investigation of these equations, (see [3, 4, 13]). On the other hand, the study of coupled systems
of fractional differential equations is also of a great importance. These systems occur in various
problems of applied science and engineering. For some recent results, we refer the interested reader
to ([1, 2, 5, 6, 11].
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In this paper, we discuss the existence and uniqueness of solutions for the following coupled system:
Dαu (t) = f1 (t, v (t) , Dα−1v (t)) , t ∈ [0, 1] ,
Dβv (t) = f2

(
t, u (t) , Dβ−1u (t)

)
, t ∈ [0, 1] ,

u (0) = v (0) = 0,
u′ (0) = γIpu (η) , η ∈ ]0, 1[ ,
v′ (0) = δIqv (ζ) , ζ ∈ ]0, 1[ ,

(1.1)

where Dα, Dβ denote the Caputo fractional derivatives, p, q are non negative reals numbers, 1 < α <
2, 1 < β < 2, f1 and f2 are two functions that will be specified later.
The paper is organized as follows: In section 2, we present some preliminaries and lemmas. In Section
3, we prove our main results for the existence of solutions of problem (1.1). In the last section, some
examples are presented to illustrate our results.

2. Preliminaries

Definition 2.1. The Riemann-Liouville fractional integral operator of order α > 0, for a continuous
function f on [a, b] is defined as:

Jαf (t) =
1

Γ (α)

∫ t

a

(t− τ)α−1 f (τ) dτ, α > 0, a ≤ t ≤ b (2.1)

where Γ (α) :=
∫∞

0
e−uuα−1du.

Definition 2.2. The fractional derivative of f ∈ Cn([a, b]) in the sense of Caputo is defined as:

Dαf (t) =
1

Γ (n− α)

∫ t

a

(t− τ)n−α−1 f (n) (τ) dτ, n− 1 < α < n, n ∈ N∗, t ∈ [a, b]. (2.2)

For more details about fractional calculus, we refer the interested reader to [10].
The following lemmas give some properties of fractional calculus theory [7, 9]:

Lemma 2.3. Let r, s > 0, f ∈ L1([a, b]). Then IrIsf(t) = Ir+sf(t), DsIsf(t) = f(t), t ∈ [a, b] .

Lemma 2.4. Let s > r > 0, f ∈ L1([a, b]). Then DrIsf(t) = Is−rf(t), t ∈ [a, b] .

We need the following two lemmas [7]:

Lemma 2.5. Let α > 0. The general solution of the equation Dαx (t) = 0 is given by

x (t) = c0 + c1t+ c2t
2 + ...+ cn−1t

n−1, (2.3)

where ci ∈ R, i = 0, 1, 2, .., n− 1, n = [α] + 1.

Lemma 2.6. Let α > 0. Then

JαDαx (t) = x (t) + c0 + c1t+ c2t
2 + ...+ cn−1t

n−1, (2.4)

with ci ∈ R, i = 0, 1, 2, ..., n− 1, n = [α] + 1.
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We prove the following result:

Lemma 2.7. Let g ∈ C ([0, 1] ,R) . The solution of the problem

Dαx (t) = g(t), 1 < α < 2, (2.5)

associated with the conditions

x (0) = 0, x′ (0) = γIpx (η) , η ∈ ]0, 1[ , p > 0,

is given by

x(t) =
1

Γ (α)

∫ t

0

(t− s)α−1 g (s) ds (2.6)

+
γΓ (p+ 2) t

Γ (p+ 2)− γηp+1

∫ η

0

(η − s)p+α−1

Γ (p+ α)
g (s) ds

such that γ 6= Γ(p+2)
ηp+1 .

Proof . By Lemmas 2.5 and 2.6, we can write

x (t) =
1

Γ (α)

∫ t

0

(t− τ)α−1 g (τ) dτ − c0 − c1t. (2.7)

Thus,

x′ (t) =
1

Γ (α− 1)

∫ t

0

(t− τ)α−2 g (τ) dτ − c1.

It is clear that c0 = 0.
On the other hand, by Lemma 2.3, we obtain

Ipx (t) =
1

Γ (p+ α)

∫ t

0

(t− s)p+α−1 g (s) ds− c1
1

Γ (p)

∫ t

0

(t− s)p−1 sds.

Also, we have

c1 = − γΓ (p+ 2)

Γ (p+ 2)− γηp+1
Ip+αg (η) .

Substituting c1 in (2.7), we obtain the desired quantity (2.6). Lemma 2.7 is thus proved. �

Let us now introduce the spaces

X :=
{
u ∈ C([0, 1] ,R), Dα−1u ∈ C([0, 1] ,R)

}
,

Y :=
{
v ∈ C([0, 1] ,R), Dβ−1v ∈ C([0, 1] ,R)

}
.

For 1 < α < 2, we define on X the norm

‖u‖1 := max
(
‖u‖ ,

∥∥Dα−1u
∥∥); ||u|| = sup

t∈[0,1]

|u(t)| , ||Dα−1u|| = sup
t∈[0,1]

∣∣Dα−1u(t)
∣∣ .
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We also define on Y the norm

‖v‖1∗ := max
(
‖v‖ ,

∥∥Dβ−1v
∥∥); ||v|| = sup

t∈[0,1]

|v(t)| , ||Dβ−1v|| = sup
t∈[0,1]

∣∣Dβ−1v(t)
∣∣ ,

where 1 < β < 2.

For the space X × Y, we define the norm

‖(u, v)‖2 := max
(
‖u‖1 , ‖v‖1∗

)
.

It is clear that (X × Y, ‖.‖2) is a Banach space.

3. Main Results

We introduce the following quantities:

M1 :=
1

Γ (α + 1)
+

|γ|Γ (p+ 2) ηp+α

|Γ (p+ 2)− γηp+1|Γ (p+ α + 1)
,

M2 :=
1

Γ (β + 1)
+

|δ|Γ (q + 2) ζq+β

|Γ (q + 2)− δζq+1|Γ(q + β + 1)
,

M ′
1 :=

(
1 +

|γ|Γ (p+ 2) ηp+α

|Γ (p+ 2)− γηp+1|Γ (3− α) Γ (p+ α + 1)

)
,

M ′
2 :=

(
1 +

|δ|Γ (p+ 2) ζp+β

|Γ (p+ 2)− δζp+1|Γ (3− β) Γ (p+ β + 1)

)
.

Also, we consider the following hypotheses:

(H1): There exist non negative reals numbersmi, ni, i = 1, 2, such that for all t ∈ [0, 1] , (u1, v1) , (u2, v2) ∈
R2, we have

|f1 (t, u2, v2)− f1 (t, u1, v1)| ≤ m1 |u2 − u1|+m2 |v2 − v1| ,
|f2 (t, u2, v2)− f2 (t, u1, v1)| ≤ n1 |u2 − u1|+ n2 |v2 − v1| ,

with m := max (m1,m2) , n := max (n1, n2) .

(H2): The functions f1, f2 : [0, 1]× R2 → R are continuous.

(H3) : There exist positive constants L1 and L2, such that

|f1 (t, u, v)| ≤ L1, |f2 (t, u, v)| ≤ L2, for all t ∈ [0, 1], u, v ∈ R.

The first main result is given by:

Theorem 3.1. Suppose that γ 6= Γ(p+2)
ηp+1 , δ 6= Γ(q+2)

ζq+1 and assume that (H1) holds. If

max (m,n) max (M ′
1,M

′
2) <

1

2
, (3.1)

then the fractional system (1.1) has a unique solution.
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Proof . Consider the operator T : X × Y → X × Y defined by

T (u, v) (t) =
(
T1 (v) (t) , T2 (u) (t)

)
, (3.2)

where
T1 (v) (t) =

∫ t
0

(t−s)
Γ(α)

α−1
f1 (s, v (s) , Dα−1v (s)) ds

+ γΓ(p+2)t
Γ(p+2)−γηp+1

∫ η
0

(η−s)p+α−1

Γ(p+α)
f1 (s, v (s) , Dα−1v (s)) ds,

(3.3)

and

T2 (u) (t) =
∫ t

0
(t−s)
Γ(β)

β−1
f2

(
s, u (s) , Dβ−1u (s)

)
ds

+ δΓ(q+2)t
Γ(q+2)−δζp+1

∫ ζ
0

(ζ−s)q+β−1

Γ(q+β)
f2

(
s, u (s) , Dβ−1u (s)

)
ds.

(3.4)

Thanks to Lemma 2.4, we get

Dα−1T1 (v) (t) =
∫ t

0
f1 (s, v (s) , Dα−1v (s)) ds

+ γΓ(p+2)
Γ(p+2)−γηp+1

t2−α

Γ(3−α)

∫ η
0

(η−s)p+α−1

Γ(p+α)
f1 (s, v (s) , Dα−1v (s)) ds

(3.5)

and
Dβ−1T2 (u) (t) =

∫ t
0
f2

(
s, u (s) , Dβ−1u (s)

)
ds

+ δΓ(q+2)
Γ(q+2)−δζp+1

t2−β

Γ(3−β)

∫ ζ
0

(ζ−s)q+β−1

Γ(q+β)
f2

(
s, u (s) , Dβ−1u (s)

)
ds.

(3.6)

We shall show that T is a contraction:
Let (u1, v1) , (u2, v2) ∈ X × Y. Then, for each t ∈ [0, 1] , we have

|T1 (v2) (t)− T1 (v1) (t)|

≤
( ∫ t

0
(t−s)
Γ(α)

α−1
ds+ |γ|Γ(p+2)t

|Γ(p+2)−γηp+1|

∫ η
0

(η−s)p+α−1

Γ(p+α)
ds
)

× sup0≤s≤1 |f1 (s, v2 (s) , Dα−1v2 (s))− f1 (s, v1 (s) , Dα−1v1 (s))| .

(3.7)

Using (H1) , we can write:

|T1 (v2)− T1 (v1)|

≤
(

1
Γ(α+1)

+ |γ|Γ(p+2)ηp+α

|Γ(p+2)−γηp+1|Γ(p+α+1)

)
× (m1 ‖v2 − v1‖+m2 ‖Dα−1 (v2 − v1)‖) .

(3.8)

Consequently,

‖T1 (v2)− T1 (v1)‖ ≤ 2M1m ‖v2 − v1‖1 . (3.9)

Similarly,

‖T2 (u2)− T2 (u1)‖ ≤ 2M2n ‖u2 − u1‖1∗ . (3.10)
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On the other hand, ∣∣Dα−1T1 (v2) (t)−Dα−1T1 (v1) (t)
∣∣

≤
∫ t

0
|f1 (s, v2 (s) , Dα−1v2 (s))− f1 (s, v1 (s) , Dα−1v1 (s))| ds+ |γ|Γ(p+2)

|Γ(p+2)−γηp+1|
t2−α

Γ(3−α)

×
∫ η

0
(η−s)p+α−1

Γ(p+α)
|f1 (s, v2 (t) , Dα−1v2 (t))− f1 (s, v1 (s) , Dα−1v1 (s))| ds.

(3.11)

This implies that ∣∣Dα−1T1 (v2) (t)−Dα−1T1 (v1) (t)
∣∣

≤
(

1 + |γ|Γ(p+2)ηp+α

|Γ(p+2)−γηp+1|Γ(3−α)Γ(p+α+1)

)(
m1 ‖v2 − v1‖+m2 ‖Dα−1 (v2 − v1)‖

) (3.12)

Therefore, ∥∥Dα−1T1 (v2)−Dα−1T1 (v1)
∥∥ ≤ 2M ′

1m ‖v2 − v1‖1 . (3.13)

With the same arguments, we get∥∥Dβ−1T2 (u2)−Dβ−1T2 (u1)
∥∥ ≤ 2M ′

2m ‖u2 − u1‖1∗ . (3.14)

Since Mi < Mi
′; i = 1, 2, then thanks to (3.9) and (3.13), we obtain

‖T1 (v2)− T1 (v1)‖1 ≤ 2M ′
1m ‖v2 − v1‖1 (3.15)

and by (3.10) and (3.14), we get

‖T2 (u2)− T2 (u1)‖1 ≤ 2M ′
2n ‖u2 − u1‖1∗ . (3.16)

Using (3.15) and (3.16), we deduce that

‖T (u2, v2)− T (u1, v1)‖2 ≤

2 max (m,n) max (M ′
1,M

′
2) ‖(u2 − u1) , (v2 − v1)‖2 .

Thanks to (3.1), we conclude that T is a contraction mapping. Hence by Banach fixed point
theorem, there exists a unique fixed point which is a solution of (1.1). �

The second result is the following:

Theorem 3.2. Suppose that γ 6= Γ(p+2)
ηp+1 , δ 6= Γ(q+2)

ζq+1 and assume that (H2) and (H3) are satisfied.

Then the boundary value problem (1.1) has at least one solution.

Proof . First of all, we show that the operator T is completely continuous.
Step 1: Let us take σ > 0 and Bσ := {(u, v) ∈ X × Y ; ‖(u, v)‖2 ≤ σ}. For (u, v) ∈ Bσ, using (H3),
we find that

‖T1 (v)‖ ≤ L1

Γ (α + 1)
+

L1 |γ|Γ (p+ 2) ηp+α

|Γ (p+ 2)− γηp+1|Γ (p+ α + 1)
= L1M1 (3.17)

and
‖T2 (u)‖ ≤ L2M2. (3.18)
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Further, we have∥∥Dα−1T1 (v)
∥∥ ≤ L1

(
1 +

|γ|Γ (p+ 2) ηp+α

|Γ (p+ 2)− γηp+1|Γ (3− α) Γ (p+ α + 1)

)
= L1M

′
1 (3.19)

and ∥∥Dβ−1T2 (u)
∥∥ ≤ L2M

′
2. (3.20)

Since Mi < Mi
′; i = 1, 2, then we can write

‖T1 (v)‖1 ≤ L1M
′
1, ‖T2 (u)‖1∗ ≤ L2M

′
2. (3.21)

Consequently,

‖T (u, v)‖2 ≤ max (L1M
′
1, L2M

′
2) <∞. (3.22)

Step 2: Let t1, t2 ∈ [0, 1] , t1 < t2 and (u, v) ∈ Bσ. We have

| T1 (v) (t2)− T1 (v) (t1) |

≤ L1

Γ (α + 1)
(tα2 − tα1 ) +

L1 |γ|Γ (p+ 2) ηp+α (t2 − t1)

|Γ (p+ 2)− γηp+1|Γ (p+ α + 1)
. (3.23)

Analogously, we can obtain

| T2 (u) (t2)− T2 (u) (t1) |

≤ L2

Γ(β+1)

(
tβ2 − t

β
1

)
+ L2|γ|Γ(q+2)ζq+β(t2−t1)
|Γ(q+2)−δζq+1|Γ(q+β+1)

.
(3.24)

On the other hand, ∣∣Dα−1T1(v)(t2)−Dα−1T1(v)(t1)
∣∣ ≤M ′

1 (t2 − t1) ,∣∣Dβ−1T2(u)(t2)−Dβ−1T2(u)(t1)
∣∣ ≤M ′

2 (t2 − t1) .
(3.25)

The inequalities (3.23), (3.24) and (3.25) imply that T is equi-continuous. Then, by Arzela-Ascoli
theorem, we conclude that T is completely continuous.

Next, we consider

Ω := {(u, v) ∈ X × Y, (u, v) = λT (u, v) , 0 < λ < 1}. (3.26)

We show that Ω is bounded.
Let (u, v) ∈ Ω, then (u, v) = λT (u, v) , for some 0 < λ < 1. Hence, for t ∈ [0, 1] , we have:

u (t) = λT1 (v) (t) , v (t) = λT2 (u) (t) .

Thanks to (H3) and using (3.17) and (3.18), we conclude that

‖u‖ ≤ λL1M1, ‖v‖ ≤ λL2M2. (3.27)

By (3.19) and (3.20), we can state that∥∥Dα−1u
∥∥ ≤ λL1M

′
1,
∥∥Dβ−1v

∥∥ ≤ λL2M
′
2. (3.28)
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Consequently,

‖u‖1 ≤ λL1M
′
1, ‖v‖1∗ ≤ λL2M

′
2. (3.29)

Therefore,
‖(u, v)‖2 ≤ λmax (L1M

′
1, L2M

′
2) . (3.30)

This shows that Ω is bounded.
As a conclusion of Schaefer fixed point theorem, we deduce that T has at least one fixed point, which
is a solution of (1.1). �

Our third main result is based on Krasnoselskii theorem [8]. We have:

Theorem 3.3. Let γ 6= Γ(p+2)
ηp+1 , δ 6= Γ(q+2)

ζq+1 . Suppose that (H1), (H2) and (H3) are satisfied, and

max (m,n) <
1

2
. (3.31)

Then, the fractional system (1.1) has at least one solution.

Proof . Let us fix θ ≥ max(L1M
′
1, L2M

′
2) and consider Bθ = {(u, v) ∈ X × Y, || (u, v) ||2 ≤ θ}. On

Bθ, we define the operators R and S as follows:

R (u, v) (t) = (R1 (v) (t) , R2 (u) (t)) ,

S (u, v) (t) = (S1 (v) (t) , S2 (u) (t)) ,
(3.32)

where,

R1v(t) =

∫ t

0

(t− s)
Γ (α)

α−1

f1

(
s, v (s) , Dα−1v (s)

)
ds,

R2u(t) =
∫ t

0
(t−s)
Γ(β)

β−1
f2

(
s, u (s) , Dβ−1u (s)

)
ds,

(3.33)

and

S1v(t) =
γΓ (p+ 2) t

Γ (p+ 2)− γηp+1

∫ η

0

(η − s)p+α−1

Γ (p+ α)
f1

(
s, v (s) , Dα−1v (s)

)
ds,

S2u(t) = δΓ(q+2)t
Γ(q+2)−δζp+1

∫ ζ
0

(ζ−s)q+β−1

Γ(q+β)
f2

(
s, u (s) , Dβ−1u (s)

)
ds.

(3.34)

For (u1, v1) , (u2, v2) ∈ Bθ, t ∈ [0, 1], we find that

|R1 (v1) (t) + S1 (v2) (t)|

≤
∫ t

0
(t−s)
Γ(α)

α−1
|f1 (s, v1 (s) , Dα−1v1 (s))| ds

+ |γ|Γ(p+2)t
|Γ(p+2)−γηp+1|

∫ η
0

(η−s)p+α−1

Γ(p+α)
|f1 (s, v2 (s) , Dα−1v2 (s))| ds.

(3.35)

Thanks to (H3) , we obtain
‖R1 (v1) + S1 (v2)‖ ≤ L1M1, (3.36)

and
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‖R2 (u1) + S2 (u2)‖ ≤ L2M2. (3.37)

Again, by (H3), yield ∥∥Dα−1R1 (v1) +Dα−1S1 (v2)
∥∥ ≤ L1M

′
1 (3.38)

and ∥∥Dβ−1R2 (u1) +Dβ−1S2 (u2)
∥∥ ≤ L2M

′
2. (3.39)

Therefore,
‖R (u1, v1) + S (u2, v2)‖2 ≤ max (L1M

′
1, L2M

′
2) ≤ θ. (3.40)

Thus, R (u1, v1) + S (u2, v2) ∈ Bθ.
Now we prove the contraction of R. Using (H1), we can write

‖R1 (v2)−R1 (v1)‖ ≤ 2m

Γ (α + 1)
‖v2 − v1‖1 , (3.41)

‖R2 (u2)−R2 (u1)‖ ≤ 2n

Γ (β + 1)
‖u2 − u1‖1∗ , (3.42)

∥∥Dα−1R1 (v2)−Dα−1R1 (v1)
∥∥ ≤ 2m ‖v2 − v1‖1 (3.43)

and ∥∥Dβ−1R2 (u2)−Dβ−1R2 (u1)
∥∥ ≤ 2n ‖u2 − u1‖1∗ . (3.44)

Consequently,
‖R (u2, v2)−R (u1, v1)‖2 ≤ 2 max (m,n) ‖(u2 − u1, v2 − v1)‖2 . (3.45)

Thanks to (3.31) , we conclude that R is a contraction mapping.

The Continuity of f1 and f2 given in (H2) implies that the operator S is continuous.
Now, we prove the compactness of the operator S.

Let t1, t2 ∈ [0, 1] , t1 < t2 and (u, v) ∈ Bθ. We have

| S1 (v) (t2)− S1 (v) (t1) |≤ L1 |γ|Γ (p+ 2) ηp+α (t2 − t1)

|Γ (p+ 2)− γηp+1|Γ (p+ α + 1)
,

| S2 (u) (t2)− S2 (u) (t1) |≤ L2|γ|Γ(q+2)ζq+β(t2−t1)
|Γ(q+2)−δζq+1|Γ(q+β+1)

.

(3.46)

We have also∣∣Dα−1S1(v)(t2)−Dα−1S1(v) (t1)
∣∣ ≤ L1 |γ|Γ (p+ 2) ηp+α (t2 − t1)

|Γ (p+ 2)− γηp+1|Γ (p+ α + 1) Γ (3− α)
,

∣∣Dβ−1S2(u)(t2)−Dβ−1S2(u) (t1)
∣∣ ≤ L2|γ|Γ(q+2)ζq+β(t2−t1)

|Γ(q+2)−δζq+1|Γ(q+β+1)Γ(3−β)
.

(3.47)

Thus,

‖S1 (v) (t2)− S1 (v) (t1)‖1 ≤
L1 |γ|Γ (p+ 2) ηp+α (t2 − t1)

|Γ (p+ 2)− γηp+1|Γ (p+ α + 1) Γ (3− α)
, (3.48)

and

‖S2 (u) (t2)− S2 (u) (t1)‖1∗ ≤
L2 |γ|Γ (q + 2) ζq+β (t2 − t1)

|Γ (q + 2)− δζq+1|Γ (q + β + 1) Γ (3− β)
. (3.49)
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Therefore,

‖S (u, v) (t2)− S (u, v) (t1)‖2

≤ (t2 − t1) max
(

L1|γ|Γ(p+2)ηp+α

|Γ(p+2)−γηp+1|Γ(p+α+1)Γ(3−α)
, L2|γ|Γ(q+2)ζq+β

|Γ(q+2)−δζq+1|Γ(q+β+1)Γ(3−β)

)
.

(3.50)

The right hand side of (3.50) is independent of (u, v) and tends to zero as t1 → t2, so S is
relatively compact on Bθ. Then by Ascolli-Arzella theorem, the operator S is compact. Finally, by
Krasnoselskii theorem, we conclude that there exists a solution to (1.1). Theorem 3.3 is thus proved.
�

4. Example

Example 4.1. Consider the following fractional differential system:

D
3
2u (t) = e−t

2 |v(t)|
16+et

+
sin

(
D

1
2 v(t)

)
32(πt2+1)

, t ∈ [0, 1] ,

D
3
2v (t) =

|u(t)|+
∣∣∣D 1

2 u(t)
∣∣∣

e(πt+20)
(
et+|u(t)|+

∣∣∣D 1
2 u(t)

∣∣∣) , t ∈ [0, 1] ,

u (0) = 0, u′ (0) = 4I
1
2u (η) ,

v (0) = 0, v′ (0) = −83I
3
2v (ξ) ,

where, α = β = 3
2
, p = 1

2
, q = 3

2
, γ = 4, δ = −83, η = 2

5
, ξ = 4

5
.

For u1, u2, v1, v2 ∈ R, t ∈ [0, 1] , we have

|f1 (t, u2, v2)− f1 (t, u1, v1)| ≤ 1

16
(|u2 − u1|+ |v2 − v1|) ,

|f2 (t, u2, v2)− f2 (t, u1, v1)| ≤ 1

20
(|u2 − u1|+ |v2 − v1|) .

We have also

M1 =
4

3
√
π

+
3
√
π

24
√
π − 16

,

M ′
1 = 1 +

3

(12
√
π − 8)

,

M2 =
4

3
√
π

+
3
√
π

30
√
π + 32

√
2
,

M ′
2 = 1 +

3

15
√
π + 16

√
2
.

The conditions of the Theorem 3.1 hold. Therefore, the problem (3.41) has a unique solution on
[0, 1].

Example 4.2. Consider the following problem:

D
5
4u (t) = e−t

16+|sin(v(t))|+
∣∣∣cos

(
D

1
4 v(t)

)∣∣∣ , t ∈ [0, 1] ,

D
9
7v (t) = e−2t sin(u(t))

16+
∣∣∣cos

(
D

2
7 u(t)

)∣∣∣ , t ∈ [0, 1] ,

u (0) = 0, u′ (0) = I3u (η) ,
v (0) = 0, v′ (0) = I2v (ξ) .
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For this example, we have α = 5
4
, β = 9

7
, p = 3, q = 2, γ = δ = 1, η = 4

5
, ξ = 1

5
, and

f1(t, u, v) =
e−t

16 + |sinu|+ |cos v|
,

f2(t, u, v) =
e−2t sinu

16 + |cos v|
.

It’s clear that f1 and f2 are continuous and bounded functions. Thus the conditions of Theorem
3.2 hold, then the problem (3.42) has at least one solution on [0, 1].
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