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Abstract

In this paper, we prove Hyers—Ulam stability of Tribonacci functional equation

fl@)=flz-1)+ flz -2)+ f(z - 3)
in the class of functions f : R — X where X is a real non-archimedean Banach space.
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1. Introduction

The stability of functional equations originated from a question of Ulam [17] in 1940. In the next
year, Hyers [9] provided the solution of Ulam’s problem for the special case of the Cauchy functional
equation.

Stability problems related to Ulam’s problem for functional equations have been extensively

investigated worldwide by several mathematicians (cf. [5]-[16]).
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Recently, S.-M.Jung investigated the Hyers—Ulam stability of Fibonacci functional equation

flx) = flz =1)+ fz - 2).

More recently, M. Bidkham and M. Hosseini [I] and M. Bidkham, M. Hosseini, C. Park and M.
Eshaghi Gordji [2] succeeded to provide a proof of the Hyers-Ulam stability of k-Fibonacci and
k, s—Fibonacci functional equations.

Throughout this paper, we denote by F! the nth Tribonacci number, for n € N. In particular,
we define F{j = 0, F] = 0 and F, = 1, and putting F), = F,_, + F, , + F,_5 for n > 3. From this

famous formula, we may derive a functional equation

flz)=flz-1)+ f(z -2)+ f(z - 3) (1.1)

which may be called the Tribonacci functional equation. Let X be a vector space. A function

f R — X will be called a Tribonacci function if it satisfies (1.1), for all x € R.

By «, 3 and v we denote the roots of the equation 23 — z?

B,7 € Cand [B| = ||
We have a+ +v =1, By+ af + ay = —1 and afy = 1. For each z € R, [z] stands for the

—x—1=0. ais greater than one and

largest integer that does not exceed x. Here, we will solve the Tribonacci functional equation (1.1)

and we prove the Hyers-Ulam stability of functional equation (1.1).
2. Preliminaries

Since a+f+v =1, fy+af +ay=—1and afy =1, it follows from (1.1) that

f@)—alfz=1) =vf(z =2)] =7flz - 1) =

Plf(x=1) = (v +a)f(z = 2) + avf(z - 3)] (2.1)

for all z > 0. By mathematical induction, we verify that for all z > 0 and all n belonging to the set

{0,1,2, e }, we have
f@)=alf(x=1) =f(@=2)] =vf(x = 1) = "[f(x —=n) =1 f(z —n—1)
+ayfr—n—2)—af(x—n—1)]

f@) =Alfx =1) = Bflx=2)] = ff(x = 1) = " [f(z —n) =7yf(x —n—1)
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+ 087 f(x—n—2)=pf(z —n—-1)]

fl@) = Blf(x =1) —af(r =2 —af(z - 1) =1"[f(z —=n) —af(z —n—-1)

+ paf(r—n—2)—Bf(r —n—1)] (2.2)
for all x > 0 and all n € {0,1,2,...}.

Definition 2.1. Let K be a field.A non-Archimedean absolute value on K is a function |.| : K —
[0, +00] such that for any a,b € K,

(i)|la| > 0 and equality holds if and only if |a| = 0;

(i1) abl = fa|[b];

(7i) |a + b < max{|al, |b|}

3. Stability

322 -2 —1=0and 3,7 are

As already stated, o denotes the positive root of the equation x
its complex conjugate roots. In the following we provide a proof of the Hyers-Ulam stability of the

Tribonacci functional equation (1.1).

Theorem 3.1. Let (X, ||-||) be a non-Archimedean Banach space. If a function f: R — X satisfies

the inequality

() = fle=1) = flz =2) = flz =3)|| < e (3.1)

for all z € R and for some € > 0, then there exists a Tribonacci function G : R — X such that

2(1+18]) + |6 €
(y—a)+2(a—B)+a(B—v)  1-|6P

1f(z) = G)|| < 773 (3.2)
18

for all z € R.

Proof . Analogous to the first equation of (2.3), it follows from (3.1) that

[f(z) = (a+B+7)f(z —1) + (@b + By +ar)flz—2) —afyf(z =3)[ <€

for all x € R. If we replace x by x — k in the last inequality, then we have

[f(z—k)—a(fle —k=1)=flz =k =2)) =7yflz —k—1)
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—Blfle—k=1)-(+a)fle—k=2)+arflx —k=3)][ <e
for all z € R, and furthermore,

18*(f(z = k) —a(f(z —k = 1) =vf(z =k = 2)) = 7f(x — k - 1))

=B (e —k=1) —(v+a)fz =k =2) +arf(z — k= 3))| < |8 (3.3)
for all z € R. We obviously have

1f(2) = a(f(z = 1) =7 f(x=2)) =7flz = 1) = B"[f(z —n)

—(v+a)fle—n—-1)+arf(z—n=2)

< max {[|B*(f(z —k) —af(e—k 1)) = " (fle =k —1) —af(z — k- 2))}

T 0<k<n-—1

< max {|8)%¢} =, (3.4)

— 0<k<n—1
for all z € R and all n € N.

Let x € R be fixed. Then (3.3) implies that

{"(flz—n)—a(fle—n—-1)=7flz—n—-2)) —7flz —n—1)}

is a Cauchy sequence (note that |G| < 1). Therefore, by completeness of X, we can define a function

G1:R— X by

Gr(a) = lim B"[f(x —n) —a(f(x —n —1) =3 f(x —n —2)) = (@ —n — 1))

n—oo

for all x € R. In view of the above definition of G;, we obtain that

Gi(x — 1)+ Gi(x — 2) + G1(z — 3)

=67 lim B [f(z —(n+1) —a(flz = (n+1) = 1) =7f(z = (n+1) = 2)) = 7f(z = (n+ 1) — 1))]

n—o0

+672 lim [ (z — (n+2) —a(f(z — (n+2) — 1) —7f(z — (1 +2) = 2)) = 7f(z — (1 +2) — 1)]
= 57 lim 8" [f(2 — (n+3) — a(f(z — (n+3) = 1) = 3f(z — (n+3) —2)) = 7f(x — (n+3) - 1)

n—o0

= B7'Gi(x) + %G (x) + f°Gi(z) = Gi(x)
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for all x € R. Hence, G is a Tribonacci function. If n tends to infinity, then (3.4) yields

1
1f(x) = alf(z=1) =7f(x =2)) =7f(z = 1) = G4l Sl——\ﬁle

for all 2 € R. On the other hand, it follows from (3.1) that
If(z) = B(f(z = 1) —af(e-2) —af(z—1) =7[f(z - 1) —af(z - 2)
+aff(z—3)—Bflz—2)][ <e
for all z € R. Analogous to (3.3), replacing 2 by = — k in the above inequality, we obtain
Ifz—k)=Blfle—k—1) —af(z-—k-2)]—aflz—k—1) -~
[fle—k—1)—af(z—k—=2)+aff(x—k—3) = Bf(z—k—2)]]| <e
and

W f(z = k) = B(flx —k = 1) —af(e —k—2)) -~ af(z -k —1))]

" (e —k=1)—af(t—k=2)+abf(x—k—=3) = Bf(z —k—2))| <|y[*
for all z € R and k € Z. By using (3.6), we further obtain that

[f(x) = Blf(x =1) —af(z = 2)] —af(z = 1) =7"[f(x —n)

71

—B(f(x—n—1) = af(e—n—2)) —afz—n— D < max {|[7*(f(x — k) - B(f(x — k1)

T 1<k<n

—af(r—k=2)—af(e—k-1)) =" (fl@—(k+1)) = B(f(x - (k+1) = 1)

—af(e—(k+1)=2)) —af(@—(k+1) - 1))}~ < max {|y['e} =

~ 0<k<n—1
for all x € R and n € N. We obviously have
{V'(flx—n)=B(flx—n—-1)—af(xt—n—-2))—af(x—n—-2)) —af(x—n—1)}

is a Cauchy sequence, for all x € R. Hence, we can define a function Gy : R — X by

Gala) == lim +"[f(x = n) = B(f (& —n—1) —af(x —n —2)) - af(e —n—1)]

n—oo

(3.7)
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for all x € R. Using the above definition of G,, we get

Gz — 1) + Go(z — 2) + Gz — 3)

=37l [ = (4 1) = B — (14 1) = 1) = af(e = (n+ 1)~ 2))
—af(@ = (4 1) = )] 4772 Tim 4" (@~ (1+2)) = Bz — (1+2) ~ 1)
—af(@—(n+2) = 2) —af(x— (1+2) = 1)] =7 lm 7"[f(z — (n+3))
—B(f(w = (n+3)— 1) — af(z — (n+3) —2)) = af(z — (n+3) — 1))

=77 1Ga(x) + 7 Ga(x) + 77 Ga(x) = Ga(a),

for all z € R. So, G5 is also a Tribonacci function. If n tends to infinity, then it follows from (3.7)

that

If(z) = Blf(z = 1) —af(z = 2)] —af(z = 1) = Go(z)|| < [[F11 = [y[[le = [[F1L = [Bl]le,  (3.8)

for all € R. Finally, it follows from (3.1) that
If() =v(fx =1) = Bf(x=2)) = Bf(x—1) —alf(z = 1) = 7f(z - 2)
+ P (x=3) = Bflx—2)][ <e

for all x € R (see the second equation in (2.3) for n = 1). If we replace x by = + k in the above

inequality, then we have
[f@+k)=v(flea+k-1)=Bf(x+k—=2)=Bflx+k—-1)—a[f(x+k—-1)vf(z+k—2)
+Bvflx+k—2) = Bflx+k—2))]| <e

and

la™[f(z + &) = y(fle+k—1) = Bf(z +k—2)) = Bf(z +k—1) —a "]

fla+k—1)—yf(@+k—2)+Byf(x+k—3) = Bf(e +k—2)]|| < o~ Fe. (3.9)
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for all z € R and all k£ € Z. By using (3.9), we further obtain that
la™"[f(z+n) =v(flz+n—-1) = Bf(x+n—2)) = ff(z+n—-1)] = [f(z) -1 (f(z - 1)

+87f(z = 2)) = Bf(z = D] < max {[a™"[f(z + &) =1(f(z + k= 1) = Bf(x + k- 2))

1<k<n

—Bfe+k =1 —afl@+k—1) =(f(x +k—2)+ Byf(z+ k= 3)) = Bf (e + k= 2)]|I}

< 1k _ 1
_gll?gxnﬂa e} = a e (3.10)

for all x € R and all n € NBy applying ( 3.10) we see that

{a™f(x+n)=v(f(x+n—1)=Bf(r+n—2)) - Bf(z+n—1)]}
is a Cauchy sequence, for a fixed z € R. Hence, we can define a function G3 : R — X by

Gs(z) := lim o "[f(zx+n) —y(f(x+n—-1)=Bf(x+n—-2)) = Bf(xr+n—1)]

n—oo

for all z € R. In view of the above definition of G35, we obtain
G3<l’ — 1) + Gg(l’ — 2) + Gg(l‘ — 3)

=a ' lim o " V[fle+n—1) =y(flz+(n—1) = 1) = Bf(z + (n— 1) - 2))

n—o0

—Bf(x+n—1=D]4+a2lim o™ D[fle+n—2)—y(fz+ (n—2)—1)

n—oo

—Bf(+(n—2)=2) = Bf(e+(n—-2) = D] +a® lim a” "I [f(z+n-3)

—(flx+n=2)-1)=Ff(x+(n—=3)=2) = Bf(z+(n-3) - 1)]
= a 'Gs(z) + a2G3(7) + a*Gs(z) = Gs(z),

for all x € R. This means that G is also a Tribonacci function. If we let n tends to infinity in (3.10),

then we have

1G5 () — f(2) +y(flz = 1) = Bf(z = 2)) + Bf(x = 1)[| < a”le (3.11)

for all z € R. By (3.5), (3.8) and (3.11), we obtain that

B By — @)G1 + (= B)Gy — o?(B — 7)Gj

WO = |5 —a 72— )+ a2 )
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1
TRy —a) +2(a - B) + a2(B — )]

1(B%(y — @) + 7% (= B) + ?(B — 7)) f(x) — B2 (v — )Gy — ¥ (o — B) G + &2 (B — 7)Gs|

1
=T =) + 2@ —B) + 28 — )]

118°(y — a) f(z) = B2(v* — &®) f(z — 1) + B> (v — a)avy f(z — 2) — B*(y — )G ||

v (e = B) f(z) = 7*(® = B7) f(x = 1) + 7*(a = B)Baf(x — 2) — y*(a — B)Ga|

+Ho*(B =) f(2) = a®(8* = 7*)f(x — 1) + a*(8 — )87/ (x — 2) — a*(8 — 7)G3]]

1
(62(y — @) +7*(a = B) + a*(f — @)

<{ emax{1l,a '}

for all z € R. Putting

_ By — a)G1 +7*(a — )Gy — o*(B — 7)Gs

) = = B0 ) 4 e B) + 23 —a)

for all € R. It is easy to show that G is a Tribonacci function satisfying (3.2). [
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