• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Advisory Board
    • Editorial Staff
    • Publication Ethics
    • Indexing and Abstracting
    • Related Links
    • FAQ
    • Peer Review Process
    • News
  • Guide for Authors
  • Submit Manuscript
  • Reviewers
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter Telegram
International Journal of Nonlinear Analysis and Applications
Articles in Press
Current Issue
Journal Archive
Volume Volume 8 (2017)
Volume Volume 7 (2016)
Volume Volume 6 (2015)
Volume Volume 5 (2014)
Volume Volume 4 (2013)
Volume Volume 3 (2012)
Volume Volume 2 (2011)
Volume Volume 1 (2010)
Issue Issue 2
Issue Issue 1
Gachpazan, M., Baghani, O. (2010). Hyers-Ulam stability of Volterra integral equation. International Journal of Nonlinear Analysis and Applications, 1(2), 19-25. doi: 10.22075/ijnaa.2010.71
M. Gachpazan; O. Baghani. "Hyers-Ulam stability of Volterra integral equation". International Journal of Nonlinear Analysis and Applications, 1, 2, 2010, 19-25. doi: 10.22075/ijnaa.2010.71
Gachpazan, M., Baghani, O. (2010). 'Hyers-Ulam stability of Volterra integral equation', International Journal of Nonlinear Analysis and Applications, 1(2), pp. 19-25. doi: 10.22075/ijnaa.2010.71
Gachpazan, M., Baghani, O. Hyers-Ulam stability of Volterra integral equation. International Journal of Nonlinear Analysis and Applications, 2010; 1(2): 19-25. doi: 10.22075/ijnaa.2010.71

Hyers-Ulam stability of Volterra integral equation

Article 3, Volume 1, Issue 2, Winter and Spring 2010, Page 19-25  XML PDF (174 K)
DOI: 10.22075/ijnaa.2010.71
Authors
M. Gachpazan; O. Baghani*
Department of Applied Mathematics, Faculty of Mathematical Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
Abstract
We will apply the successive approximation method for
proving the Hyers--Ulam stability of a linear integral equation of
the second kind.
Keywords
Hyers--Ulam stability; Banach's fixed point theorem; Volterra integral equation; Successive approximation method
Statistics
Article View: 1,751
PDF Download: 2,229
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Journal Management System. Designed by sinaweb.