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Abstract

The dynamical behaviour of the forced escape oscillator, which depends on the parameter values we
considered, have been studied numerically using the techniques of phase portraits and Poincaré sec-
tions. Also, we employed perturbation methods such as Lindstedt’s method to obtain the frequency-
amplitude relation of escape oscillator.
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1. Introduction

Oscillatory phenomena are ubiquitous in physical sciences and engineering world. Pulsating stars
are studied in astrophysics, while in astronomy the motions of the planets in their orbits have an
oscillatory nature. Physics is full of oscillatory phenomena, such as, electromagnetic fields whose
intensity changes periodically with time, known as electromagnetic waves, atomic vibrations in solid
state physics and modes of oscillation of the atom nucleus.

Electrical and mechanical oscillators, as well as vibrations in structures are everyday elements in
the world of engineering. Oscillatory behaviours are often found in the life sciences too, these include
the circadian rhythms, the beats of the hearts, and the oscillations of the membrane potential in the
axons of the neurons, among many others. The study of the dynamical behaviour of oscillators is
therefore a central issue in sciences and engineering. Oscillatory phenomena can easily modeled with
the help of differential equations.
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Consider the particle moves in a force field which is generated by a potential V (x), then the
general equation of motion of the particle is given by

d2x

dt2
+
dV (x)

dx
= 0 (1.1)

Therefore, the general form of damped, driven oscillator is written in the following form:

d2x

dt2
+ f

(
x,
dx

dt

)
+
dV (x)

dx
= Fcos (ωt) (1.2)

Different oscillators may be obtained depending on the potential V (x) acting on the particle.
If one take the potential V (x) = −cos(x) the equation (1.1) reduces to the well known pendulum
equation

d2x

dt2
+ sin(x) = 0

If we take V (x), to be a polynomial function of fourth order in x, then we get the Duffing
oscillator, and if we take V (x), to be a polynomial function of third order in x then we get the escape
oscillator.

Taking V (x) = αx
2

2
+ β x

3

3
, in (1.2), we obtain

d2x

dt2
+ µ

dx

dt
+ αx+ βx2 = Fcos (ωt) (1.3)

which is the differential equation of damped, forced escape oscillator.
The dynamics of this simple nonlinear oscillator (1.3), known as escape oscillator (Helmholtz

oscillator) include, the capsizing of a ship [10], nonlinear dynamics of a drop in a time-periodic flow
[6] or in a time-periodic electric field [5]. It appears in relation to the randomization of solitary-like
waves in boundary-layer flows [1] and in the three-wave interaction, also referred to as resonant
triads [3]. It also, gives a model equation for nonlinear soil-mass oscillator which is useful for the
study of landmine oscillator [7]. In [9], the numerical solution of the heat equation is obtained using
finite-difference schemes. Cai et al. [2], used the multiple scale method to obtain the asymptotic
solution of quadratic and cubic nonlinear oscillator. Cvetićanin [4], used the Lambert W-function to
analyze the oscillations of a system with strong quadratic damping.

The aim of this paper, is to study the various cases of eq. (1.3) both numerically and analytically.
We will also use Lindstedt’s perturbation method to derive frequency-amplitude relation of escape
oscillator.

2. Equilibrium Points and Dynamics of the unforced, undamped escape oscillator

The differential equation of unforced, undamped escape oscillator is given by

x
′′

+ αx+ βx2 = 0 (2.1)

From (2.1), we obtain the autonomous dynamical system{
x

′
= y;

y
′
= −αx− βx2

(2.2)
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with x
′
= 0, we observe that y = 0. The condition y

′
= 0 implies that x = 0 or x = −α

β
.

The equilibrium points of the unforced, undamped escape oscillator are thus of the form (0,0)
and (x,0). The Jacobian of system of equations (2.2) is given by

A = [

(
0 1

−α− 2βx 0

)
.] (2.3)

It’s eigenvalues satisfy
λ2 = −α− 2β (2.4)

where x, denotes the x-coordinate of an equilibrium point.
When α = 1, β = 1 there is a spiral equilibrium point at (0,0) with eigenvalues λ = ±ι. A phase

portrait for this situation is shown in Figure 1.
When α = −1, β = 1 there is a spiral equilibrium point at (1,0) with eigenvalues λ = ±ι. A

phase portrait for this situation is shown in Figure 2.
When α = 1, β = −1 there is a spiral equilibrium point at (0,0) with eigenvalues λ = ±ι. A

phase portrait for this situation is shown in Figure 3.
When α = −1, β = −1 there is a spiral equilibrium point at (-1,0) with eigenvalues λ = ±ι. A

phase portrait for this situation is shown in Figure 4.
When α = 1, β = −0.1 there is a spiral equilibrium point at (0,0) with eigenvalues λ = ±ι. A

phase portrait for this situation is shown in Figure 5.

Fig. 1: Phase plane of eq. 2.1 for α = 1 and β = 1.
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Fig. 2: Phase plane of eq. 2.1 for α = −1 and β = 1.

Fig. 3: Phase plane of eq. 2.1 for α = 1 and β = −1.

Fig. 4: Phase plane of eq. 2.1 for α = −1 and β = −1.
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Fig. 5: Phase plane of eq. 2.1 for α = 1 and β = −0.1.

3. Dynamics of the forced, escape oscillator with single sinusoidal forcing term

The differential equation of damped, driven escape oscillator with single sinusoidal force is given by

x
′′

+ µx
′
+ αx+ βx2 = Fcos (ωt) (3.1)

Setting µ = 0, i.e. in the absence of damping, (3.1) is written as the following system of non-
autonomous first order differential equations{

x
′
= y;

y
′
= −αx− βx2 + Fcos (ωt)

(3.2)

The Phase portrait of (3.2), simulated in Figure 6 is obtained when α = −1, β = 1, F = 1.5, ω =
4.2.

The Poincaré map of (3.2), depicted in Figure 7 is obtained for the parameter values α = −1, β =
1, F = 1.5, ω = 4.2. The Poincaré map reveals the several resonances.
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Fig. 6: Phase plane of eq. 3.2 for α = −1 and β = 1.

Fig. 7: Poincaré Section of eq. 3.2 for α = −1 and β = 1.

4. Dynamics of the forced, escape oscillator with multiple-frequency sinusoidal forcing
term

The differential equation of damped, driven escape oscillator with single sinusoidal force is given by

x
′′

+ µx
′
+ αx+ βx2 = F1cos (ω1t) + F2cos (ω2t) (4.1)

For µ = 0, i.e. in the absence of damping, (4.1) is written as the following system of non-
autonomous first order differential equations{

x
′
= y;

y
′
= −αx− βx2 + F1cos (ω1t) + F2cos (ω2t)

(4.2)

The Phase portrait of (4.2), simulated in Figure 8 is obtained when α = −1, β = 1, F1 = 1.5 =
F2, ω1 = 4.2 = ω2.

The Poincaré map of (4.2), depicted in Figure 9 is obtained for the parameter values α = −1, β =
1, F1 = 1.5 = F2, ω1 = 4.2 = ω2. The Poincaré map reveals the several different resonances.
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Fig. 8: Phase space of eq. 4.2 for α = −1 and β = 1.

Fig. 9: Poincaré Section of eq. 4.2 for α = −1 and β = 1.

5. Perturbation Analysis

Lindstedt’s method [8], is a simple singular perturbation scheme which is used to derive the
relationship between period and amplitude.

Consider the unforced, perturbed escape oscillator of the following form:

d2x

dt2
+ x+ εx2 = 0 (5.1)

Using,
τ = ωt, ω = 1 + εω1 + ε2ω2 + . . . (5.2)
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in eq.(5.1), we get

ω2d
2x

dt2
+ x+ εx2 = 0 (5.3)

Now expanding x in a power series in ε:

x(τ) = x0(τ) + εx1(τ) + ε2x2(τ) + . . . (5.4)

Substitution of second of (5.2) and (5.4) into the differential eq. (5.3) and comparing the terms of
same order in ε yield the system of equations:

d2x0
dτ 2

+ x0 = 0 (5.5)

d2x1
dτ 2

+ x1 = −2ω1
d2x0
dτ 2

− x20 (5.6)

d2x2
dτ 2

+ x2 = −2ω1
d2x1
dτ 2

−
(
ω2
1 + 2ω2

) d2x0
dτ 2

− 2x0x1 (5.7)

Equation (5.5) has the solution:
x0(τ) = Acosτ (5.8)

where A is the amplitude of the motion. Substitution of (5.8) into (5.6), gives

d2x1
dτ 2

+ x1 = −2Aω1cosτ − A2cos2τ (5.9)

or
d2x1
dτ 2

+ x1 = −2Aω1cosτ −
A2

2
− A2

2
cos2τ (5.10)

For a periodic solution, removing the resonance terms, i.e. setting coefficients of cosτ equal to zero,
we get

2Aω1 = 0 (5.11)

or
ω1 = 0 (5.12)

Using, ω1 = 0 in (5.10) and solving it, we obtain

x1(τ) = C1cos (τ + k1) −
A2

2
+
A2

6
cos2τ (5.13)

Taking, initial conditions x1(0) = 0 = dx1
dτ

(0), the above eq. becomes

x1(τ) = −A
2

2
+
A2

3
cosτ +

A2

6
cos2τ (5.14)

Substituting, (5.8), (5.12) and (5.14) into (5.7), we obtain

d2x2
dτ 2

+ x2 = 2Aω2cosτ − 2Acosτ

(
−A

2

2
+
A2

3
cosτ +

A2

6
cos2τ

)
(5.15)
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which becomes

d2x2
dτ 2

+ x2 = −A
3

3
+

(
2Aω2 +

5A3

6

)
cosτ − A3

3
cos2τ − A3

6
cos3τ (5.16)

Again removing the resonance terms, i.e. setting coefficients of cosτ equal to zero, we get

2Aω2 +
5A3

6
= 0 (5.17)

or

ω2 = −5A2

12
(5.18)

Substituting this result into second of the ansatz (5.2), we obtain the approximate frequency-
amplitude relation:

ω = 1 − 5A2

12
ε2 + o(ε3) (5.19)

The period, T = 2π
ω

, may then be written as:

T =
2π

ω
=

2π

1 − 5A2

12
ε2 + o(ε3)

(5.20)

or

T = 2π

(
1 +

5A2

12
ε2 + o(ε3)

)
(5.21)

6. Conclusion

In this paper, we investigated forced escape oscillators using both numerical and analytical tech-
niques. We considered the unforced, undamped escape oscillator, the forced escape oscillator with a
single sinusoidal forcing term, and the forced escape oscillator with two sinusoidal forcing terms of
multiple frequencies.

The dynamical behaviour of the forced escape oscillator, which depends on the parameter values
we considered, have been studied numerically using phase portraits and Poincaré sections. Phase
portraits and Poincaré sections also allow us to compare the effects of single-frequency and dual-
frequency sinusoidal forcing with unforced situations. Finally, we employed perturbation methods
such as Lindstedt’s method to obtain the frequency-amplitude relation of escape oscillator.
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