Int. J. Nonlinear Anal. Appl. 7 (2016) No. 2, 153-164

ISSN: 2008-6822 (electronic)

http://dx.doi.org/10.22075/ijnaa.2016.456

Algebras defined by homomorphisms

Feysal Hassani

Department of Mathematics, Payame Noor University, Tehran, Iran

(Communicated by M. Eshaghi)

Abstract

Let \mathcal{R} be a commutative ring with identity, let A and B be two \mathcal{R} -algebras and $\varphi: B \longrightarrow A$ be an \mathcal{R} -additive algebra homomorphism. We introduce a new algebra $A \times_{\varphi} B$, and give some basic properties of this algebra. Generalized 2-cocycle derivations on $A \times_{\varphi} B$ are studied. Accordingly, $A \times_{\varphi} B$ is considered from the perspective of Banach algebras.

Keywords: algebra; cocycle; generalized derivation; Banach algebra.

2010 MSC: 16W25.

1. Introduction

Let \mathcal{R} be a commutative ring with identity and let A be an \mathcal{R} -bimodule (algebra). An algebra A is called *prime* algebra if for $a, b \in A$, aAb = 0 implies that either a = 0 or b = 0, and it is called *semiprime* if for $a \in A$, aAa = 0 implies that a = 0. An \mathcal{R} -linear map $\delta : A \longrightarrow A$ is said to be a derivation if d(xy) = d(x)y + xd(y) for every $x, y \in A$.

An \mathcal{R} -bilinear map $\gamma: A \times A \longrightarrow A$ is called 2-cocycle if it satisfies the following equation

$$a\gamma(b,c) - \gamma(ab,c) + \gamma(a,bc) - \gamma(a,b)c = 0,$$

for every $a, b, c \in A$.

Let \mathcal{R} be a ring and A and B algebras over \mathcal{R} (\mathcal{R} -algebras). Let $\varphi : B \longrightarrow A$ be an \mathcal{R} -additive algebra homomorphism, i.e.

$$\varphi(rb+b') = r\varphi(b+b')$$
, and $\varphi(bb') = \varphi(b)\varphi(b')$,

for every $b, b' \in B$. Let $\varphi : B \longrightarrow A$ be an \mathcal{R} -additive algebra homomorphism, an \mathcal{R} -linear map $\tau : B \longrightarrow A$ is called φ -derivation if

$$\tau(bb') = \varphi(b)\tau(b') + \tau(b)\varphi(b'),$$

Email address: hassany@pnu.ac.ir (Feysal Hassani)

Received: September 2015 Revised: June 2016

for all $b, b' \in B$. If $\varphi = \mathrm{id}_B$ (identity map on B) and A is a B-bimodule, then id_B -derivation is a derivation that we defined already.

An additive mapping $D:A\longrightarrow A$ is called generalization derivation if there exists a derivation $d:A\longrightarrow A$ such that D(xy)=D(x)y+xd(y) for all $x,y\in A$ and we say D is a d-derivation [1]. These mappings studied by many authors on various rings and algebras (see [2, 7]). A new type of generalized derivation introduced by Nakajima in [6], that he called it generalized 2-cocycle derivation. An additive mapping $\delta:A\longrightarrow A$ is called generalized 2-cocycle derivation associate with 2-cocycle $\gamma:A\times A\longrightarrow A$, if

$$\delta(xy) = x\delta(y) + \delta(x)y + \gamma(x,y), \tag{1.1}$$

for all $x, y \in A$. This version of generalized derivations considered in [3, 4, 5] for various versions of algebras such as von-Neumann and triangular algebras.

In this paper, at first, we introduce a new algebra that defined with homomorphism product \times_{φ} , where φ is an \mathcal{R} -additive homomorphism between algebras over \mathcal{R} (\mathcal{R} -bimodules). After that, we study generalized 2-cocycle derivation on these algebras.

2. An algebra with homomorphism product

In this section we introduce an algebra as a generalization of Cartesian product of two algebras. Let \mathcal{R} be a commutative ring with identity, A and B algebras over \mathcal{R} (\mathcal{R} -algebras) and let $\varphi: B \longrightarrow A$ be an \mathcal{R} -additive algebra homomorphism. We define an algebra $A \times_{\varphi} B$ over \mathcal{R} with the following operations

$$(a,b) + (a',b') = (a+a',b+b')$$
 and $(a,b)(a',b') = (aa' + a\varphi(b') + \varphi(b)a',bb'),$ (2.1)

for every $(a, b), (a', b') \in A \times_{\varphi} B$.

We summarize some properties of $A \times_{\varphi} B$ as follows:

Proposition 2.1. Let \mathcal{R} be a commutative ring with identity, A and B algebras over \mathcal{R} and let $\varphi: B \longrightarrow A$ be an \mathcal{R} -additive algebra homomorphism. Then

- (i) $A \times_{\varphi} B$ is commutative if and only if A and B are commutative.
- (ii) if $A \times_{\varphi} B$ is prime, then A and B are prime. If A and B are prime and $a + \varphi(b) \neq 0$ for all $(a,b) \in A \times_{\varphi} B$, then $A \times_{\varphi} B$ is prime.
- (iii) $A \times_{\varphi} B$ is semiprime if and only if then A and B are semiprime.
- (iv) If $A \times_{\varphi} B$ is unital then A and B are unital. If A and B are unital with units e_A and e_B such that $\varphi(e_B) = e_A$, then $A \times_{\varphi} B$ is unital with unit $(0, e_B)$.
- (v) $A \times_{\varphi} B$ is projective if and only if then A and B are projective.
- (vi) $A \times_{\varphi} B$ is injective if and only if then A and B are injective.

Proof. (i) Let $A \times_{\varphi} B$ be commutative. For every $a_1, a_2 \in A$ we have $(a_1, 0), (a_2, 0) \in A \times_{\varphi} B$. Then

$$(a_1a_2, 0) = (a_1, 0)(a_2, 0) = (a_2, 0), (a_1, 0) = (a_2a_1, 0).$$

This implies that A is commutative. Similarly, B is commutative.

Conversely, let A and B be commutative. Then for every $(a_1, b_1), (a_2, b_2) \in A \times_{\varphi} B$ we have

$$(a_1, b_1)(a_2, b_2) = (a_1a_2 + a_1\varphi(b_2) + \varphi(b_1)a_2, b_1b_2)$$

= $(a_2a_1 + \varphi(b_2)a_1 + a_2\varphi(b_1), b_2b_1)$
= $(a_2, b_2)(a_1, b_1).$

(ii) Let $A \times_{\varphi} B$ be prime. For every $a_1, a_2 \in A$ we have $(a_1, 0), (a_2, 0) \in A \times_{\varphi} B$. If $a_1 A a_2 = 0$, then for every $a' \in A$ we have $a_1 a' a_2 = 0$. Thus

$$(a_1 a' a_2, 0) = (a_1, 0)(a', 0)(a_2, 0) = (0, 0).$$

This implies that $(a_1,0) = (0,0)$ or $(a_2,0) = (0,0)$. Hence, A is prime. Similarly we can show that B is prime.

Now, let A and B be prime. We shall show that if

$$(a_1, b_1)A \times_{\omega} B(a_2, b_2) = (0, 0),$$

then $(a_1, b_1) = (0, 0)$ or $(a_2, b_2) = (0, 0)$. If $(a_1, b_1)A \times_{\varphi} B(a_2, b_2) = (0, 0)$, for every $(a', b') \in A \times_{\varphi} B$, we have $(a_1, b_1)(a', b')(a_2, b_2) = (0, 0)$. Then

$$(0,0) = (a_1,b_1)(a',b')(a_2,b_2)$$

$$= (a_1a'a_2 + \varphi(b_1)a'a_2 + a_1\varphi(b')a_2 + \varphi(b_1b')a_2 + a_1a'\varphi(b_2)$$

$$\varphi(b_1)a'\varphi(b_2) + a_1\varphi(b')\varphi(b_2), b_1b'b_2).$$

Therefore $b_1b'b_2=0$. Since B is prime, $b_1=0$ or $b_2=0$. If $b_1=0$, then

$$0 = a_1 a' a_2 + a_1 \varphi(b') a_2 + a_1 a' \varphi(b_2) + a_1 \varphi(b') \varphi(b_2)$$

= $a_1 (a' + \varphi(b')) (a_2 + \varphi(b_2)).$

This implies that $a_1 = 0$ or $a_2 + \varphi(b_2) = 0$. But $a_2 + \varphi(b_2) = 0$ can not happen for every $(a_2, b_2) \in A \times_{\varphi} B$. This means that $a_1 = 0$. Hence, $(a_1, b_1) = (0, 0)$. If $b_2 = 0$, then

$$0 = a_1 a' a_2 + \varphi(b_1) a' a_2 + a_1 \varphi(b') a_2 + \varphi(b_1 b') a_2$$

= $(a_1 + \varphi(b_1)) (a' + \varphi(b')) a_2$.

Consequently, $a_1 + \varphi(b_1) = 0$ or $a_2 = 0$. Since $a_1 + \varphi(b_1) = 0$ can not hold for every $(a_2, b_2) \in A \times_{\varphi} B$, $a_2 = 0$. Therefore $(a_2, b_2) = (0, 0)$. Thus, $A \times_{\varphi} B$ is prime.

(iii) Let $A \times_{\varphi} B$ be semiprime. For every $a \in A$ we have $(a,0) \in A \times_{\varphi} B$. If aAa = 0, then for every $a' \in A$ we have aa'a = 0. Thus

$$(aa'a, 0) = (a, 0)(a', 0)(a, 0) = (0, 0).$$

This implies that (a,0) = (0,0). Hence, A is semiprime. Similarly we can show that B is semiprime.

Now, let A and B be semiprime. We shall show that if $(a,b)(A \times_{\varphi} B)(a,b) = (0,0)$, then (a,b) = (0,0). If $(a,b)(A \times_{\varphi} B)(a,b) = (0,0)$, thus, for every $(a',b') \in A \times_{\varphi} B$, we have (a,b)(a',b')(a,b) = (0,0). Then

$$(0,0) = (a,b)(a',b')(a,b)$$

= $(aa'a + \varphi(b)a'a + a\varphi(b')a + \varphi(bb')a + aa'\varphi(b) + \varphi(b)a'\varphi(b) + a\varphi(b')\varphi(b), bb'b).$

Therefore bb'b = 0. Since B is semiprime, b = 0. This follows that $\varphi(b) = 0$, and consequently, aa'a = 0. Since A is semiprime, a = 0. Hence, (a, b) = (0, 0) and $A \times_{\varphi} B$ is semiprime.

(iv) Assume $A \times_{\varphi} B$ is unital. Let (α, β) be the unit of $A \times_{\varphi} B$. Then for every $(a, b) \in A \times_{\varphi} B$,

$$(a,b) = (a,b)(\alpha,\beta) = (a\alpha + a\varphi(\beta) + \varphi(b)\alpha,\beta b)$$
$$= (a(\alpha + \varphi(\beta)) + \varphi(b)\alpha,\beta b)$$
$$= (\alpha,\beta)(a,b) = ((\alpha + \varphi(\beta))a + \alpha\varphi(b),b\beta).$$

Then by taking a = 0, we conclude that $\alpha \varphi(b) = 0$ for every $b \in B$. This follows that β is the unit of B and $\alpha + \varphi(\beta)$ is the unit of A.

If A and B are unital with units e_A and e_B such that $\varphi(e_B) = e_A$, then clearly $(0, e_B)$ is the unit of $A \times_{\varphi} B$.

The cases (v) and (vi) are easy. \square

In the above results we have stated some properties of $A \times_{\varphi} B$, A and B that they have similar properties. An \mathcal{R} -algebra A is called factorable, if for every $a \in A$ there are $b, c \in A$ such that a = bc. Now; let A and B are factorable \mathcal{R} -algebras, then $A \times_{\varphi} B$ is not factorable.

Assume that $\alpha: A \longrightarrow \mathcal{R}$ is an \mathcal{R} -linear map. We denote the set of these maps by $Hom_{\mathcal{R}}(A, \mathcal{R})$ (in some litterateurs say that duality of A and denote by A^*).

Theorem 2.2. Let \mathcal{R} be a commutative ring with identity, A and B algebras over \mathcal{R} and let φ : $B \longrightarrow A$ be an \mathcal{R} -additive algebra homomorphism. Then

$$Hom_{\mathcal{R}}(A \times_{\varphi} B, \mathcal{R}) \cong Hom_{\mathcal{R}}(A, \mathcal{R}) \times Hom_{\mathcal{R}}(B, \mathcal{R}).$$

Proof. Define $T: Hom_{\mathcal{R}}(A \times_{\varphi} B, \mathcal{R}) \longrightarrow Hom_{\mathcal{R}}(A, \mathcal{R}) \times Hom_{\mathcal{R}}(B, \mathcal{R})$ by $T(\alpha)(a, b) = \alpha_A(a) + \alpha_B(b)$ for all $a \in A$, $b \in B$, where $\alpha|_A = \alpha_A$ and $\alpha|_B = \alpha_B$. It is easy to see that T is an \mathcal{R} -linear and injective map. For every $\alpha_A \in Hom_{\mathcal{R}}(A, \mathcal{R})$ and $\alpha_B \in Hom_{\mathcal{R}}(B, \mathcal{R})$, $(\alpha_A, \alpha_B) \in Hom_{\mathcal{R}}(A \times_{\varphi} B, \mathcal{R})$. This shows that T is surjective and proof is complete. \square

Let \mathcal{R} be a commutative ring with identity and let A be an \mathcal{R} -algebra. Let $\theta \in Hom_{\mathcal{R}}(A, \mathcal{R})$ such that $\theta(ab) = \theta(a)\theta(b)$ for all $a, b \in A$. We denote a subset of $Hom_{\mathcal{R}}(A, \mathcal{R})$ that consists all elements such as θ by $\mathbb{HOM}_{\mathcal{R}}(A, \mathcal{R})$.

Theorem 2.3. Let \mathcal{R} be a commutative ring with identity, A and B algebras over \mathcal{R} and let φ : $B \longrightarrow A$ be an \mathcal{R} -additive algebra homomorphism. Then

$$\mathbb{HOM}_{\mathcal{R}}(A \times_{\varphi} B, \mathcal{R}) = \{(\theta, \theta \circ \varphi) : \theta \in \mathbb{HOM}_{\mathcal{R}}(A, \mathcal{R})\} \cup \{(0, \psi) : \psi \in \mathbb{HOM}_{\mathcal{R}}(B, \mathcal{R})\}.$$

Proof. Set $\mathbb{K} = \{(\theta, \theta \circ \varphi) : \theta \in \mathbb{HOM}_{\mathcal{R}}(A, \mathcal{R})\} \cup \{(0, \psi) : \psi \in \mathbb{HOM}_{\mathcal{R}}(B, \mathcal{R})\}$. Clearly $(\theta, \theta \circ \varphi)$ and $(0, \psi)$ are in $Hom_{\mathcal{R}}(A \times_{\varphi} B, \mathcal{R})$. For every $(a, b), (a', b') \in A \times_{\varphi} B$ we have

$$(\theta, \theta \circ \varphi)((a, b)(a', b')) = (\theta, \theta \circ \varphi)(aa' + a\varphi(b') + \varphi(b)a', bb')$$

$$= \theta(a)\theta(a') + \theta(a)\theta \circ \varphi(b') + \theta \circ \varphi(b)\theta(a') + \theta \circ \varphi(b)\theta \circ \varphi(b')$$

$$= (\theta(a) + \theta \circ \varphi(b))(\theta(a') + \theta \circ \varphi(b'))$$

$$= (\theta, \theta \circ \varphi)(a, b)(\theta, \theta \circ \varphi)(a', b').$$

$$(2.2)$$

Similarly for every $(a, b), (a', b') \in A \times_{\varphi} B$ we have

$$(0,\psi)((a,b)(a',b')) = \psi(b)\psi(b') = (0,\psi)(a,b)(0,\psi)(a',b'). \tag{2.3}$$

Thus, by (2.2) and (2.3), we have

$$\mathbb{K} \subseteq \mathbb{HOM}_{\mathcal{R}}(A \times_{\varphi} B, \mathcal{R}). \tag{2.4}$$

Let $\alpha \in \mathbb{HOM}_{\mathcal{R}}(A \times_{\varphi} B, \mathcal{R})$. By Theorem 2.2, $\mathbb{HOM}_{\mathcal{R}}(A \times_{\varphi} B, \mathcal{R}) \subseteq Hom_{\mathcal{R}}(A \times_{\varphi} B, \mathcal{R})$, so there are $\theta \in Hom_{\mathcal{R}}(A, \mathcal{R})$ and $\psi \in Hom_{\mathcal{R}}(B, \mathcal{R})$ such that $\alpha = (\theta, \psi)$. Then for every $(a, b), (a', b') \in A \times_{\varphi} B$

$$\alpha((a,b)(a',b')) = \alpha(a,b)\alpha(a',b') = (\theta,\psi)(a,b)(\theta,\psi)(a',b') = (\theta(a) + \psi(b))(\theta(a') + \psi(b')).$$
(2.5)

Also, for every $(a, b), (a', b') \in A \times_{\varphi} B$,

$$\alpha((a,b)(a',b')) = (\theta,\psi)(aa' + a\varphi(b') + \varphi(b)a',bb')$$

$$= \theta(aa') + \theta(a\varphi(b')) + \theta(\varphi(b)a') + \psi(bb').$$
(2.6)

By setting b = b' = 0 and above relations we have $\theta(aa') = \theta(a)\theta(a')$ for all $a, a' \in A$. This shows that $\theta \in \mathbb{HOM}_{\mathcal{R}}(A, \mathcal{R})$. Similarly, if we take a = a' = 0, we conclude that $\psi(bb') = \psi(b)\psi(b')$ for all $b, b' \in B$. Now, we shall show that if $\theta \neq 0$ then ψ of form $\theta \circ \varphi$. Assume that $\theta \neq 0$. Then by taking a = a' and b = b' in (2.5) and (2.6) we have

$$\theta(a)\psi(b) + \psi(b)\theta(a) = \theta(a)\theta \circ \varphi(b) + \theta \circ \varphi(b)\theta(a).$$

Since \mathcal{R} is commutative, $\psi(b) = \theta \circ \varphi(b)$ for all $b \in B$. This means that $\psi = \theta \circ \varphi$. Thus

$$\mathbb{HOM}_{\mathcal{R}}(A \times_{\sigma} B, \mathcal{R}) \subseteq \mathbb{K}. \tag{2.7}$$

3. Generalized 2-cocycle derivations

In the whole of this section \mathcal{R} is a commutative ring, A and B are unital \mathcal{R} -algebras with units e_A and e_B , respectively, and $\varphi: B \longrightarrow A$ is \mathcal{R} -linear algebras homomorphism such that $\varphi(e_B) = e_A$. In this section we study generalized 2-cocycle derivations on $A \times_{\varphi} B$.

Let $\gamma: (A \times_{\varphi} B) \times (A \times_{\varphi} B) \longrightarrow A \times_{\varphi} B$ be a \mathcal{R} -bilinear map. Let $\gamma_1: (A \times_{\varphi} B) \times (A \times_{\varphi} B) \longrightarrow A$ and $\gamma_2: (A \times_{\varphi} B) \times (A \times_{\varphi} B) \longrightarrow B$ be the coordinate mapping associated to γ that is

$$\gamma((a_1,b_1),(a_2,b_2)) = (\gamma_1((a_1,b_1),(a_2,b_2)),\gamma_2((a_1,b_1),(a_2,b_2))),$$

for all $(a_1,b_1), (a_2,b_2) \in A \times_{\varphi} B$. Let $\gamma: (A \times_{\varphi} B) \times (A \times_{\varphi} B) \longrightarrow A \times_{\varphi} B$ be a 2-cocycle, the coordinate mapping $\gamma_1: (A \times_{\varphi} B) \times (A \times_{\varphi} B) \longrightarrow A$ is said to correspond to a 2-cocycle on A if there exists a 2-cocycle $\gamma_A: A \times A \longrightarrow A$ such that $\gamma_1((a_1,b_1),(a_2,b_2)) = \gamma_A(a_1,a_2)$, for all $(a_1,b_1), (a_2,b_2) \in A \times_{\varphi} B$. Similarly, $\gamma_2: (A \times_{\varphi} B) \times (A \times_{\varphi} B) \longrightarrow B$ is said to correspond to a 2-cocycle on B if there exists a 2-cocycle $\gamma_B: B \times B \longrightarrow B$ such that $\gamma_2((a_1,b_1),(a_2,b_2)) = \gamma_B(b_1,b_2)$, for all $(a_1,b_1), (a_2,b_2) \in A \times_{\varphi} B$. Also, we assume that $\gamma_2((a_1,0),(a_2,0)) = 0$ and $\gamma_1((0,b_1),(0,b_2)) = 0$, for all $a_1,a_2 \in A$ and $b_1,b_2 \in B$.

Lemma 3.1. If $\gamma: (A \times_{\varphi} B) \times (A \times_{\varphi} B) \longrightarrow A \times_{\varphi} B$ is a 2-cocycle, then there are corresponding 2-cocycles $\gamma_A: A \times A \longrightarrow A$ and $\gamma_B: B \times B \longrightarrow B$.

Proof. Define $\gamma_A: A \times A \longrightarrow A$ as follows

$$\gamma_A(a_1, a_2) = (e_A, 0) \ \gamma((a_1, 0), (a_2, 0)) \ (e_A, 0), \tag{3.1}$$

for all $a_1, a_2 \in A$. Now, let $a_1, a_2, a_3 \in A$. Then

$$a_1\gamma_A(a_2, a_3) - \gamma_A(a_1a_2, a_3) + \gamma_A(a_1, a_2a_3) - \gamma_A(a_1, a_2)a_3$$

$$= (a_1, 0)\gamma((a_2, 0), (a_3, 0)) - \gamma((a_1a_2, 0), (a_3, 0)) + \gamma((a_1, 0), (a_2a_3, 0))$$

$$-\gamma((a_1, 0), (a_2, 0))(a_3, 0)$$

$$= 0.$$

This shows that γ_A is a 2-cocycle on A. Similarly, consider $\gamma_B: B \times B \longrightarrow B$ as follows

$$\gamma_B(b_1, b_2) = (0, e_B) \ \gamma((0, b_1), (0, b_2)) \ (0, e_B), \tag{3.2}$$

for all $b_1, b_2 \in B$. \square

Theorem 3.2. Let $\delta: A \times_{\varphi} B \longrightarrow A \times_{\varphi} B$ be a generalized 2-cocycle derivation associate with $\gamma: (A \times_{\varphi} B) \times (A \times_{\varphi} B) \longrightarrow A \times_{\varphi} B$. Then there are corresponding 2-cocycles $\gamma_A: A \times A \longrightarrow A$, $\gamma_B: B \times B \longrightarrow B$, generalized 2-cocycle derivations $\delta_A: A \longrightarrow A$, $\delta_B: B \longrightarrow B$ associate with γ_A and γ_B , respectively, and a φ -derivation $\tau: B \longrightarrow A$.

Proof. According to Lemma 3.1, there are corresponding 2-cocycles γ_A and γ_B . We prove the rest of the proof in some steps as follows:

Step 1. Let $\delta((0, e_B)) = (m, n)$. Then

$$(m,n) = \delta((0,e_B)(0,e_B)) = \delta((0,e_B))$$

$$= \delta((0,e_B)) (0,e_B) + (0,e_B) \delta((0,e_B)) + \alpha((0,e_B),(0,e_B))$$

$$= (m,n) (0,e_B) + (0,e_B) (m,n) + (0,\gamma_B((e_B,e_B)))$$

$$= (m,n) + (m,n) + (0,\gamma_B((e_B,e_B)))$$

$$= (2m,2n + \gamma_B((e_B,e_B))).$$
(3.3)

Thus, m = 0 and $n = -\gamma_B((e_B, e_B))$.

Step 2. Assume $b \in B$ and $\delta((0,b)) = (m,n)$. Then by Step 1, we have

$$(m,n) = \delta((0,b)) = \delta((0,e_B)(0,b))$$

$$= \delta((0,e_B)) (0,b) + (0,e_B) \delta((0,b)) + \alpha((0,e_B),(0,b))$$

$$= (0, -\gamma_B((e_B,e_B))) (0,b) + (0,e_B) (m,n) + (0,\gamma_B((e_B,b)))$$

$$= (0, -\gamma_B((e_B,e_B))b) + (m,n) + (0,\gamma_B((e_B,b))).$$
(3.4)

This implies that $\gamma_B((e_B, b)) = \gamma_B((e_B, e_B))b$. On the other hand,

$$(m,n) = \delta((0,b)) = \delta((0,b)(0,e_B))$$

$$= \delta((0,b)) (0,e_B) + (0,b) \delta((0,e_B)) + \alpha((0,b),(0,e_B))$$

$$= (m,n) (0,e_B) + (0,b) (0,-\gamma_B((e_B,e_B))) + (0,\gamma_B((b,e_B)))$$

$$= (0,-b\gamma_B((e_B,e_B))) + (m,n) + (0,\gamma_B((b,e_B))).$$
(3.5)

Therefore $b\gamma_B((e_B, e_B)) = \gamma_B((b, e_B))$. Set $\delta((0, b)) = (\tau(b), \delta_B(b))$.

Step 3. Suppose that $\delta((e_A, 0)) = (m, n)$. Then

$$(m,n) = \delta((e_A,0)) = \delta((e_A,0)(e_A,0))$$

$$= \delta((e_A,0)) (e_A,0) + (e_A,0) \delta((e_A,0)) + \alpha((e_A,0),(e_A,0))$$

$$= (m,n) (e_A,0) + (e_A,0) (m,n) + (\gamma_A((e_A,e_A)),0)$$

$$= (m+\varphi(n),0) + (m+\varphi(n),0) + (\gamma_A((e_A,e_A)),0)$$

$$= (2m+2\varphi(n)+\gamma_A((e_A,e_A)),0).$$
(3.6)

Above relations means that n = 0 and consequently, $m = -\gamma_A((e_A, e_A))$. Step 4. Let $\delta((a, 0)) = (m, n)$ for $a \in A$. Then Step 3, implies

$$(m,n) = \delta((a,0)) = \delta((a,0)(e_A,0))$$

$$= \delta((a,0)) (e_A,0) + (a,0) \delta((e_A,0)) + \alpha((a,0),(e_A,0))$$

$$= (m,n) (e_A,0) + (a,0) (-\gamma_A((e_A,e_A)),0) + (\gamma_A((a,e_A)),0)$$

$$= (m+\varphi(n),0) + (-a\gamma_A((e_A,e_A)),0) + (\gamma_A((a,e_A)),0)$$

$$= (m+\varphi(n) - a\gamma_A((e_A,e_A)) + \gamma_A((a,e_A)),0).$$
(3.7)

Hence, n=0 and $a\gamma_A((e_A,e_A))=\gamma_A((a,e_A))$. On the other hand, by 3.7 we have

$$(m,n) = \delta((a,0)) = \delta((e_A,0)(a,0))$$

$$= \delta((e_A,0)) (a,0) + (e_A,0) \delta((a,0)) + \alpha((e_A,0),(a,0))$$

$$= (-\gamma_A((e_A,e_A)),0) (a,0) + (e_A,0) (m,0) + (\gamma_A((e_A,a)),0)$$

$$= (-\gamma_A((e_A,e_A))a,0) + (m,0) + (\gamma_A((e_A,a)),0)$$

$$= (-\gamma_A((e_A,e_A))a + m + \gamma_A((e_A,a)),0).$$
(3.8)

Then $\gamma_A((e_A, a)) = \gamma_A((e_A, e_A))a$.

Step 5. By Steps 1 and 3 we have

$$(-\gamma_{A}((e_{A}, e_{A})), 0) = \delta((e_{A}, 0)) = \delta((e_{A}, 0)(0, e_{B}))$$

$$= \delta((e_{A}, 0)) (0, e_{B}) + (e_{A}, 0) \delta((0, e_{B})) + \alpha((e_{A}, 0), (0, e_{B}))$$

$$= (-\gamma_{A}((e_{A}, e_{A})), 0) (0, e_{B}) + (e_{A}, 0) (0, -\gamma_{B}((e_{B}, e_{B})))$$

$$+ (\gamma_{1}((e_{A}, 0), (0, e_{B})), \gamma_{2}((e_{A}, 0), (0, e_{B})))$$

$$= (-\gamma_{A}((e_{A}, e_{A})) - \varphi(\gamma_{B}((e_{B}, e_{B}))), 0) + (\gamma_{1}((e_{A}, 0), (0, e_{B})), \gamma_{2}((e_{A}, 0), (0, e_{B}))).$$
(3.9)

Above relation follows that $\varphi(\gamma_B((e_B, e_B))) = \gamma_1((e_A, 0), (0, e_B))$ and $\gamma_2((e_A, 0), (0, e_B)) = 0$. On the other hand

$$(-\gamma_A((e_A, e_A)), 0) = \delta((e_A, 0)) = \delta((0, e_B)(e_A, 0))$$

$$= (-\gamma_A((e_A, e_A)) - \varphi(\gamma_B((e_B, e_B))), 0) + (\gamma_1((0, e_B), (e_A, 0)), \gamma_2((0, e_B), (e_A, 0))).$$
(3.10)

Thus, $\gamma_2((0, e_B), (e_A, 0)) = 0$ and $\gamma_1((0, e_B), (e_A, 0)) = \varphi(\gamma_B((e_B, e_B)))$. This means that

$$\gamma_1((e_A, 0), (0, e_B)) = \gamma_1((0, e_B), (e_A, 0))$$

.

Step 6. From Step 4 we have $\delta((a,0)) = (m,0)$ for every $a \in A$. Now, replace m with $\delta_A(a)$. Then

$$(\delta_{A}(a), 0) = \delta((a, 0)) = \delta((a, 0)(0, e_{B}))$$

$$= \delta((a, 0)) (0, e_{B}) + (a, 0) \delta((0, e_{B})) + \alpha((a, 0), (0, e_{B}))$$

$$= (\delta_{A}(a), 0) (0, e_{B}) + (a, 0) (0, -\gamma_{B}((e_{B}, e_{B})))$$

$$+ (\gamma_{1}((a, 0)), (0, e_{B})), \gamma_{2}((a, 0), (0, e_{B})))$$

$$= (\delta_{A}(a) - a\varphi(\gamma_{B}((e_{B}, e_{B}))), 0) + (\gamma_{1}((a, 0)), (0, e_{B})), \gamma_{2}((a, 0), (0, e_{B}))).$$
(3.11)

This means that $\gamma_1((a,0)), (0,e_B) = a\varphi(\gamma_B((e_B,e_B)))$ and $\gamma_2((a,0), (0,e_B)) = 0$. On the other hand,

$$(\delta_{A}(a), 0) = \delta((a, 0)) = \delta((0, e_{B})(a, 0))$$

$$= \delta((0, e_{B})) (a, 0) + (0, e_{B}) \delta((a, 0)) + \alpha((0, e_{B}), (a, 0))$$

$$= (0, -\gamma_{B}((e_{B}, e_{B}))) (a, 0) + (0, e_{B}) (\delta_{A}(a), 0) + (\gamma_{1}((0, e_{B}), (a, 0))), \gamma_{2}((0, e_{B}), (a, 0)))$$

$$= (\delta_{A}(a) - \varphi(\gamma_{B}((e_{B}, e_{B})))a, 0) + (\gamma_{1}((0, e_{B}), (a, 0)), \gamma_{2}((0, e_{B}), (a, 0))).$$
(3.12)

Then, $\gamma_1((0, e_B), (a, 0)) = \varphi(\gamma_B((e_B, e_B)))a$ and $\gamma_2((0, e_B), (a, 0)) = 0$. Step 7. By Steps 2 and 3 and taking $\delta((0, b)) = \delta((0, b)) = (\tau(b), \delta_B(b))$, we have

$$(\delta_{A}(\varphi(b)), 0) = \delta((\varphi(b), 0)) = \delta((e_{A}, 0)(0, b))$$

$$= \delta((e_{A}, 0)) (0, b) + (e_{A}, 0) \delta((0, b)) + \alpha((e_{A}, 0), (0, b))$$

$$= (-\gamma_{A}((e_{A}, e_{A})), 0) (0, b) + (e_{A}, 0) (\tau(b), \delta_{B}(b)) + (\gamma_{1}((e_{A}, 0), (0, b)), \gamma_{2}((e_{A}, 0), (0, b)))$$

$$= (-\gamma_{A}((e_{A}, e_{A}))\varphi(b) + \tau(b) + \varphi(\delta_{B}(b)), 0) + (\gamma_{1}((e_{A}, 0), (0, b)), \gamma_{2}((e_{A}, 0), (0, b))).$$
(3.13)

Hence, (3.13), implies that $\gamma_2((e_A, 0), (0, b)) = 0$ and

$$\delta_A(\varphi(b)) = -\gamma_A((e_A, e_A))\varphi(b) + \tau(b) + \varphi(\delta_B(b)) + \gamma_1((e_A, 0), (0, b)). \tag{3.14}$$

As well as,

$$(\delta_{A}(\varphi(b)), 0) = \delta((\varphi(b), 0)) = \delta((0, b)(e_{A}, 0))$$

$$= \delta((0, b)) (e_{A}, 0) + (0, b) \delta((e_{A}, 0)) + \alpha((0, b), (e_{A}, 0))$$

$$= (\tau(b), \delta_{B}(b)) (e_{A}, 0) + (0, b)(-\gamma_{A}((e_{A}, e_{A})), 0) + (\gamma_{1}((0, b), (e_{A}, 0)), \gamma_{2}((0, b), (e_{A}, 0)))$$

$$= (\tau(b) + \varphi(\delta_{B}(b)) - \varphi(b)\gamma_{A}((e_{A}, e_{A})), 0) + (\gamma_{1}((0, b), (e_{A}, 0)), \gamma_{2}((0, b), (e_{A}, 0))).$$
(3.15)

Therefore $\gamma_2((0, b), (e_A, 0)) = 0$ and

$$\delta_A(\varphi(b)) = \tau(b) + \varphi(\delta_B(b)) - \varphi(b)\gamma_A((e_A, e_A)) + \gamma_1((0, b), (e_A, 0)). \tag{3.16}$$

By comparing (3.15) and (3.16) we have

$$\gamma_1((e_A, 0), (0, b)) - \gamma_A((e_A, e_A))\varphi(b) = \gamma_1((0, b), (e_A, 0)) - \varphi(b)\gamma_A((e_A, e_A)). \tag{3.17}$$

Step 8. From Step 6, we have

$$(\delta_{A}(a_{1}a_{2}), 0) = \delta((a_{1}a_{2}, 0)) = \delta((a_{1}, 0)(a_{2}, 0))$$

$$= \delta((a_{1}, 0)) (a_{2}, 0) + (a_{1}, 0) \delta((a_{2}, 0)) + \alpha((a_{1}, 0), (a_{2}, 0))$$

$$= (\delta_{A}(a_{1}), 0) (a_{2}, 0) + (a_{1}, 0) (\delta(a_{2}), 0) + (\gamma_{1}((a_{1}, 0), (a_{2}, 0)), \gamma_{2}((a_{1}, 0), (a_{2}, 0)))$$

$$= (\delta_{A}(a_{1})a_{2} + a_{1}\delta_{A}(a_{2}) + \gamma_{1}((a_{1}, 0), (a_{2}, 0)), \gamma_{2}((a_{1}, 0), (a_{2}, 0)))$$

$$= (\delta_{A}(a_{1})a_{2} + a_{1}\delta_{A}(a_{2}) + \gamma_{A}((a_{1}, a_{2})), \gamma_{2}((a_{1}, 0), (a_{2}, 0))),$$

$$(3.18)$$

for every $a_1, a_2 \in A$. This shows that δ_A is a generalized 2-cocycle derivation associated with γ_A . Step 9. By Step 2, we have

$$(\tau(b_1b_2), \delta_B(b_1b_2)) = \delta((0, b_1b_2)) = \delta((0, b_1)(0, b_2))$$

$$= \delta((0, b_1)) (0, b_2) + (0, b_1) \delta((0, b_2)) + \alpha((0, b_1), (0, b_2))$$

$$= (\tau(b_1), \delta_B(b_1)) (0, b_2) + (0, b_1) (\tau(b_2), \delta_B(b_2)) + (\gamma_1((0, b_1), (0, b_2)), \gamma_2((0, b_1), (0, b_2)))$$

$$= (\tau(b_1)\varphi(b_2) + \varphi(b_1)\tau(b_2), \delta_B(b_1)b_2 + b_1\delta_B(b_2) + \gamma_B((b_1, b_2))),$$
(3.19)

for every $b_1, b_2 \in B$. Thus, τ is an φ -derivation from A into A and δ_B is a generalized 2-cocycle derivation associate with γ_B . \square

4. Banach algebra point of view

Let A and \mathcal{R} be Banach algebras such that A is a Banach \mathcal{R} -algebra with compatible actions

$$\alpha \cdot (ab) = (\alpha \cdot a)b, (ab) \cdot \alpha = a(b \cdot \alpha)$$

for all $a, b \in A, \alpha \in \mathcal{R}$.

Let \mathcal{R} be a commutative Banach algebra with identity, let A and B be Banach algebras that are Banach \mathcal{R} -bimodule with compatible actions and let $\varphi: B \longrightarrow A$ be an \mathcal{R} -additive algebra homomorphism with $\|\varphi\| \leq 1$. Clearly, φ is not linear homomorphism. Then $A \times_{\varphi} B$ is a Banach algebra and a Banach \mathcal{R} -bimodule with the following norm:

$$||(a,b)|| = ||a||_A + ||b||_B,$$
 $(a \in A, b \in B).$

According to Theorem 2.3, we have

$$\mathbb{HOM}_{\mathcal{R}}(A \times_{\varphi} B, \mathcal{R}) \cong \{(\theta, \theta \circ \varphi) : \theta \in \mathbb{HOM}_{\mathcal{R}}(A, \mathcal{R})\} \cup \{(0, \psi) : \psi \in \mathbb{HOM}_{\mathcal{R}}(B, \mathcal{R})\},$$

where the above equation, topologically holds.

Let \mathcal{R} be a commutative Banach algebra and let A be a Banach algebra such that is a Banach \mathcal{R} -bimodule. By $B^n_{\mathcal{R}}(A,A)$, we mean that the space of bounded n- \mathcal{R} -linear maps form A into A. A 2- \mathcal{R} -linear map $\gamma \in B^2(A,X)$ is called 2- \mathcal{R} -cocycle if it satisfies in the following equation

$$a\gamma(b,c) - \gamma(ab,c) + \gamma(a,bc) - \gamma(a,b)c = 0,$$

for every $a, b, c \in A$. The space of 2- \mathcal{R} -cocycles is a subspace of $B^2_{\mathcal{R}}(A, A)$, which denoted by $Z^2_{\mathcal{R}}(A, A)$. Now, we can write the main result of the Section 3 for Banach algebra case as follows:

Theorem 4.1. Let \mathcal{R} be a unital commutative Banach algebra, let A and B be Banach algebras such that are Banach \mathcal{R} -bimodules and let $\delta: A \times_{\varphi} B \longrightarrow A \times_{\varphi} B$ be a bounded generalized 2- \mathcal{R} -cocycle derivation associate with $\gamma: (A \times_{\varphi} B) \times (A \times_{\varphi} B) \longrightarrow A \times_{\varphi} B$. Then there are corresponding 2- \mathcal{R} -cocycles $\gamma_A: A \times A \longrightarrow A$, $\gamma_B: B \times B \longrightarrow B$, generalized 2- \mathcal{R} -cocycle derivations $\delta_A: A \longrightarrow A$, $\delta_B: B \longrightarrow B$ associate with γ_A and γ_B , respectively, and a φ -derivation $\tau: B \longrightarrow A$.

Now, this question arise that if there are generalized 2- \mathcal{R} -cocycle derivations $\delta_A:A\longrightarrow A$ and $\delta_B:B\longrightarrow B$ associate with 2- \mathcal{R} -cocycles γ_A and γ_B , respectively, are there 2- \mathcal{R} -cocycle $\gamma:(A\times_{\varphi}B)\times(A\times_{\varphi}B)\longrightarrow A\times_{\varphi}B$ and generalized 2- \mathcal{R} -cocycle derivation $\delta:A\times_{\varphi}B\longrightarrow A\times_{\varphi}B$ related to γ ?

Hassani Hassani

Lemma 4.2. Let $\gamma_A: A \times A \longrightarrow A$ and $\gamma_B: B \times B \longrightarrow B$ be continuous 2- \mathbb{R} -cocycles and $\tau: B \longrightarrow A$ be a φ -derivation such that $\varphi(\gamma_B(b_1, b_2)) = \gamma_A(\varphi(b_1), \varphi(b_2))$, for every $b_1, b_2 \in B$. Then $\gamma: (A \times_{\varphi} B) \times (A \times_{\varphi} B) \longrightarrow A \times_{\varphi} B$ defined by

$$\gamma((a_1, b_1), (a_2, b_2)) = (\gamma_1((a_1, b_1), (a_2, b_2)), \gamma_2((a_1, b_1), (a_2, b_2))),$$

for every $(a_1, b_1), (a_2, b_2) \in A \times_{\varphi} B$, where

- 1. $\gamma_1((a_1, b_1), (a_2, b_2)) = \gamma_A(a_1, a_2) + \gamma_A(\varphi(b_1), a_2) + \gamma_A(a_1, \varphi(b_2)) \tau(b_1)a_2 a_1\tau(b_2),$
- 2. $\gamma_2((a_1,b_1),(a_2,b_2)) = \gamma_B(b_1,b_2),$

is a continuous 2- \mathcal{R} -cocycle on $A \times_{\varphi} B$.

 $-\tau(b_1)a_2a_3 - \tau(b_1)a_2\varphi(b_3) - \tau(b_1)\varphi(b_2)a_3$ $-a_1\varphi(b_2)\tau(b_3) - a_1\tau(b_2)\varphi(b_3), \gamma_B(b_1, b_2b_3)),$

Proof. The continuity of γ is clear from its definition. Thus, we show that it is a 2- \mathcal{R} -cocycle on $A \times_{\varphi} B$. For every $(a_1, b_1), (a_2, b_2), (a_3, b_3) \in A \times_{\varphi} B$, we have

$$(a_{1},b_{1}) \gamma((a_{2},b_{2}),(a_{3},b_{3})) = (a_{1},b_{1}) (\gamma_{A}(a_{2},a_{3}) + \gamma_{A}(\varphi(b_{2}),a_{3}) + \gamma_{A}(a_{2},\varphi(b_{3})) - \tau(b_{2})a_{3} - a_{2}\tau(b_{3}), \gamma_{B}(b_{2},b_{3})) = (a_{1}\gamma_{A}(a_{2},a_{3}) + a_{1}\gamma_{A}(\varphi(b_{2}),a_{3}) + a_{1}\gamma_{A}(a_{2},\varphi(b_{3})) - a_{1}\tau(b_{2})a_{3} - a_{1}a_{2}\tau(b_{3}) - \varphi(b_{1})a_{2}\tau(b_{3}) - \varphi(b_{1})\tau(b_{2})a_{3} + \varphi(b_{1})\gamma_{A}(a_{2},a_{3}) + \varphi(b_{1})\gamma_{A}(\varphi(b_{2}),a_{3}) + \varphi(b_{1})\gamma_{A}(\varphi(b_{2}),a_{3}) + \varphi(b_{1})\gamma_{A}(a_{2},\varphi(b_{3})) + a_{1}\varphi(\gamma_{B}(b_{2},b_{3})), b_{1}\gamma_{B}(b_{2},b_{3})) = (a_{1}\gamma_{A}(a_{2},a_{3}) + a_{1}\gamma_{A}(\varphi(b_{2}),a_{3}) + a_{1}\gamma_{A}(a_{2},\varphi(b_{3})) + a_{1}\varphi(\beta_{B}(b_{2},b_{3})), b_{1}\gamma_{B}(b_{2},b_{3})) = a_{1}\tau(b_{2})a_{3} - a_{1}a_{2}\tau(b_{3}) - \varphi(b_{1})a_{2}\tau(b_{3}) - \varphi(b_{1})\tau(b_{2})a_{3} + \varphi(b_{1})\gamma_{A}(a_{2},a_{3}) + \varphi(b_{1})\gamma_{A}(\varphi(b_{2}),a_{3}) + \varphi(b_{1})\gamma_{A}(a_{2},\varphi(b_{3})) + a_{1}\gamma_{A}(\varphi(b_{2}),\varphi(b_{3})), b_{1}\gamma_{B}(b_{2},b_{3})), b_{1}\gamma_{A}(a_{2},\varphi(b_{3})) + a_{1}\gamma_{A}(\varphi(b_{2}),\varphi(b_{3})), b_{1}\gamma_{B}(b_{2},b_{3})), c_{1}\gamma_{A}(a_{2},\varphi(b_{3})) + \alpha_{1}\gamma_{A}(\varphi(b_{2}),\varphi(b_{3})) + \alpha_{1}\gamma_{A}(\varphi(b_{2}),\varphi(b_{3})) + \alpha_{1}\gamma_{A}(\varphi(b_{2}),\varphi(b_{3})), b_{1}\gamma_{B}(b_{2},b_{3})), c_{1}\gamma_{A}(a_{2},\varphi(b_{3})) + \alpha_{1}\gamma_{A}(\varphi(b_{2}),\varphi(b_{3})) + \alpha_{1}\gamma_{A}(\varphi(b_{2}),\varphi(b_{3})) + \alpha_{1}\gamma_{A}(a_{2},\varphi(b_{3})) + \alpha_{1}\gamma_{A}(\varphi(b_{1})a_{2},\varphi(b_{3})) + \gamma_{A}(\varphi(b_{1})a_{2},\varphi(b_{3})) + \gamma_{A}(\varphi(b_{1})a_{2},\varphi(b_{3$$

and

$$\gamma((a_{1},b_{1}),(a_{2},b_{2}))(a_{3},b_{3}) = (\gamma_{A}(a_{1},a_{2}) + \gamma_{A}(\varphi(b_{1}),a_{2}) + \gamma_{A}(a_{1},\varphi(b_{2}))
+ \tau(b_{1})a_{2} + a_{1}\tau(b_{2}), \gamma_{B}(b_{1},b_{2}))(a_{3},b_{3})
= (\gamma_{A}(a_{1},a_{2})a_{3} + \gamma_{A}(\varphi(b_{1}),a_{2})a_{3} + \gamma_{A}(a_{1},\varphi(b_{2}))a_{3}
- \tau(b_{1})a_{2}a_{3} - a_{1}\tau(b_{2})a_{3} + \varphi(\gamma_{B}(b_{1},b_{2}))a_{3} + \gamma_{A}(a_{1},a_{2})\varphi(b_{3})
+ \gamma_{A}(\varphi(b_{1}),a_{2})\varphi(b_{3}) + \gamma_{A}(a_{1},\varphi(b_{2}))\varphi(b_{3}) - \tau(b_{1})a_{2}\varphi(b_{3}) - a_{1}\tau(b_{2})\varphi(b_{3}), \gamma_{B}(b_{1},b_{2})b_{3})
= (\gamma_{A}(a_{1},a_{2})a_{3} + \gamma_{A}(\varphi(b_{1}),a_{2})a_{3} + \gamma_{A}(a_{1},\varphi(b_{2}))a_{3}
- \tau(b_{1})a_{2}a_{3} - a_{1}\tau(b_{2})a_{3} + \gamma_{A}(\varphi(b_{1}),\varphi(b_{2}))a_{3} + \gamma_{A}(a_{1},a_{2})\varphi(b_{3})
+ \gamma_{A}(\varphi(b_{1}),a_{2})\varphi(b_{3}) + \gamma_{A}(a_{1},\varphi(b_{2}))\varphi(b_{3}) - \tau(b_{1})a_{2}\varphi(b_{3}) - a_{1}\tau(b_{2})\varphi(b_{3}), \gamma_{B}(b_{1},b_{2})b_{3}).$$
(4.4)

Then by relations (4.1), (4.2), (4.3) and (4.4), γ is a 2-cocycle. \square

Theorem 4.3. Let $\delta_A: A \longrightarrow A$ and $\delta_B: B \longrightarrow B$ be two generalized continuous 2- \mathcal{R} -cocycle derivations associate with γ_A and γ_B and $\tau: B \longrightarrow A$ be a continuous φ -derivation such that $\varphi \circ \delta_B = \delta_A \circ \varphi$ and $\varphi(\gamma_B(b_1, b_2)) = \gamma_A(\varphi(b_1), \varphi(b_2))$, for every $b_1, b_2 \in B$. Then there is a continuous 2- \mathcal{R} -cocycle $\gamma: (A \times_{\varphi} B) \times (A \times_{\varphi} B) \longrightarrow A \times_{\varphi} B$ and there is a generalized continuous 2- \mathcal{R} -cocycle derivation $\delta: A \times_{\varphi} B \longrightarrow A \times_{\varphi} B$ associate with γ defined by

$$\delta((a,b)) = (\delta_A(a) + \tau(b), \delta_B(b)) \qquad ((a,b) \in A \times_{\varphi} B). \tag{4.5}$$

Proof. Define $\gamma: (A \times_{\varphi} B) \times (A \times_{\varphi} B) \longrightarrow A \times_{\varphi} B$ by

$$\gamma((a_1, b_1), (a_2, b_2)) = (\gamma_1((a_1, b_1), (a_2, b_2)), \gamma_2((a_1, b_1), (a_2, b_2))), \tag{4.6}$$

for every $(a_1, b_1), (a_2, b_2) \in A \times_{\varphi} B$, where

- 1. $\gamma_1((a_1, b_1), (a_2, b_2)) = \gamma_A(a_1, a_2) + \gamma_A(\varphi(b_1), a_2) + \gamma_A(a_1, \varphi(b_2)) \tau(b_1)a_2 a_1\tau(b_2),$
- 2. $\gamma_2((a_1, b_1), (a_2, b_2)) = \gamma_B(b_1, b_2).$

Thus Lemma 4.2 implies that γ is a 2-cocycle. Now, we shall show that δ is a generalized 2-cocycle derivation associate with γ . For every $(a_1, b_1), (a_2, b_2) \in A \times_{\varphi} B$, we have

$$\delta((a_{1}, b_{1})(a_{2}, b_{2})) = \delta((a_{1}a_{2} + a_{1}\varphi(b_{2}) + \varphi(b_{1})a_{2}, b_{1}b_{2}))
= (\delta_{A}(a_{1}a_{2} + a_{1}\varphi(b_{2}) + \varphi(b_{1})a_{2}) + \tau(b_{1}b_{2}), \delta_{B}(b_{1}b_{2}))
= (\delta_{A}(a_{1}a_{2}) + \delta_{A}(a_{1}\varphi(b_{2})) + \delta_{A}(\varphi(b_{1})a_{2}) + \tau(b_{1}b_{2}), \delta_{B}(b_{1}b_{2}))
= (\delta_{A}(a_{1})a_{2} + a_{1}\delta_{A}(a_{2}) + \gamma_{A}(a_{1}, a_{2}) + \delta_{A}(a_{1})\varphi(b_{2}) + a_{1}\delta_{A}(\varphi(b_{2}))
+ \gamma_{A}(a_{1}, \varphi(b_{2})) + \delta_{A}(\varphi(b_{1}))a_{2} + \varphi(b_{1})\delta_{A}(a_{2})
+ \gamma_{A}(\varphi(b_{1}), a_{2}) + \tau(b_{1})\varphi(b_{2}) + \varphi(b_{1})\tau(b_{2}), \delta_{B}(b_{1})b_{2} + b_{1}\delta_{B}(b_{2}) + \gamma_{B}(b_{1}, b_{2}))
= (\delta_{A}(a_{1})a_{2} + a_{1}\delta_{A}(a_{2}) + \delta_{A}(a_{1})\varphi(b_{2}) + a_{1}\delta_{A}(\varphi(b_{2})) + \delta_{A}(\varphi(b_{1}))a_{2} + \varphi(b_{1})\delta_{A}(a_{2})
+ \tau(b_{1})\varphi(b_{2}) + \varphi(b_{1})\tau(b_{2}), \delta_{B}(b_{1})b_{2} + b_{1}\delta_{B}(b_{2})) + (\gamma_{A}(a_{1}, a_{2})
+ \gamma_{A}(\varphi(b_{1}), a_{2}) + \gamma_{A}(a_{1}, \varphi(b_{2})), \gamma_{B}(b_{1}, b_{2})).$$
(4.7)

On the other hand, for every $(a_1, b_1), (a_2, b_2) \in A \times_{\varphi} B$, we have

$$\begin{split} &\delta((a_{1},b_{1}))(a_{2},b_{2}) + (a_{1},b_{1})\delta((a_{2},b_{2})) + \gamma((a_{1},b_{1}),(a_{2},b_{2})) \\ &= (\delta_{A}(a_{1}) + \tau(b_{1}),\delta_{B}(b_{1}))(a_{2},b_{2}) + (a_{1},b_{1}) \left(\delta_{A}(a_{2}) + \tau(b_{2}),\delta_{B}(b_{2})\right) + \gamma((a_{1},b_{1}),(a_{2},b_{2})) \\ &= (\delta_{A}(a_{1})a_{2} + \tau(b_{1})a_{2} + \varphi(\delta_{B}(b_{1}))a_{2} + \delta_{A}(a_{1})\varphi(b_{2}) \\ &+ \tau(b_{1})\varphi(b_{2}),\delta_{B}(b_{1})b_{2}) + (a_{1}\delta_{A}(a_{2}) + a_{1}\tau(b_{2}) + \varphi(b_{1})\delta_{A}(a_{2}) \\ &+ \varphi(b_{1})\tau(b_{2}) + a_{1}\varphi(\delta_{B}(b_{2})),b_{1}\delta_{B}(b_{2})) + (\gamma_{1}((a_{1},b_{1}),(a_{2},b_{2})),\gamma_{2}((a_{1},b_{1}),(a_{2},b_{2}))) \\ &= (\delta_{A}(a_{1})a_{2} + a_{1}\delta_{A}(a_{2}) + \delta_{A}(a_{1})\varphi(b_{2}) + a_{1}\varphi(\delta_{B}(b_{2})) + \varphi(\delta_{B}(b_{1}))a_{2} + \tau(b_{1})a_{2} + a_{1}\tau(b_{2}) \\ &+ \varphi(b_{1})\delta_{A}(a_{2}) + \tau(b_{1})\varphi(b_{2}) + \varphi(b_{1})\tau(b_{2}),\delta_{B}(b_{1})b_{2} + b_{1}\delta_{B}(b_{2})) + (\gamma_{A}(a_{1},a_{2}) \\ &+ \gamma_{A}(\varphi(b_{1}),a_{2}) + \gamma_{A}(a_{1},\varphi(b_{2})) - \tau(b_{1})a_{2} - a_{1}\tau(b_{2}),\gamma_{B}(b_{1},b_{2})) \\ &= (\delta_{A}(a_{1})a_{2} + a_{1}\delta_{A}(a_{2}) + \delta_{A}(a_{1})\varphi(b_{2}) + a_{1}\delta_{A}(\varphi(b_{2})) + \delta_{A}(\varphi(b_{1}))a_{2} \\ &+ \varphi(b_{1})\delta_{A}(a_{2}) + \tau(b_{1})\varphi(b_{2}) + \varphi(b_{1})\tau(b_{2}),\delta_{B}(b_{1})b_{2} + b_{1}\delta_{B}(b_{2})) \\ &+ (\gamma_{A}(a_{1},a_{2}) + \gamma_{A}(\varphi(b_{1}),a_{2}) + \gamma_{A}(a_{1},\varphi(b_{2})),\gamma_{B}(b_{1},b_{2})). \end{split}$$

By comparing the relations (4.7) and (4.8) we conclude that δ is a generalized 2- \mathcal{R} -cocycle derivation. Continuity is clearly hold. \square

References

- [1] M. Brešer, On the distance of the composition of two derivations to the generalized derivation, Glasgow Math. J. 33 (1991) 89–93.
- [2] V.D. Filipps, Generalized derivations in prime rings and noncommutative Banach algebras, Bull. Korean Math. Soc. 45 (2008) 621–629.
- [3] M. Kanani Arpatapeh and A. Jabbari, Characterization of generalized derivations associate with Hochshild 2-cocycles on triangular Banach algebras, J. Math. Exte. 9 (2015) 81–97.
- [4] J. Li and J. Zhou, Generalized Jordan derivation associate with Hochschild 2-cocycles on some algebras, Czech. Math. J. 60 (2010) 909–932.
- [5] A. Majieed and J. Zhou, Generalized Jordan derivation associate with Hochschild 2-cocycles of triangular algebras, Czech. Math. J. 60 (2010) 211–219.
- [6] A. Nakajima, Note on generalized Jordan derivation associate with Hochschild 2-cocycles of rings, Turk. J. Math. 30 (2006) 403–411.
- [7] F. Wei and Z. Xiao, Generalized derivations in (semi-)prime rings and noncommutative Banach algebras, Rend. Sem. Mat. Univ. Padova 122 (2009) 171–190.