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Abstract

In this paper we introduce new modified implicit and explicit algorithms and prove strong convergence
of the two algorithms to a common fixed point of a family of uniformly asymptotically regular
asymptotically nonexpansive mappings in a real reflexive Banach space with a uniformly Gateaux
differentiable norm. Our result is applicable in L,(¢,) spaces, 1 < p < oo and consequently in sobolev
spaces.
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1. Introduction

Let E be a real Banach space and E* be the dual space of E. The normalised duality mapping
J: E — 2F" is defined by

Jr={z" € B {r,a®) = |[zll[2"[|, [[«"] = ll=]| V@ e B}, (1.1)
where (.,.) denotes the pairing between the elements of F and those of E*.

Let S(F) := {x € E : ||z|| = 1} be the unit sphere of E. Then space E is said to have Gateaur
differentiable norm if for any x € S(E) the limit

e+ gl — o]
A—0 A

(1.2)

exists Yy € S(E). The norm of F is said to be uniformly Gateaux differentiable if for each y € S(E),
the limit ((1.2)) is attained uniformly for x € S(FE).
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A mapping T : F — F is said to be L-Lipschitz if there exists a constant L > 0 such that
Tz —Ty|| < Lljz —y| forall z,y € E. (1.3)

If (1.3) is satisfied with L € [0, 1), respectively L = 1, then the mapping 7" is called a contraction,
respectively nonexpansive. A mapping T : K — K is called asymptotically nonexpansive if there
exists a sequence p, € [1,00), lim p, = 1 such that for all z,y € K

n—oo

1Tz — T"y|| < pullz —y|| forall ne N. (1.4)

The class of asymptotically nonexpansive mappings was introduced by Goebel and Kirk [14] as an
important generalization of the class of nonexpansive mappings. Goebel and Kirk [14] proved that
if K is a nonempty, bounded, closed and convex subset of a real uniformly convex Banach space and
T is a self asymptotically nonexpansive mapping of K, then T has a fixed point. T is said to be
uniformly L — Lipschitzian if there exists L > 0 such that

|IT"e = T"y|| < Lljz — yl], Va,y € E. (1.5)

A point z € K is called a fized point of T provided Tx = x. We denote by F(T) the set of all
fixed point of T' (i.e., F(T) = {x € E : Tx = x}). T is said to be demiclosed at p if whenever
{z,} is a sequence in K which converges weakly to 2* € K and {T'z, } converges strongly to p, then
Tx* = p. It is well known that if T : K — K is asymptotically nonexpansive, then 7' is uniformly
L— Lipschitzian; (I —T) is demiclosed at 0, and F(T') is closed and convex (see for example [15] 22]).
The mapping T is said to be asymptotically regular if

lim ||[T"'2 — T"2|| =0
n—oo
for all x € K. It is said to be uniformly asymptotically regular if for any bounded subset C of K,

lim sup||T" "'z — T"z|| = 0.
N—>0pcC!

Let C be a closed subset of a Hilbert space H and T be a self-nonexpansive mapping. The
classical Mann iteration method [20] is given by

Tpr1 = (1 —ap)xy + Ty, n>1, 1.6)

(
where {«,, } is a sequence of real numbers in [0, 1], has extensively been investigated in literature (see,
e.g., [0, 28, [37] and references therein). If the control sequence {e,} is chosen so that >, (1 —
a;,) = oo, then the sequence {z,} generated by converges weakly to a fixed point of T' (this
is indeed true in a uniformly convex Banach space with Frechét differentiable norm [28]). Related
works can also be found in [1} 2], 3, 4 O 1T, 17, 23, 19 24 30} B3]. However, this convergence is in
general not strong (see the counter example in [12], see also [13]). Attempts to modify the Mann
iteration method so that strong convergence is guaranteed have recently been made. Nakajo
and Takahashi [29] proposed the following modification of the Mann iteration method

xg € C' chosen arbitrarily

Yn = Ty + (1 — )Ty,

Crn={2 € C:lyn — 2[| < |lz — 2|[}, (1.7)
Qn=4{z€C:{(x, —2z,x0—x,) >0}

Tni1 = Pe,ng, (T0),n > 0.
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They proved that the sequence {z,} defined by (L.7) converges strongly to the fixed point of
nonexpansive 1.

It is worth mentioning that Scheme ((1.7)) involves computation of closed convex subsets C,, and @,
of C' for each n > 1 and hence is not easy to compute.

In [31], Schu introduced a Mann type process given by
Tppr = (L — o) n + T2y, n > 1, (1.8)

to approximate fixed point of asymptotically nonexpansive self-mapping. He proved that, if C' is
a nonempty, closed and bounded and T is completely continuous asymptotically nonexpansive self-
mapping with sequence {k,} C [1,00), for all n > 1, and > 7, (k2 — 1) < oo then the sequence {x,}
given by converges strongly to some fixed point of 7T'.

Rhoades [25] and Chidume et al. [§] extended the results of Schu [31] to uniformly convex Banach
spaces which are more general than Hilbert spaces using a modified Ishikawa iteration method [I§]
under different settings. In [2I], Osilike and Aniagbosor proved that the theorems of Schu and
Rhoades remain true without the boundedness condition imposed on C, provided that F(T') # §).

Recently, Chidume et al. [10] proved that, if T is completely continuous and asymptotically nonex-
pansive mapping in the intermediate sense with a sequence {v,, } such that > v, < oo with F(T") # 0,
then, for arbitrary x¢ € C, the sequence defined by:

Tpy1 = (1 - an>xn + O‘nTnxm n > 17 (19)

where {a,} is a sequence in [e,1 — €], for some ¢ > 0, converges strongly to some fixed point of
T. They also proved weak convergence of the scheme without the assumption that 7T is completely
continuous.

But it is worth mentioning that in all the above results, either compactness assumption or complete
continuity, is imposed on the map T or the convergence is weak. A natural question arises:
Question. Besides the concepts mentioned before, could one construct a new Mann iterative algo-
rithm in order to get strong convergence?

In 2009, Yao et al. [35] introduced a new modified Mann iterative algorithm which is different
from those in the literature for a nonexpansive mapping in a real Hilbert space. To be more precise,
they proved the following theorem.

Theorem 1.1. Let C' be a nonempty, closed and convex subset of a real Hilbert space. Let T : C' —
C be a nonexpansive mapping such that F(T) # (). Let {«,} and {8,} be two real sequences in
(0,1). For xy € C given arbitrarily, let the sequence {z,},n > 0 be generated iteratively by

{ vn = Pol(1 — an)zn), (1.10)

Tt = (1 = Bu)vn + BnTop,.
Suppose that the following conditions are satisfied:
(1) lim, e, =0 and Y 2 ) = o0;

(i) 0 < liminf, , 5, <limsup,_,. Bn < 1;
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then the sequence {z,} generated by ([1.10]) converges strongly to a fixed point of 7T

Recently, Shehu and Ugwunnadi [36], extended the result of Yao et al. [35] to uniformly convex
Banach space which is also uniformly smooth. Under some assumption on {a,},{5,}, they proved
that the sequence {z,} generated by , under their assumption converges strongly to the unique
some fixed point T

It is our purpose in this paper to modified the algorithm and prove strong convergence of both
implicit and explicit of the modified algorithm to a common fixed point of a family of uniformly
asymptotically regular asymptotically nonexpansive mappings in a real reflexive Banach space with
a uniformly Gateaux differentiable norm. Our result is applicable in L,(¢,) spaces, 1 < p < oo and
consequently in sobolev spaces.

2. Preliminaries

Let K be a nonempty, closed, convex and bounded subset of a Banach space F and let the diameter
of K be defined by d(K) := sup{||z —y|| : 2,y € K}. Foreach z € K, let r(z, K) := sup{||z — y|| :
y€ K} andlet r(K):=inf{r(z,K):x € K} denote the Chebyshev radius of K relative to itself.
The normal structure coefficient N(E) of E (introduced in 1980 by Bynum [5], see also Lim [26] and
the references contained therein) is defined by N (E)::inf{%: K is a closed convex and bounded
subset of £ with d(K) > 0}. A space E such that N(E) > 1 is said to have uniform normal structure
. It is known that every space with a uniform normal structure is reflexive, and that all uniformly
convex and uniformly smooth Banach spaces have uniform normal structure (see e.g.,[7, 27]).

The following lemmas are used for our main result.

Lemma 2.1. Let E be a real normed space. Then
Iz +yl1* < fzl* + 2{y, j(z + v)),
for all z,y € E and for all j(z +y) € J(x + y).

Lemma 2.2. (Suzuki [32]) Let {z,} and {y,} be bounded sequences in a Banach space E and let

{B,} be a sequence in [0, 1] with 0 < liminf 3, < limsup 3, < 1. Suppose that =, 11 = By, + (1 —

Bn)xy, for all integer n > 1 and limsup(||yn+1 — Ynl| — ||Tnt1 — zal]) < 0. Then, lim ||y, — x,|| = 0.
n—oo

n—o0

Lemma 2.3. (Xu [34]) Let {a,} be a sequence of nonegative real numbers satisfying the following
relation:

an+1 S (1 - Oén)an + &pOp + 7n7 n 2 0
where, (i) {a,} C [0,1], > ay, = oo; (i) limsup g, < 0;; (iii) 7, > 0; (n > 0), >°7, < oo. Then,
a, — 0 as n — oo.

3. The main results

In the sequel we assume for the sequences {5, }, {0} C (0,1), that > oy, := 1 — 3, for each n € N.
i>1
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Theorem 3.1. Let E be a real reflexive Banach space with a uniformly Gateaux differentiable norm.
Let {T;}52, be a family of uniformly asymptotically reqular asymptotically nonexpansive self mappings
of E with sequences {vi,} such that vy, — 0 asn — oo for each i > 1 and F = (.2, F(T;) # 0. Let
{an}2, and {B,}5, be sequences in (0,1), and suppose that the following conditions are satisfied:

(C1) lim a,, =0 and lim = = 0, where v, := sup{v, }
n—o0 n—o0 " i>1

(C2) 35° qou, = 00
(¢]) B € [a,b] Vn > 1 and for some a,b € (0,1).
For some fized 0 € (0,1), let {z,}2°, be a sequence defined iteratively by xoy € C' chosen arbitrarily,

{ U = (1 — cun)an

Then, {x,}>2 | converges strongly to p € F.

Proof . First, we show that {x,} defined by (3.1)) is well defined. For all n € N, let define the
mapping
Tl :=[1-0(1=B)](1—an)z+6 Y 0nT}(1— o).

i>1

Indeed, for all x,y € E, we have
1The —Toyll < [1—=68(1—B))(L — aw)llx — gl
—|—(§Zo'm||T;n(1 - an)x - T‘zn(l - an)yH

1= 6(1 = B)](1 — )|z — y]]
+6(1 = Ba)(1 + v)(1 — )|z — o]
11— + 8(1 = Bu)on]l|z — yl]

< (1= ault =001 = Br)va/an))llx = ol

Since, lim 6(1— 3,)v,/a, = 0, then there exist ng € N such that §(1—3,,)v,/a, < 1/2 for all n > ny.
n—oo

Therefore, for n > ng. we have

IN

1 —au[l =01 = Bn)vn/an] < 1.
Hence,
1 The = Toyll < llx —yll, n>mno.

Thus, {x,} defined by ({3.1)) is well defined. Therefore, by contraction mapping principle, there exists
a unique fixed point z,, € E of T/ for each n > 0 such that (3.1]) holds.
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Let p € F, then from (3.1]), we obtain
len = pll < [1=06(1=B)llyn =l +6>_ il T yn — pll

< =601 = B)lllyn — plI + 0(1 = B)(1+va) Iy — 2]
= [1+6(1 = B)valllvn — ol

< 114801 = Baonl (1= an)llzn — pll + allpl])

= (14301 = Buu(1 = an) e — 7]

+an[1 +6(1 = Ba)va]||pl|

= [1 —a, + (5(1 — Oén)(l - ﬁn)vnmxn _p||
e[l + 61— Bu)oall

< 1= a4+ 8(1 = Bu)vallza — o]
+an[l+6(1 = B,)va]||pl|

= (1=t =801 = Bo)enfan] )l — pl]
a1+ 6(1 = Ba)ua]llpll

Therefore

[1+6(1 — Ba)valllpl]

1—0(1—Bp)vn/ay

Since 6(1 — f,)v, — 0 and 6(1 — B,)v, /o, — 0 as n — oo, then there exists ng € N such that
(1 = Bn)v, < 1/2 and 6(1 — B,)(vn/an) < 1/2 respectively for all n > ny.

Hence ||z, — p|| < 3||p||, for all n > ng. Thus {z,} is bounded, which imply that {y,} is also
bounded. From , we also obtain that

1Y — znl|| = anl|zn|| = 0 as n — oo (3.2)

[|en = pl <

which implies

> il Ty — yall = l[@n —yall =+ 0 as 0 — oo
i>1

hence

T Y = Ynll = 2 —yull =0 as n— o0 (3.3)
for each i > 1. Therefore

T 2 — zall = |[T7%0 = T yall + 11T Y0 — Yall + [|yn — 20|

< @4 v)lln = yall + 1T Y0 — wnl|

From (3.2)) and ({3.3]), we obtain

|1z, —xn|| =0 as mn— oo foreach i>1. (3.4)
For each ¢ > 1, using the asymptotic regularity of 7}, we obtain

lim || Tz, — x,|| = lim ||z, — T/ x,|| + lim ||T]'2, — T, |

—00 n—00 n—00
+ lim ||T-”+1x — Tz,
(1 + L) hm ||:17n — Tz,
+ lim HTi"“ T — Ti'an|] = 0 (3.5)

n—oo

IN
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where L = suplL;, hence
i>1

lim [[y, = Tyyall < lim [Jyn — @[] + lim [[2, = Tiwn||
n—00 n—00 n—00

n—00

IN

(1+ L) lin o, — 3
+ lim ||z, — Tiyx,|| =0 (3.6)
n— o0

We next show that x,, — p (as n — o0). Indeed, define a map ¢ : E — R by

oY) = pnllym — yl|?, Yy € E.

Then, ¢(y) — oo as ||y|| — o0, ¢ is continuous and convex, so as F is reflexive, there exists ¢ € F
such that ¢(q) = mlg(b(u) Hence, the set
ue

K :={y € E: ¢(y) = ming(u)} # 0.

Since lim ||y, — Tyyn|| = 0, lim ||y, — T/"yn|| = 0, for any m > 1 and each i > 1, by induction. Now
n—00 n—00
let v € K*, we have

lim ¢(Tiv) = Hm punlly, — Tivl]”
n—o0

n—o0o
= h_)m | [Yn — Tiypn + Tiyyn — Tisz
< lim g [(1 4 va)||yn — U“]Q = lim ¢(v),
n—oo n—oo
and hence Tjv € K*.

Now let z € F, then z = T;z. Since K* is a closed convex set, there exists a unique v* € K* such
that

||z — v*|| = min||z — ul].
ueK*
But
lim ||z = T*|| = lim||T;z — Tw*|| < lim (1 + v,)||z — v*|],

which implies v* = T;v* and so K* N F # ().
Let pe K*NF and t € (0, 1), then it follows that ¢(p) < ¢(p — tp) and using Lemma we obtain
that
|y =+ tp|1 < |y — plI* + 2t(p, j(yn — p + tp))
which implies that
fn (=D, j(Yn — p + tp)) < 0.

Moreover

=0, J(Un — 1)) = (=D, J(Yn — D) — §(Yn — p + D))
Atn (=D, J(Yn — P +tp))
< =D, i (Yn — D) = §(Yn — p + tp)).
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Since j is norm-to-weak® uniformly continuous on bounded subsets of F, we have that

pin (=D, 3 (Y — p)) < 0. (3.7)

Since §(1 — 3,)v, — 0 and §(1 — B,)v, /v, — 0 as n — oo, if we denote by w, the value of 2v, + v2,
it implies that 6(1 — B,)w, — 0 and 6(1 — f3,)w, /o, — 0 as n — oo, then there exists ny € N such
that §(1 — Bp)w, < 1/2 and §(1 — B,)(w,/ay) < 1/2, for all n > ng. From recursion formula (3.1)),

we obtain

||J:n—p||2 = H[ (1_5n Yn —1—5201” Yn ||2
i>1

< 1= =By = pIP+ 6 ol Tyn — plI?
i>1

1= 61 = B)lllyn = pI* +6(1 = Ba) (1 + va)? ||y — plI?
1—6(1-p, +5(1_Bn>(1+wn)”|yn_p||2
1
1

[ )
[ )
= 1461 = B )wn||(1 = an)(zn — p) — anpl|”
< 1461 = Bl (1 = o)l = pI2 + 200 (=P, (3 — p)))
= 14601 = Bu)wa](1 = an)llzn — pl®
+20,[1 4+ 6(1 = Bn)wa](=p, 1 (Yn — p))
= [1—a,4+ 61 —a,)(1—,)w,)
+20,[1 + 6(1 = Bn)wal(=p, j(Yn — p))
< [1 — ozn<1 —0(1— Bn)wn/oznﬂ
+20,[1 4+ 6(1 = Bn)wn](=p, 7 (Yn — p))-
Therefore
HiU . H2 < 2[1 + 5(1 - ﬁn)wnK—pvj(yn _p)>
! - (1 =6(1 = Bn)wn/an)
hence
finl| 0 = PP < 3pan(=p, 5 (yn — p))- (3.8)

Therefore, from (3.7) we obtain wu,||z, — p|| < 0. Hence, there exists a subsequence {z,, } of {z,}
such that x,, — p as k — oo. To complete the proof, let {z,,;} be another subsequence of {z,,} such
that x,,, — z as j — oo, from (3.8)) we obtain

fin]|z = p||* < 0.

which implies that z = p and hence {z,,} converges strongly to p € F' as n — oo. This complete the
proof. [J

Theorem 3.2. Let E be a real reflexive Banach space with a uniformly Gateaux differentiable norm,
K a nonempty closed convex subset of E. Let {T;}2, be a family of uniformly asymptotically reqular
asymptotically nonexpansive self mappings of E with sequences {v;,} such that vy, — 0 as n — o0
foreachi>1and F = (o, F(T;) # 0. Let {a,}52, and {B,}22, be sequences in (0,1), and suppose
that the following conditions are satisfied:

(C1) hm 0o, = 0 and lim 2= = 0, where v, := sup{v,} and > 7 v, < 00

n—oo &n i>1
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(C2) E2 g, =00 and lim 37 ) |0ini1 — 0| =0

n—oo

(C3) 302y o < 0
For some fized 6 € (0,1), let {z,}°2, be a sequence defined iteratively by xy € C' chosen arbitrarily,

Yo = (1 — an)zyn (3.9)
Tpt1 = [1 - 5(1 - 5n)]yn + 521'21 Ol Yn, 1 =0. '

Then, {x,}>2 | converges strongly to p € F.

Proof . Let p € F be arbitrary, we obtain from (|3.9))

lzn —pll = [[[1=0(1 =By —p) +6 > ounlT]yn — p)|
< [1=6(1=BIMyn —pll + 61 = Ba) (1 +v)||yn — D]
= [1=06(1=Bn) 4+ 0(1 = Ba) (1 +va)ll[yn — pl|
= [14+6(1 = Ba)ua]l|(1 = o) (z — p) — cup|
< [+ 0(1 = Baea (1= an)lfan — pl] + anllpll)
< [+ 8(1 = Bu)va) max{|lz, — pll |pII}

IN

[146(1 = B;)vj] max{||z1 — pll, ||pl[}- (3.10)

Since Y 0 v, < oo. it follows from (3.10) that {z,} is bounded. Hence {y,} is also bounded.
Furthermore, it follows from ({3.9)) that

Y — zn|| = anl|zn|| = 0 as n — oo (3.11)
Define two sequences by v, := (1 — )3, + 0 and z, := Mw From the recursion formula
(13.9), we observe that

[1=0(1 = B)l(Yn — xn) +0 2121 OinT"Yn + Bnn
Tn

Zn =

which implies

1 =601 = Bar ) W1 = Tng1) + 6 2 iny Gint T g + B
Tn+1
[1 - 5(1 - ﬁn)Kyn B xn) +0 ZiZI O'inTz’nyn + Bun
Tn
[1 B 5(1 B ﬁn-&-l)](yn-i-l — xn—&-l) . [1 - 5(1 — 6n)](yn — xn)
Tn+1 Tn
+5 Zz’Zl Tin+tl (Z‘nﬂynﬂ - Tinﬂyn> 0 2221 Oin+1 (Tinﬂyn - Ti”?Jn)

+
’Yn—&—l rYn—Q—l

0 ZiZI Oimt1T{"Yn O ZiZI Oind{" Yn B+ B
+< ) + T

Zn4+1 — ”An =

- n+l — —Tn
TYn+1 Tn Yn+1 Tn
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therefore
(1= 8= Bl s = @asa|| [ =61 = 5] g — 22
241 — 2al| = +
Tn+1 Tn
5 2221 Ui,n+1 nn+1yn+1 - Crin+1yn 5 ZiZI Oin+1 T;nJrlyn - 7Tyn
+ +
Tn+1 Yn+1
6 i Uz‘,n lﬂnyn 6 i Uinﬂnyn n n
PRt + 2+ 22
n+ n n+ n (312)
1= = Bl s = | (1= 61 = 5] = 2
< +
Yn+1 Yn
5(1 - Bn)(l + Un—l—l) Yn+1 — Yn 5 ZzZl Oin+1 j—;n+1yn - ,I;nyn
+ +
Tn+1 Fn+1
n ﬂn—f—l B’Il
+ Z TnOin+1l — Tn+10in CTZ Yn + ||xn+1|| + _||$n|’
Tn+1Tn i>1 Tn+1 Tn
But
Yn+1 — YUn (1 - anJrl)anrl - (1 - CVn):Un
- (]- - an+1)<xn+1 - :L‘n) + (an+1 - O‘n)xn
so that
Ynt1 = ynll = (1 = ang1)[|Tn1 — Tol| + |angr — aull[2al]. (3.13)
From (3.13) and (3.12)), we obtain
||Zn+1 - Zn|| - ||xn+1 - xn“
(1= 6(L = Ba))|[pss =z | (1= 60 = 5] [ —
< +
Tn+1 n
+ (SR ) (1= @) = 1)z = @l + S s — a2l
7n+1 n+1
0 Zizl Oin41 T;n—i_lyn - T‘znyn )
+ Z <7n0—i,n+l - ’7n+10—in> T;nyn
Yn+1 Tn+17n i>1
Bn—i—l 6n
+ [ Znal] + = ]|znl]
Tn+1 Tn
[1 - 5(1 - ﬁnJrl)] Yn+1 — Tp41 [1 - 5(1 - 5n)]‘ Yn — Tn
< +
Tn+1 Tn
51— 5,) (1 -p)
(S0 v (1= ) = 1)z = @all + =l = anll[2al]
Yn+1 n+1
0 2121 Uz‘n+1‘ T;n—’_lyn — Tyn SM*
+ + |0 D 01 = Ginl + [ = | = )
Vn+1 Tn+1Vn =1
5n+1 571
+ [ Znal] + —||znl]
n+1 711
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for some M* > 0, thus

limsup(||zn+1 = 2n|| = |[Zne1 — 20||) <0,
n—oo

and by Lemma we have

lim ||z, — z,|| = 0.
— 00
Hence
|Tne1 — xnl| = (L = y0)||2n — 20|l = 0 as n — oo. (3.14)

From the recursion formula (3.9)), we obtain

520m||Ti"yn — Yol = l|Tn1 — 20|l = 0 as n — oo.
i>1

For each i > 1, we get

lim [|7}"yn — ynl| = 0. (3.15)
n—oo

Therefore
[T} 20 — | T w0 = T ynll + 1T Y0 — Yl + [|yn — 2]

<
< @+ v)llzn = ynll + T Yn — ynll
From (3.11)) and (3.15]), we obtain
|1 %, —x,|| =0 as n— oo foreach > 1. (3.16)
For each 7 > 1, using the asymptotic regularity of T;, we obtain
lim || Tz, —z,|| < lim ||z, — Tz,|| + lim [T}z, — Tz'n+1xn||
n—o0 n—o0 n—00
+ lim HTz‘onn — Ty, |
n—oo
< (14 L)lim ||z, — T'z,|| + lim |T7" a2, — T/ '2,|| =0 (3.17)
n—o0 n—oo
hence
m [y, — Tignll < 1im |y, — 2| + 1im [z, — Tiz,||
n— 00 n—00 n—00
+ lim [T, — Ty ||
n—oo
< (1+L)lim ||z, — yn|| + lim ||z, — Tiz,|| =0 (3.18)
n—oo n—oo

For each m > 0, let z,, € E be the unique fixed point of the contraction mapping

Zm = [1 = 0(1 = am)|(1 = Bn)2m + 0 Y 0imT™(1 = Bn) 2m

i>1
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on E, for 1 > 1 (see Theorem [3.1). Then we obtain by letting y,, = (1 — @)z, and w,, denote by

20 + V2,

||2m —

yn||2

IN

IN

IN

IN

IN

IN

||[1 - 5(1 - ﬁm)](ym - yn) + 52 Uim(j—;mym - yn)||2

i>1
[1 - 6(1 - Bm)mym - ynH2 + 5ZUWLHszym - ynH2
i>1
2
0> o [T = Tl | 4 177" = |
i>1
[1 - 6(1 - ﬁm)]“ym - yn||2
2
037 oun [ (L 0 [ = il + T =
i>1
(1= 81— Bl [ym — vl
—1—5(1 - Bm)(l + vm)Quym - ynH2

+2520im(1 + Um)Hym - yn||||Timyn - y'n||
i>1

i>1
[1 + 5(1 - Bm)wmmym - yn||2
+26 Y Gion(1 4 V) |Ym = Yl l[1T" Y0 — vl

i>1
+6 > Timl [Ty — ynl
1>1
[1 + 5(1 - Bm)wmm(l - am)(zm - yn) - OémynH2
+26Y " Gian (1 + 01 — Yl 11T Y — |

i>1

+6 ) il [Ty — yul

i>1

14 6(1 = Bl (1 = an)?l[2m = Bl P + 20 (=90 (2 = 92))|

+26 ) 0o (L + 0|y — Yl [[1 7790 — Y

i>1
+6 > il [Ty — vl
1>1
[1 + 5(1 - Bm)wm](l - am>2||zm - yn||2
+2[1 + 0(1 = Bon)wim] e (—2m, J(2m — Yn))
+200,[1 + 0(1 = B )w]||2m — ynH2

+26 ) 0o (L + 0|1y — Yl [[1 7790 — Yl

i>1

+5 Z Uim| |T1zmyn - ynH2

i>1



Strong convergence of modified iterative algorithm ... 7 (2016) No. 2, 93-108 105

< (1460 = Bu)wnl(1+ 02l — vall®
+20m[1 4+ 0(1 = Bon)wim){—2m, J(2m — Yn))
+26Z‘7im<1 + Um)Hym - ynHHszyn - yn”

i>1
+5zazm||7_;myn - yn||2

i>1
2

|1+ an {80 = Bu) (/) + @51 = Bl ] llem = w2
20 0L+ o)l lym = 2 lllZ7"9 = i

i>1

+0 ) 0ol I Ty =yl

i>1

IN

Therefore

. {800~ ) (wnfam) + @nl3(1 = Bl Hlzm = gl
el =) 2 S+ 31— Gy
20 255 Oim (L + v ) [[Ym — Ynl |1 T7" Y — |
20 [1 4+ 6(1 = Bn)wp)
0 2221 Tim|| 17" Y — ynHZ
20 [1 + 6(1 — Br) Wr]

Now, taking limit superior as n — oo firstly, and then as m — oo, we have

lim suplim sup(—zy,, J(Yn — 2m)) < 0 (3.19)

m— 00 n—oo

But by Theorem 3.1} z,, — p as m — oo and the fact that E has a uniformly Gateaux differentiable
norm implies that j is norm-to-weak® uniformly continuous on bounded sets. Thus, since

(=0, 7Y —2m)) = (=0, JWn = D) = J(WUn — 2m)) + (Zm — D, 5 (Yn — 2m))
H(=2m; 7 (Un — 2m))

< < p](yn ) j(yn )>+||Zm p||||yn_zm||

)

+< Zma](yn - Zm)

we get that

limsup(—p, j(y, —p)) < limsuplimsup(—zy,, j(yn — 2m))

n—oo m—o0 n—oo

< 0

Finally, we prove that x, — p as n — oo. Since §(1 — 3,)v, — 0 and §(1 — S,)v, /a, — 0 as n — o0,
if we denote by w, the value of 2v, + v2, it implies that §(1 — S3,)w, — 0 and §(1 — B,)w,/a, — 0
as n — oo, then there exists ny € N such that §(1 — 3,)w, < 1/2 and 6(1 — 3,)(w, /o) < 1/2, for
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all n > ng. From recursion formula (i3.1]), we obtain

||5L‘n+1—p||2 = ||[ (1_6n Yn +5ZUW Yn ||2
< [1—5(1—&)]H%—pHQ+5Z<meTZ~”yn—p!!2
< [1= 5601 = B)llyn — pIP + 61 = B) (1 + 02y — ]
= [ 5( /Bn)—l'é(l_ﬁn)(l'f_wn)myn p||2
= [145(1 = Bu)wa]||(1 = an) (20 — p) — anp|?
< {1001 = Bawn] (1= an)llan = pP?
+200, (=, 5 (Y p)))
(

= [140(1 = Bo)wa)(1 = an)||zn — pl?

+20,[1 4 6(1 = Bo)wn) (=1, (Y — D))
= [1—a,+6(1—a,)(1— 3w,
+2a,[1 + 0(1 = Bo)wa]{(—p, j(Yn — p))
{1 _ an<1 —5(1 = By)uwn /an>]

+an(1 —5(1 = B )wn /an)
201450 Bl (=p. i — )
1= 06(1 = Bn)wn /o
Observe that Y a,(1 — §(1 — B,)w,/a,) = oo and
liﬂs;}p(ﬂl - 551_ 5%)1021515;5? p)>‘> <o.
Applying Lemma [2.3] we obtain ||z, — p|| = 0 as n — co. This completes the proof. [J

IN

Remark 3.3. By Gossez and Lami [16], we know that if E satisfies Opial’s condition, then E has
a weakly continuous duality mapping. Thus, Theorem hold in uniformly convex and uniformly
smooth Banach spaces which satisfies Opial’s condition and also hold in real Hilbert spaces.

4. Numerical example

In this section, we discuss the direct application of Theorem with a typical example on real line.
Letting T': C' C E — (', then we consider the following:

1 1 1
E:R7O:0717T: 7n:—an:—a6:_7v >1
01 Tr=z,an =T = g0 =5 ¥ 2
T here is nonexpansive which is particular case of our Theorem. Thus the scheme can be simplified
as

n(n®+1) n"t? ) N> (41)

Tpt1 =

+1 <(n )R +1) TRt )t
Take the initial point z; = 0.5, the numerical experiment result using MATLAB is given in Figure
1, which shows the iteration process of the sequence {z,} converges to 0.
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045 -
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Murnber of iterations:n

Figure 1: 1 = 0.5, the convergence process of the sequnece {z,} generated by (4.1]).
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