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Abstract

Let R be a commutative ring with identity, let A and B be two R-algebras and ¢ : B — A be
an R-additive algebra homomorphism. We introduce a new algebra A x,, B, and give some basic
properties of this algebra. Generalized 2-cocycle derivations on A x, B are studied. Accordingly,
A X, B is considered from the perspective of Banach algebras.
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1. Introduction

Let R be a commutative ring with identity and let A be an R-bimodule (algebra). An algebra A
is called prime algebra if for a,b € A, aAb = 0 implies that either a = 0 or b = 0, and it is called
semiprime if for a € A, aAa = 0 implies that a = 0. An R-linear map 6 : A — A is said to be a
deriwation if d(zy) = d(z)y + zd(y) for every z,y € A.

An R-bilinear map v : A x A — A is called 2-cocycle if it satisfies the following equation

ay(b,c) —y(ab, c) + v(a,bc) — y(a,b)c = 0,

for every a,b,c € A.
Let R be a ring and A and B algebras over R (R-algebras). Let ¢ : B — A be an R-additive
algebra homomorphism, i.e.

P(ro+b) =reb+1), and (b)) = p(b)p(l),

for every b0’ € B. Let ¢ : B — A be an R-additive algebra homomorphism, an R-linear map
7: B — Ais called ¢-derivation if

7(b0') = @(b)T (V) + 7(b)p (b),
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for all b, € B. If ¢ = idp (identity map on B) and A is a B-bimodule, then idg-derivation is a
derivation that we defined already.

An additive mapping D : A — A is called generalization derivation if there exists a derivation
d: A — A such that D(zy) = D(x)y + zd(y) for all z,y € A and we say D is a d-derivation
[1]. These mappings studied by many authors on various rings and algebras (see [2, [7]). A new
type of generalized derivation introduced by Nakajima in [6], that he called it generalized 2-cocycle
derivation. An additive mapping d : A — A is called generalized 2-cocycle derivation associate with
2-cocycle v: Ax A— A, if

o(zy) = xd(y) + 0(x)y +~(z,y), (1.1)

for all z,y € A. This version of generalized derivations considered in [3], 4], [5] for various versions of
algebras such as von-Neumann and triangular algebras.

In this paper, at first, we introduce a new algebra that defined with homomorphism product X,
where ¢ is an R-additive homomorphism between algebras over R (R-bimodules). After that, we
study generalized 2-cocycle derivation on these algebras.

2. An algebra with homomorphism product

In this section we introduce an algebra as a generalization of Cartesian product of two algebras. Let
R be a commutative ring with identity, A and B algebras over R (R-algebras) and let ¢ : B — A
be an R-additive algebra homomorphism. We define an algebra A x, B over R with the following
operations

(a,0) + (d',b) = (a+d,b+¥) and (a,b)(d',b) = (ad + ap(d') + ¢(b)a’, V), (2.1)

for every (a,b), (a’,V') € A x, B.
We summarize some properties of A x, B as follows:

Proposition 2.1. Let R be a commutative ring with identity, A and B algebras over R and let
¢ : B — A be an R-additive algebra homomorphism. Then

(1) A x, B is commutative if and only if A and B are commutative.

(11) if A x, B is prime, then A and B are prime. If A and B are prime and a + ¢(b) # 0 for all
(a,b) € A x, B, then A X, B is prime.

(111) A x, B is semiprime if and only if then A and B are semiprime.

() If A x, B is unital then A and B are unital. If A and B are unital with units e4 and ep such
that p(ep) = ea, then A x, B is unital with unit (0,ep).

(v) A x, B is projective if and only if then A and B are projective.

(vi) A X, B is injective if and only if then A and B are injective.

Proof . (i) Let A x, B be commutative. For every a;,as € A we have (a1,0), (a2,0) € A x,, B.
Then
(alag, 0) == (Cbl, 0)(@2, O) == (ag, O), ((1,1, 0) == (Cbgah O)

This implies that A is commutative. Similarly, B is commutative.
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Conversely, let A and B be commutative. Then for every (ai, b1), (az,b2) € A X, B we have

(a1,b1)(ag,by) = (aras + a1p(by) + p(by)as, bibs)
= (CLQ(Zl + QO(bQ)CLl + CLQ(p(bl), bgbl)
= (612, b2>(a1>bl)-

(ii) Let A x, B be prime. For every a;,as € A we have (a1,0), (az,0) € A x, B. If a;Aas = 0,
then for every a’ € A we have a,a’a; = 0. Thus

(ard’as,0) = (a1,0)(a’,0)(az,0) = (0,0).

This implies that (a;,0) = (0,0) or (az,0) = (0,0). Hence, A is prime. Similarly we can show
that B is prime.
Now, let A and B be prime. We shall show that if

(al,bl)A X@ B(CLQ, bg) = (0,0),

then (a1,b1) = (0,0) or (ag,by) = (0,0). If (a1,b1)A x, B(as, by) = (0,0), for every (a',b') € A x,, B,
we have (a1, by)(a’,b')(az,by) = (0,0). Then
(07 O) = (CLl? bl)(@l, b/)(a27 b2)
(ar1d’as + p(b1)d’as + a1o(b)as + p(bib')as + ar1a’p(bs)
@(b1)a’ p(b2) + arp(b)p(ba), br1b'bs).

Therefore bbby = 0. Since B is prime, by = 0 or by = 0. If by = 0, then

0 = wdag+apd)ag+ ara’(by) + arp(b)p(b)
= ai(d + (b)) (a2 + o (b2)).

This implies that a; = 0 or ay + p(bs) = 0. But as + ¢(b2) = 0 can not happen for every
(az,by) € A X, B. This means that a; = 0. Hence, (a1,b1) = (0,0). If b = 0, then

0 = aid'as+ @(by)d ay + arp(b)as + @(bib)asy
= (a1 + (1))@ + (b'))as.

Consequently, a; + ¢(by) = 0 or ag = 0. Since a; + ¢(b;) = 0 can not hold for every (ag, b2) €
A x, B, ay = 0. Therefore (as,bs) = (0,0). Thus, A x, B is prime.

(iii) Let A x,, B be semiprime. For every a € A we have (a,0) € A x, B. If aAa = 0, then for
every a’ € A we have aa’a = 0. Thus

(ad'a,0) = (a,0)(a’,0)(a,0) = (0,0).

This implies that (a,0) = (0,0). Hence, A is semiprime. Similarly we can show that B is
semiprime.

Now, let A and B be semiprime. We shall show that if (a,b)(A %, B)(a,b) = (0,0), then (a,b)
(0,0). If (a,b)(A x, B)(a,b) = (0,0), thus, for every (a’,0') € A x, B, we have (a,b)(a’,0')(a,b) =
(0,0). Then

(0,0) = (a,b)(d,b)(a,b)
= (ad'a+ p(b)d'a+ ap(b)a+ @(bb)a + ad'p(b) + o(b)a'(b) + ap(b')p(b), bb'D).
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Therefore bb'b = 0. Since B is semiprime, b = 0. This follows that ¢(b) = 0, and consequently,
aa’a = 0. Since A is semiprime, a = 0. Hence, (a,b) = (0,0) and A X, B is semiprime.
(iv) Assume A x, B is unital. Let («, ) be the unit of A x, B. Then for every (a,b) € A x,, B,

(a,b) = (a,b)(a,B) = (ac+ ap(B) + ¢(b)cv, Bb)
= (ala+¢(B)) +¢(b)a, Bb)
= (a,8)(a,0) = ((a+ ¢(B))a + ap(b),bB).
Then by taking a = 0, we conclude that ap(b) = 0 for every b € B. This follows that § is the
unit of B and a + ¢(f) is the unit of A.
If A and B are unital with units e4 and ep such that p(eg) = ey, then clearly (0,ep) is the unit

of Ax, B.
The cases (v) and (vi) are easy. [J

In the above results we have stated some properties of A x, B, A and B that they have similar
properties. An R-algebra A is called factorable, if for every a € A there are b, ¢ € A such that a = be.
Now; let A and B are factorable R-algebras, then A x, B is not factorable.

Assume that a: A — R is an R-linear map. We denote the set of these maps by Homg (A, R)
(in some litterateurs say that duality of A and denote by A*).

Theorem 2.2. Let R be a commutative ring with identity, A and B algebras over R and let ¢
B — A be an R-additive algebra homomorphism. Then

Homg(A x, B,R) = Homg(A,R) x Homg(B,R).

Proof . Define T : Homg(A X, B,R) — Homg(A,R) x Homg(B,R) by T(a)(a,b) = aa(a) +
ag(b) for alla € A, b € B, where a|s = a4 and o|p = ap. It is easy to see that 7" is an R-linear and
injective map. For every ay € Homg(A, R) and ap € Homg (B, R), (a,ap) € Homg(A X, B,R).
This shows that T is surjective and proof is complete. [J

Let R be a commutative ring with identity and let A be an R-algebra. Let § € Homg(A, R)
such that 6(ab) = 6(a)0(b) for all a,b € A. We denote a subset of Homg (A, R) that consists all
elements such as § by HOMz (A, R).

Theorem 2.3. Let R be a commutative ring with identity, A and B algebras over R and let ¢
B — A be an R-additive algebra homomorphism. Then

HOMg (A x, B,R) = {(6,0 0 ¢) : 6 € HOMg (A, R)} U {(0,¢) : ¢ € HOMg (B, R)}.

Proof . Set K = {(0,00¢) : 0 € HOMz(A,R)} U{(0,¢) : v» € HOMy(B,R)}. Clearly (6,6 o ¢)
and (0,%) are in Homg(A x, B,R). For every (a,b), (a',0') € A x, B we have
(6,60 0 9)((a,b)(d',0')) = (6,0 0 ) (aa’ + ap(V') + @(b)d’, bb')
=0(a)f(a") + 0(a)f o p(b') + 6 o p(b)d(a’) + 6 o p(b)d o ()
= (0(a) + 00 @(b))(0(a") + 0 0 p(V'))
= (07 0o 90)(6% b)(@, 0o 90)(&/’ b/)

Similarly for every (a,b), (a,b") € A x,, B we have
(0,4)((a,b)(a’, b)) = ¥ (b)(b') = (0, ¥)(a, b)(0, ¥) (. V). (2.3)

(2.2)
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Thus, by (2.2) and (2.3]), we have

K C HOMg (A x, B, R). (2.4)

Let o« € HOMy (A x, B, R). By Theorem 2.2, HOMy (A x,B,R) C Homg(Ax,B,R), so there
are 0 € Homp(A,R) and ¢» € Homg(B,R) such that a = (0,). Then for every (a,b),(a’,V') €
Ax,B

a((a,b)(a’, b)) = a(a, ba(a’,b') = (6,)(a, b)(0, ¥)(a’, )
= (0(a) +¥(0))(0(d) + (V).

Also, for every (a,b), (a',V') € A x, B,

af(a,b)(d', b)) = (0, ¥)(aa" + ap(V)) + o(b)a’, b)
= 0(aa") + O(ap(t')) + 0(p(b)a’) + 1 (bb).

(2.5)

(2.6)

By setting b = b’ = 0 and above relations we have 0(aa’) = 0(a)f(a’) for all a,a’ € A. This shows
that 6 € HOMy (A, R). Similarly, if we take a = o’ = 0, we conclude that ¢ (bb') = (b)) (V') for all
b,b' € B. Now, we shall show that if = 0 then ¢ of form 6o . Assume that 6 # 0. Then by taking

a=d and b="V in ([2.5) and (2.6) we have
0(a)(b) + 1 (b)0(a) = 0(a)d o o(b) + 0 0 0 (b)0(a).
Since R is commutative, 1(b) = 6 o ¢(b) for all b € B. This means that 1) = 6 o ¢. Thus

HOMy (A x, B,R) C K. (2.7)

3. Generalized 2-cocycle derivations

In the whole of this section R is a commutative ring, A and B are unital R-algebras with units
ea and ep, respectively, and ¢ : B — A is R-linear algebras homomorphism such that ¢(ep) = e4.
In this section we study generalized 2-cocycle derivations on A x, B.

Let v : (Ax,B)x (Ax,B) — AX,B be a R-bilinear map. Let 7, : (Ax,B)x (Ax,B) — A
and v : (A x, B) x (A x, B) — B be the coordinate mapping associated to v that is

Y((a1,b1), (a2, b2)) = (11((a1,b1), (az, b2)), v2((a1, b1), (az, b2))),

for all (a1,b1), (ag,b2) € A x, B. Let v : (A x, B) x (A x, B) — A X, B be a 2-cocycle,
the coordinate mapping 71 : (A x, B) x (A x, B) — A is said to correspond to a 2-cocycle on
A if there exists a 2-cocycle v4 : A x A — A such that v1((aq,b1), (az,b2)) = va(ay,as), for all
(a1,b1), (ag, b2) € Ax,B. Similarly, v, : (Ax,B)x(Ax,B) — B is said to correspond to a 2-cocycle
on B if there exists a 2-cocycle vp : B x B — B such that vo((a1, b1), (ag, bs)) = v5(b1, b2), for all
(a1,b1), (az,b2) € A x, B. Also, we assume that v2((aq,0), (az,0)) = 0 and 4;((0, b1), (0,b2)) = 0, for
all a1,a0 € A and by, by € B.

Lemma 3.1. If v : (A x, B) x (A x, B) — A x,, B is a 2-cocycle, then there are corresponding
2-cocycles y4: AXxA— Aandyg: Bx B — B.
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Proof . Define y4: A x A — A as follows

"}/A(Cll, CL2> = (eAa O) 7((0’17 0)7 <a27 O)) (€A7 0)7 (31)
for all a;,as € A. Now, let a1, as,a3 € A. Then

a174(az, as) — va(araz, az) + ya(ar, azas) — valar, az)as
= (alv 0)7((a27 0)7 (a37 0)) - ’7((a1a27 0)7 (a37 0)) + ’7((a1’ 0)7 (a2a37 O))
_7((a17 0)7 (a2> O))(a?n 0)
= 0.

This shows that 74 is a 2-cocycle on A. Similarly, consider v5 : B x B — B as follows

ve(b1,bs) = (0,ep) v((0,b1), (0,b2)) (0,ep), (3.2)
for all by,by € B. I

Theorem 3.2. Let 0 : A x, B — A X, B be a generalized 2-cocycle derivation associate with
v : (A xy, B) x (Ax, B) — A x, B. Then there are corresponding 2-cocycles y4 : A x A — A,
v : B X B — B, generalized 2-cocycle deriwvations 4 : A — A, g : B — B associate with v
and g, respectively, and a p-derivation T : B — A.

Proof . According to Lemma [3.T] there are corresponding 2-cocycles v4 and 5. We prove the rest
of the proof in some steps as follows:

Step 1. Let 6((0,eg)) = (m,n). Then

(m,n) =4((0,ep)(0,e5)) = 6((0,ep))
=0((0,ep)) (0,eg) + (0,er) 0((0,ep)) + a((0,ep), (0,ep))
= (m,n) (0,ep) + (0,ep) (m,n) + (0,75((es, €5))) (3.3)
= (m,n) 4+ (m,n) + (0,v5((er,en)))
= (2m,2n + vp((ep, eB))).

Thus, m =0 and n = —v5((ep, en))).
Step 2. Assume b € B and 6((0,b)) = (m,n). Then by Step 1, we have

(m,n) = 6((0,)) = 5((0,5)(0, b))
=06((0,e5)) (0,b) +(0,e5) 6((0,0)) + a((0, e5), (0,b))
= (0, =v5((es, €5))) (0,6) + (0, ep) (m,n) + (0,75((e5,0)))
= (0, =yB((en, €))b) + (m,n) + (0,75((e, b))).
This implies that yz((ep, b)) = v5((ep, ep))b. On the other hand,
(m,n) = 6((0,6)) = 5((0,6)(0, e))
= 0((0,)) (0,ep) + (0,6) 5((0, ep)) + ((0, ), (0, 63))
( ((b,

= (m,n) (0,ep) +(0,0) (0, —v5((es, e5))) + (0,
= (0, =bys((es, e5))) + (m,n) + (0,75((b, €5)))-

Therefore byp((ep, e5)) = 15((b; ep)). Set 5((0,)) = (7(b), d5(b)).

(3.4)

(3.5)
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Step 3. Suppose that d((e4,0)) = (m,n). Then

(m,n) = 6((e4,0)) = 8((ea,0)(€4,0))
= 5((4,0)) (e4.0) + (e4,0) 8((e4,0)) + a((ea,0). (¢4, 0))
— (m,n) (4,0) + (e4,0) (m,n) + (va((ea,e4)), 0) (3.6)
— (m+¢(n),0) + (m+ (1), 0) + (va((ea,€4)), 0)
— (2m +2¢(n) + ya((ea, 1)), 0).

Above relations means that n = 0 and consequently, m = —y4((ea, e4)).
Step 4. Let 0((a,0)) = (m,n) for a € A. Then Step 3, implies

(m,n) = 6((a,0)) = 5((a, 0)(ea,0))

= 0((a,0)) (e4,0) + (a,0) 6((e4,0)) + a((a,0), (e, 0))

= (m,n) (ea, 0) (a,0) (=7a((ea, €a)),0) + (va((a; €a)), 0) (3.7)
(m+90(n) 0) (—aya((ea, ea)),0) + (va((a, €4)), 0)

= (m+¢(n) — aval(ea, ea)) +7a(a, €a)), 0).

Hence, n = 0 and aya((ea, ea)) = va((a,e4)). On the other hand, by [3.7| we have

(m,n) = 6((a,0)) = 5((ea; 0)(a,0))

= 0((e,0)) (a,0) + (ea,0) 4((a,0)) + a((ea, 0), (@, 0))
a((ea; €a)),0) (a,0) + (ea,0) (m,0) + (ya((ea; a)), 0) (3.8)
a((ea; ea))a, 0) + (m, 0) + (va((ea, ), 0
al(ea, ea))a+m +7a((ea, a)),0).

= (=
(=7
(=

Then ya((ea,a)) = va((ea, ea))a.
Step 5. By Steps 1 and 3 we have

(—ya((ea,€a)),0) = d((ea, 0)) = d((ea,0)(0,€ep))

= 5((61‘17 O)) (07 63) + <€A7 0) 5<<07 63)) + a((eA, O)) (07 63))

= (—7a((ea,€4)),0) (0,ep) + (€4,0) (0, —v5((es,€p))) (3.9)

+ (’71((614’ O)v (07 €B>>, 72((614’ 0)7 (07 63)))

= (—7a((ea,ea)) — v(v8((es; €5))), 0) + (11((€4,0), (0, e5)),72((e4, 0), (0, €5))).
Above relation follows that ¢(vys((ep,en))) = 71((ea,0), (0,ep)) and y2((ea,0), (0,ep)) = 0. On the
other hand

(_’YA((QA, 614))’ 0) = 5((‘9147 0)) = 5((07 63)(6A, O))

= (—7a((ea,ea)) — v(v8((ep; €5))), 0) + (11((0, €5), (€4,0)),72((0, ep), (€4, 0))).

Thus, 7((0, e5), (€4,0)) = 0 and 7,((0, e5), (€4, 0) = (5 (e, e5))). This means that

71<<€A7 0)7 <07 63)) = 71((07 63)7 (eAv 0))

(3.10)
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Step 6. From Step 4 we have 0((a,0)) = (m,0) for every a € A. Now, replace m with d4(a).
Then

((a,0)) = d((a,0)(0, 5))
((a,0)) (0,ep) + (a,0) 6((0,e5)) + a((a,0), (0, ¢5))
(04(a),0) (0,e5) + (a,0) (0, —v5((es, €5))) (3.11)
(11((a,0)), (0, e5)),72((a,0), (0, e5)))
= (0a(a) — ap(ys((es, ep))),0) + (1((a,0)), (0,e5)), 12((a, 0), (0, e5)))-
,(0,ep)) = ap(vs((es,ep))) and ¥2((a,0), (0,e5)) = 0. On the other hand,

) =((0,e5)(a,0))

+ (0,ep) 6((a,0)) + a((0,ep), (a,0))
= (0, =75((es; €p))) (a,0) + (0, ep) (04(a),0) + (11((0, ep), (a,0))),12((0, e5), (a,0)))
= (0a(a) — ¢(v5((es, ep)))a, 0) + (11((0, e5), (a,0)),72((0, e5), (a,0))).

Then, 11((0, ep), (a,0)) = ©(y5((es, e5)))a and 12((0, ep), (a,0)) = 0.

Step 7. By Steps 2 and 3 and taking 6((0,b)) = 6((0,b)) = (7(b),05(b)), we have

(04(2(b)),0) = 6(((b),0)) = 6((ea,0)(0,b))
= 0((e4,0)) (0,0) + (e4,0) 6((0,0)) + ((e4,0),(0,0))
= (—7al(ea;€a)),0) (0,0) 4 (e, 0) (7(b),05(b)) + (11((e4,0), (0,0)), 72((e4,0), (0,)))
= (—7a((ea, ea))p(b) + 7(b) + ©(05(b)), 0) + (11((e4,0), (0,b)),72((e4,0), (0,0))).

Hence, (3.13)), implies that 72((ea,0), (0,b)) = 0 and
54(0(b)) = —7al(ea; €a))@(b) + 7(b) + ¢ (05(b)) +11((e4,0), (0,0)). (3.14)

(3.12)

) (3.13)
(

As well as,

,0)) = 0((0,b)(e4, 0))

b) 5((ea,0)) + a((0,b), (€4, 0))

,b)(—=7a((ea; €4)), 0) + (11((0,b), (€4, 0)),72((0, ), (€4, 0)))
— ¢(b)7al(ea, ea)),0) + (11((0,0), (e, 0)),72((0,b), (€4, 0))).

(3.15)

= 7(0) + ¢(05(b)) — p(b)yal(ea, ea)) +71((0,0), (e4,0)). (3.16)

By comparing and ( - we have
m((e4,0),(0,0)) = yal(ea, ea))(b) = 11((0,0), (e4,0)) — @(b)ya((ea, ea))- (3.17)
Step 8. From Step 6, we have

(6a(a1a2),0) = 0((ara2,0)) = é((a1,0)
= 6((a1,0)) (az,0) + (a1,0) 6((a2,0))
= (04(a1),0) (a2,0) + (a1,0) (5(a2) 0) +
(6a(a1)az + arda(az) +v1((a1,0), (
(0a(ar)as + ardalas) +va((ar,az)),

(a1,0
,0)

»\a ,0) ,’)/2(((11,0),((12,0))) (318)

~
2
(V)
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<
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for every ai,as € A. This shows that d4 is a generalized 2-cocycle derivation associated with 4.
Step 9. By Step 2, we have

(7(b1b2), 05 (b1b2)) = 6((0, biba)) = 6((0, b1)(0, b))

=0((0,b1)) (0,b2) + (0,b1) 0((0,b2)) + a((0, b1), (0, b2))

= (7(b1),0p(b1)) (0,b2) + (0,b1) (7(b2),dB(ba2)) + (71((0,b1), (0,b2)),72((0, b1), (0, b2)))
= (7(b1)(b2) + @(b1)7(b2), 05 (b1)b2 + b165(b2) + vB((b1,02))),

for every by,by € B. Thus, 7 is an ¢-derivation from A into A and dp is a generalized 2-cocycle
derivation associate with yg. [

(3.19)

4. Banach algebra point of view

Let A and R be Banach algebras such that A is a Banach R-algebra with compatible actions
a- (ab) = (a-a)b, (ab)-a=a(b-«a)

for all a,b € A,a € R.

Let R be a commutative Banach algebra with identity, let A and B be Banach algebras that
are Banach R-bimodule with compatible actions and let ¢ : B — A be an R-additive algebra
homomorphism with ||¢|| < 1. Clearly, ¢ is not linear homomorphism. Then A x,, B is a Banach
algebra and a Banach R-bimodule with the following norm:

(@, 0)I| = [lalla + [[bl| 5, (a€ A, be B).
According to Theorem [2.3], we have
HOMy (A x, B,R) = {(8,00¢) : € HOMg(A, R)} U {(0,9) : ¥ € HOMg(B, R)},

where the above equation, topologically holds.

Let R be a commutative Banach algebra and let A be a Banach algebra such that is a Banach
R-bimodule. By B} (A, A), we mean that the space of bounded n-R-linear maps form A into A. A
2-R-linear map y € B%(A, X) is called 2-R-cocycle if it satisfies in the following equation

avy(b,c) —~(ab, c) + v(a,bc) — v(a,b)c =0,

for every a,b,c € A. The space of 2-R-cocycles is a subspace of B%(A, A), which denoted by
Z%(A, A). Now, we can write the main result of the Section 3 for Banach algebra case as follows:

Theorem 4.1. Let R be a unital commutative Banach algebra, let A and B be Banach algebras
such that are Banach R-bimodules and let 6 : A x, B — A X, B be a bounded generalized 2-R-
cocycle derivation associate with v : (A x, B) x (A x,B) — A X, B. Then there are corresponding
2-R-cocycles v4 : AX A — A, vg: Bx B — B, generalized 2-R-cocycle derivations 4 : A — A,
0p : B — B associate with v4 and g, respectively, and a p-derivation 7 : B — A.

Now, this question arise that if there are generalized 2-R-cocycle derivations 4 : A — A
and dp : B — B associate with 2-R-cocycles v4 and ~g, respectively, are there 2-R-cocycle 7 :
(A x, B) x (A x, B) — A x, B and generalized 2-R-cocycle derivation § : A x, B — A x, B
related to 7
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Lemma 4.2. Let v4 : AX A — A and vg : B X B — B be continuous 2-R-cocycles and
7: B — A be a p-derivation such that p(vp(b1,b2)) = va(w(b1), ©(b2)), for every by, by € B. Then
v:(AXx,B)x(Ax,B) — AXx,B defined by

Y((a1,b1), (ag,b2)) = (v1((a1, b1), (az, b2)), v2((a1, b1), (az, b2))),

for every (a1,b1), (az,by) € A x, B, where
L 7((a1,b1), (az, b2)) = valar, az) + ya(@(b1), az) + valar, ¢(b2)) — 7(b1)az — ar7(b2),
2. 72((a1, br), (a2, b2)) = y5(b1, b2),
is a continuous 2-R-cocycle on A x, B.
Proof . The continuity of 7 is clear from its definition. Thus, we show that it is a 2-R-cocycle on
A x, B. For every (a1,b1), (az,b2), (a3, b3) € A x, B, we have
(a1,b1) v((az,b2), (a3, b3)) = (a1, b1)(yalaz, as) + va(e(b2), as)
+ 7a(az, o(b3)) — 7(b2)as — az7(bs), v5(b2, b3))
= (a174(a2, a3) + a174(p(b2), az) + arva(az, o(bs))
— a17(be)az — ajast(bs) — w(by)ast(bs) — p(b1)7(b2)as
+ (b1)va(az, az) + ¢(b1)ya(p(b2), as)
+ p(b1)va(az, p(b3)) + a1p(vp(b2, b3)), bivp(ba, b3))
= (a174(az, az) + a1va(p(b2), az) + arva(az, p(b3))
— a17(be)as — ajast(bs) — w(b1)ast(bs) — p(b1)T(b2)as
+ p(b1)va(az, as) + ¢(b1)va(p(b2), as) + (b1)7a(as, p(bs))
+ arya((ba), p(b3)), b1y (b2, b)),

Y((a1,b1)(az, ba), (a3, bs)) = y((a1az + @(b1)az + a1(b2), bibs), (a3, bs))
= (va(a1a2, a3) +va(ar1p(b2), az) + va(p(br)az, as)

+74(p(b1b2), az) + valaraz, ¢(bs)) + valarp(ba), ¢(b3))

+7a(p(b1)as, p(b3)) — 7(bib2)as — arasT(bs)

— ayp(bz)T(b3) — @(b1)aa7(b3), v5(biba, b3)) (4.2)
= (vala1az, az) + va(arp(b2), as) +va(p(b1)az, az) + va(p(b1)p(b2), as)

+va(araz, 9(b3)) + yalarp(ba), ©(bs)) + vale(bi)az, ¢(bs))

— @(b1)7(b2)as — 7(b1)@(b2)as — arasT(bs)

— a1p(b2)7(b3) — @(b1)az7(bs), Y5 (biba, b3)),

Y((a1,b1), (az, b2)(as, b3)) = v((a1, b1), (azas + p(b2)as + azp(bs), babs))
= (va(a1, azas) + va(ar, asep(bs)) + va(ar, p(b2)as)

+ va(p(b1), azaz) + va(@(b1), azp(bs)) + va(e(b1), p(b2)as)

+ va(ar, p(b2)p(b3)) — 7(b1)asas — 7(b1)azp(bs)

— 7(b1)@(b2)as — ar7(babs), vB(b1, b2b3)) (4.3)
= (7va(a1, aza3) + valar, azp(bs)) + valar, p(b2)as) +va(p(br), azas)

+ 74(p(b1), azp(b3)) + valp(br), p(ba)as) + valar, p(b2)p(bs))

— 7(b1)azasz — 7(b1)azxp(bs) — 7(b1)p(b2)as

— a1p(b2)7(b3) — ar17(b2)p(3), v (b1, babs)),

~~
P
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and

Y((a1,b1), (a2, b2))(as, b3) = (valar, az) +va((b1), az) + valar, p(b2))

+ 7(b1)ag + a17(be), (b1, ba))(as, bs)
= (va(a1, az)az +va(p(b1), az)as + valar, p(b2))as

— 7(b1)azasz — ar7(b2)as + ¢(vp(b1, b2))as + val(ar, az)p(bs)

+ya(p(b1), a2)p(bs) + valar, ¢(b2))p(bs) — 7(bi1)asp(bs) — ar7(b2)(bs), v5 (b1, b2)bs)
= (va(a1, az)as +va(p(b1), az)as + valar, p(b2))as

— 7(b1)azasz — a17(b2)az + va(p(br), (ba))as + valar, az)p(bs)

+7a(p(b1), a2)p(bs) + valar, ¢(b2))p(bs) — 7(b1)azp(bs) — ar7(b2)@(bs), v (b1, b2)bs).

Then by relations (4.1)), (4.2), (4.3]) and (4.4), v is a 2-cocycle. O

Theorem 4.3. Let 64 : A — A and g : B — B be two generalized continuous 2-R-cocycle
derivations associate with v4 and yg and 7 : B — A be a continuous p-derivation such that
wodp =009 and p(vp(b1,b2)) = val@(b1), p(b2)), for every by, by € B. Then there is a continuous
2-R-cocycle v : (A x, B) x (A x, B) — A X, B and there is a generalized continuous 2-R-cocycle
derivation § : A x, B — A X, B associate with v defined by

(4.4)

6((a, b)) = (da(a) +7(b),08(b))  ((a,;b) € A X, B). (4.5)
Proof . Define v: (A x, B) x (A x, B) — A x, B by

Y((a1,01), (a2,b2)) = (71((a1, b1), (a2, b2)), v2((a1, br), (a2, 2))), (4.6)
for every (a1, b1), (az,b2) € A X, B, where

L yi((a1,b1), (az,b2)) = va(a1, az) +va(p(br), az) + valar, (ba)) — 7(b1)as — a17(b2),
2. 72((an,b1), (az, b2)) = v5(b1, ba).

Thus Lemma implies that v is a 2-cocycle. Now, we shall show that J is a generalized 2-cocycle
derivation associate with . For every (aq,b1), (a2, b2) € A X, B, we have

d((a1,b1)(az,b2)) = 6((araz + arp(bz) + ©(by)az, bibs))
= (0a(aras + a1p(be) + @(by)ag) + 7(b1b2), d5(b1b2))
= (0a(araz) + da(arp(b2)) + da(p(br)az) + 7(bibs), d5(b1b2))
= (0a(a1)az + a10a(az) +valar, az) + da(ar)e(b2) + ar104((b2))
+ valar, o(b2)) + da(p(b1))az + @(b1)da(az) (4.7)
+ 74(p(b1), az) + 7(b1)p(b2) + @(b1)7(b2), 05 (b1)b2 + b165(b2) + V5 (b1, b2))
= (6a(ar)az + a1da(az) + da(ar)p(ba) + arda(w(b2)) + da(p(br))az + p(b1)da(az)
+ 7(b1)p(b2) + @(b1)7(b2), 05 (b1)b2 + b195(b2)) + (valar, az)
+7a(p(b1), az) +valar, p(b2)), 7B (b1, ba))-
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On the other hand, for every (aj,b1), (az,bs) € A X, B, we have

d((a1, br))(az, b2) + (a1, b1)d((az, b2)) + v((a1,b1), (az, b2))
= (0a(ar) + 7(b1), 65(b1))(az, ba) + (a1,b1) (da(az) + 7(b2),65(b2)) + v((a1, b1), (az,b2))
= (da(ar)az + 7(b1)as + p(65(b1))az + da(a1)p(b2)

+  7(b1)p(ba), 65(b1)b2) + (arda(az) + a17(ba) + (b1)da(az)
+ (b1)7(b2) + a1(dB(b2)), b165(b2)) + (v1((a1, b1), (az, b2)), v2((a1, b1), (az, b2)))
= (0a(ar)as + a10a(as) + 04(a1)e(bs) + a1p(dp(be)) + ¢(dp(b1))as + 7(by)ag + a17(by)  (4.8)
+ (b1)da(az) + 7(b1)p(b2) + o(b1)7(b2), 65(b1)ba + b10p(ba)) + (va(ar, as)
+74(p(b1), az) +valar, p(b2)) — 7(b1)as — ar17(b2), v5(b1, b2))

= (0a(a1)az + a1da(az) + da(ar)p(b2) + a104(p(b2)) + (e (b1))as
+ p(b1)da(az) + 7(b1)p(b2) + p(b1)7(b2), d5(b1)bs + b10p(b2))
+ (valar, az) +va(p(b1), az) + yalar, p(b2)), vB(b1, b2)).

By comparing the relations (4.7)) and (4.8]) we conclude that ¢ is a generalized 2-R-cocycle deriva-
tion. Continuity is clearly hold. [J
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