LIE *-DOUBLE DERIVATIONS ON LIE C*-ALGEBRAS

N. GHOBADIPOUR

Dedicated to the 70th Anniversary of S.M.Ulam’s Problem for Approximate Homomorphisms

ABSTRACT. A unital C* – algebra \(A\), endowed with the Lie product \([x, y] = xy - yx\) on \(A\), is called a Lie C* – algebra. Let \(A\) be a Lie C* – algebra and \(g, h : A \rightarrow A\) be \(\mathbb{C}\) – linear mappings. A \(\mathbb{C}\) – linear mapping \(f : A \rightarrow A\) is called a Lie \((g, h)\) – double derivation if
\[
 f(a, b) = [f(a), b] + [a, f(b)] + [g(a), h(b)] + [h(a), g(b)]
\]
for all \(a, b \in A\).

In this paper, our main purpose is to prove the generalized Hyers - Ulam - Rassias stability of Lie * - double derivations on Lie C* - algebras associated with the following additive mapping:
\[
\sum_{k=2}^{n} \left(\sum_{i_1=2}^{n} \sum_{i_2=1+1}^{i_1-k+1} \ldots \sum_{i_{n-k+1}=1+1}^{i_{n-k+1}} \right) f(\sum_{i=1}^{n} x_i - \sum_{r=1}^{n-k+1} x_{i_r}) + f(\sum_{i=1}^{n} x_i) = 2^{n-1} f(x_1)
\]
for a fixed positive integer \(n\) with \(n \geq 2\).

1. INTRODUCTION AND PRELIMINARIES

It seems that the stability problem was first studied by D.H. Hyers [11], which was raised by S.M. Ulam [31] For what metric groups \(G\) is it true that an \(\epsilon\)–automorphism of \(G\) is necessarily near to a strict automorphism? An answer has been given in the following way. Let \(E_1, E_2\) be two real Banach spaces and \(f : E_1 \rightarrow E_2\) be a mapping. In 1941, Hyers [11] gave an answer to the problem above as follows: if there exists an \(\epsilon \geq 0\) such that
\[
\|f(x + y) - f(x) - f(y)\| \leq \epsilon
\]
for all \(x, y \in E_1\), then there exists a unique additive mapping \(T : E_1 \rightarrow E_2\) such that \(\|f(x) - T(x)\| \leq \epsilon\) for every \(x \in E_1\). This result is called the Hyers – Ulam stability of the additive Cauchy equation \(g(x + y) = g(x) + g(y)\). In 1978, Th.M. Rassias [26] introduced a new functional inequality that we call Cauchy – Rassias inequality and succeeded to extend the result of Hyers by weakening the condition for the Cauchy difference to be unbounded: if there exist an \(\epsilon \geq 0\) and \(0 \leq p < 1\) such that
\[
\|f(x + y) - f(x) - f(y)\| \leq \epsilon(\|x\|^p + \|y\|^p)
\]
for all \(x, y \in E_1 \), then there exists a unique additive mapping \(T : E_1 \rightarrow E_2 \) such that

\[
\|f(x) - T(x)\| \leq \frac{2\epsilon}{|2 - 2^p|} \|x\|^p
\]

for every \(x \in E_1 \) (see [12, 13, 27, 28, 29]). This stability phenomenon of this kind is called the Hyers – Ulam – Rassias stability. In 1991, Z. Gajda [9] solved the problem for \(1 < p \), which was raised by Rassias. In fact, the result of Rassias is valid for \(1 < p \); moreover, Gajda gave an example that a similar stability result does not hold for \(p = 1 \). Another example was given by Th.M. Rassias and P. Šemrl [30]. J.M. Rassias [23] followed the innovative approach of Rassias’ theorem [26] in which he replaced the factor \(\|x\|^p + \|y\|^q \) by \(\|x\|^p \cdot \|y\|^q \) for \(p, q \in \mathbb{R} \) with \(p + q \neq 1 \).

In 1994, a generalization of the Rassias’ theorem was obtained by Găvruta as follows [10]. Suppose \((G,+)\) is an abelian group, \(E \) is a Banach space, and that the so-called admissible control function \(\varphi : G \times G \rightarrow \mathbb{R} \) satisfies

\[
\tilde{\varphi}(x, y) := 2^{-1} \sum_{n=0}^{\infty} 2^{-n} \varphi(2^n x, 2^ny) < \infty
\]

for all \(x, y \in G \). If \(f : G \rightarrow E \) is a mapping with

\[
\|f(x+y) - f(x) - f(y)\| \leq \varphi(x, y)
\]

for all \(x, y \in G \), then there exists a unique mapping \(T : G \rightarrow E \) such that \(T(x+y) = T(x) + T(y) \) and \(\|f(x) - T(x)\| \leq \tilde{\varphi}(x, x) \) for all \(x, y \in G \).

Let \(\mathcal{A} \) be a subalgebra of an algebra \(\mathcal{B}, \mathcal{X} \) and be a \(\mathcal{B} \) – module \(\sigma : \mathcal{A} \rightarrow \mathcal{B} \) be a linear mapping. A linear mapping \(f : \mathcal{A} \rightarrow \mathcal{B} \) is called \(\sigma \) – derivation (see [17, 18]) if

\[
f(ab) = f(a)\sigma(b) + \sigma(a)f(b)
\]

(1.1)

for all \(a, b \in \mathcal{A} \).

Clearly, if \(\sigma = id \), the identity mapping on \(\mathcal{A} \), then a \(\sigma \) – derivation an ordinary derivation. On the other hand, each homomorphism \(f \) is a \(\frac{1}{2} \) – derivation. Thus, the theory of \(\sigma \) – derivations combines the theory of derivations and homomorphisms.

If \(g : \mathcal{A} \rightarrow \mathcal{A} \) is an ordinary derivation and \(\sigma : \mathcal{A} \rightarrow \mathcal{A} \) is a homomorphism, then \(f = g\sigma \) is a \(\sigma \) – derivation. Although, a \(\sigma \) – derivation is not necessarily of the form \(g\sigma \), but it seems that the generalized Leibniz rule, \(f(ab) = f(a)\sigma(b) + \sigma(a)f(b) \), comes from this observation.

M. Mirzavaziri and E. Omidvar Tehran [16] took ideas from above fact, and considered two derivations \(g, h \) to find a similar rule, for \(f = gh \). In this case, they saw that \(f \) satisfies

\[
f(ab) = f(a)b + af(b) + g(a)h(b) + h(a)g(b)
\]

(1.2)

for all \(a, b \in \mathcal{A} \). They said that a linear mapping \(f : \mathcal{A} \rightarrow \mathcal{A} \) is a \((g, h)\) – double derivation if satisfies (1.2). Moreover, by a \(f \) – double derivation they called a \((f, f)\) – derivation and proved that if \(\mathcal{A} \) is a \(C^* \) – algebra, \(f : \mathcal{A} \rightarrow \mathcal{A} \) is a \(*\) – linear mapping and \(g : \mathcal{A} \rightarrow \mathcal{A} \) is a continuous \(f \) – double derivation then \(f \) is continuous.

A unital \(C^* \) – algebra \(\mathcal{A} \), endowed with the Lie product \([x, y] = xy - yx \) on \(\mathcal{A} \), is called a Lie \(C^* \) – algebra. Let \(\mathcal{A} \) be a Lie \(C^* \) – algebra and \(g, h : \mathcal{A} \rightarrow \mathcal{A} \) be \(\mathbb{C} \) – linear mappings. A \(\mathbb{C} \) – linear mapping \(f : \mathcal{A} \rightarrow \mathcal{A} \) is called a Lie \((g, h)\) – double derivation if \(f([a, b]) = [f(a), b] + [a, f(b)] + [g(a), h(b)] + [h(a), g(b)] \) for all \(a, b \in \mathcal{A} \).
M. Eshaghi Gordji, H. Khodaei, R. Saadati and Gh. Sadeghi [8] found the general n–dimensional additive functional equation as follows:

$$
\sum_{k=2}^{n} \left(\sum_{i_1=2}^{k} \sum_{i_2=i_1+1}^{k+1} \cdots \sum_{i_{n-k+1}=i_{n-k}+1}^{n} \right) f(\sum_{i=1}^{n} x_i)
- \sum_{r=1}^{n-k+1} x_{i_r} + f(\sum_{i=1}^{n} x_i) = 2^{n-1} f(x_1)
$$

(1.3)

for a fixed positive integer n with $n \geq 2$, and investigated stability of functional equation (1.3) in random normed spaces via fixed point method.

In this paper, our main purpose is to prove the generalized Hyers–Ulam–Rassias stability of Lie \ast–double derivations on Lie C^\ast–algebras associated with the functional equation (1.3).

Throughout this paper, assume that \mathcal{A} is a Lie C^\ast–algebra and $U(\mathcal{A}) = \{ u \in \mathcal{A} | uu^* = u^*u = e \}$.

2. MAIN RESULTS

For given mappings $f, g, h : \mathcal{A} \to \mathcal{A}$, we define the difference operators $D_\mu f : \mathcal{A}^n \to \mathcal{A}$ and $C_{f,g,h} : \mathcal{A}^2 \to \mathcal{A}$ by

$$
D_\mu f(x_1, \ldots, x_n) := \sum_{k=2}^{n} \left(\sum_{i_1=2}^{k} \sum_{i_2=i_1+1}^{k+1} \cdots \sum_{i_{n-k+1}=i_{n-k}+1}^{n} \right) f(\sum_{i=1}^{n} \mu x_i)
- \sum_{r=1}^{n-k+1} \mu x_{i_r} + f(\sum_{i=1}^{n} \mu x_i) = 2^{n-1} f(\mu x_1)
$$

and

$$
C_{f,g,h}(a, b) := f([a, b]) - [f(a), b] - [a, f(b)] - [g(a), h(b)] - [h(a), g(b)]
$$

for all $\mu \in \mathbb{T}^1 := \{ \lambda : |\lambda| = 1 \}$ and all $a, b, x_i \in \mathcal{A}$ ($i = 1, 2, \ldots, n$).

Throughout this section, assume that $f(0) = g(0) = h(0) = 0$.

We are going to investigate the generalized Hyers–Ulam–Rassias stability of Lie \ast–double derivations on Lie C^\ast–algebras for functional equation (1.3).

Definition 2.1. Let \mathcal{A} be a Lie C^\ast–algebra and $g, h : \mathcal{A} \to \mathcal{A}$ be \mathbb{C}–linear mappings. A \mathbb{C}–linear mapping $f : \mathcal{A} \to \mathcal{A}$ is called a Lie (g, h)–double derivation if $f([a, b]) = [f(a), b] + [a, f(b)] + [g(a), h(b)] + [h(a), g(b)]$ for all $a, b \in \mathcal{A}$.

We will use the following lemma in this paper.

Lemma 2.2. [8] A function $f : \mathcal{A} \to \mathcal{A}$ with $f(0) = 0$ satisfies the functional equation (1.3) if and only if $f : \mathcal{A} \to \mathcal{A}$ is additive.

Theorem 2.3. If $f, g, h : \mathcal{A} \to \mathcal{A}$ are mappings for which there exists function $\varphi : \mathcal{A}^{n+2} \to [0, \infty)$ such that

$$
\tilde{\varphi}(x) := \sum_{j=0}^{\infty} \frac{1}{2^j} \varphi(2^j x, 2^j x, \ldots, 0, 0, 0) < \infty,
$$

(2.1)
\[
\lim_{j \to \infty} \frac{1}{2^j} \varphi(2^j x_1, 2^j x_2, \ldots, 2^j x_n, 2^j a, 2^j b) = 0, \tag{2.2}
\]

\[
\max \{ \| D_\mu f(x_1, x_2, \ldots, x_n) - C_{f,g,h}(u, b), D_\mu g(x_1, x_2, \ldots, x_n) \\
- C_{f,g,h}(u, b), D_\mu h(x_1, x_2, \ldots, x_n) - C_{f,g,h}(u, b) \} \leq \varphi(x_1, x_2, \ldots, x_n, u, b), \tag{2.3}
\]

\[
\max \{ f(2^m u^*) - f(2^m u)^*, g(2^m u^*) - g(2^m u)^*, h(2^m u^*) - h(2^m u)^* \}
\leq \varphi(2^m u, 2^m u, 2^m u, 2^m u) \tag{2.4}
\]

for all \(\mu \in \mathbb{T}^1 := \{ \lambda \in \mathbb{C}; |\lambda| = 1 \} \), all \(u \in U(A) \), \(m = 0, 1, \ldots \), and all \(a, b, x_i \in A \) (\(i = 1, 2, \ldots, n \)). Then there exist unique \(\mathbb{C} \) – linear \(*\) – mappings \(d, \delta, \epsilon : A \to A \) such that

\[
\max \{ \| f(x) - d(x) \|, \| g(x) - \delta(x) \|, \| h(x) - \epsilon(x) \| \} \leq \frac{1}{2^{n-1}} \tilde{\varphi}(x) \tag{2.5}
\]

for all \(x \in A \). Moreover, \(d : A \to A \) is a Lie \(*\) – \((\delta, \epsilon)\) – double derivation on \(A \).

Proof. It follows from the inequality (2.3) that

\[
\| D_\mu f(x_1, x_2, \ldots, x_n) - C_{f,g,h}(u, b) \| \leq \varphi(x_1, x_2, \ldots, x_n, u, b), \tag{2.6}
\]

\[
\| D_\mu g(x_1, x_2, \ldots, x_n) - C_{f,g,h}(u, b) \| \leq \varphi(x_1, x_2, \ldots, x_n, u, b), \tag{2.7}
\]

\[
\| D_\mu h(x_1, x_2, \ldots, x_n) - C_{f,g,h}(u, b) \| \leq \varphi(x_1, x_2, \ldots, x_n, u, b) \tag{2.8}
\]

for all \(a, x_i \in A \) (\(i = 1, 2, \ldots, n \)), all \(u \in U(A) \) and all \(\mu \in \mathbb{T}^1 \). Let \(\mu = 1 \). We use the relation

\[
1 + \sum_{k=1}^{n-k} \binom{n-k}{k} = \sum_{k=0}^{n-k} \binom{n-k}{k} = 2^{n-k} \tag{2.9}
\]

for all \(n > k \) and put \(x_1 = x_2 = x \) and \(b = u = x_i = 0 \) (\(i = 3, \ldots, n \)) in (2.6). Then we obtain

\[
\| 2^{n-2} f(2x) - 2^{n-1} f(x) \| \leq \varphi(x, x, \ldots, 0, 0, 0) \tag{2.10}
\]

for all \(x \in A \). So

\[
\| f(2x) \| - \varphi(x, x, \ldots, 0, 0, 0) \leq \frac{1}{2^{n-1}} \varphi(x, x, \ldots, 0, 0, 0) \tag{2.11}
\]

for all \(x \in A \). By induction on \(m \), we shall show that

\[
\| \frac{f(2^m x)}{2^m} - f(x) \| \leq \frac{1}{2^{m-1}} \sum_{j=0}^{m-1} \frac{1}{2^j} \varphi(2^j x, 2^j x, 0, \ldots, 0, 0, 0) \tag{2.12}
\]

for all \(x \in A \). It follows from (2.1) and (2.12) that the sequence \(\{ \frac{f(2^m x)}{2^m} \} \) is a Cauchy sequence for all \(x \in A \). Since \(A \) is complete, the sequence \(\{ \frac{f(2^m x)}{2^m} \} \) converges. Therefore, one can define the function \(d : A \to A \) by

\[
d(x) := \lim_{m \to \infty} \frac{f(2^m x)}{2^m}
\]
for all $x \in \mathcal{A}$. In the inequality (2.6), assume that $b = u = 0$ and $\mu = 1$. Then By

\[\|D_1d(x_1, \ldots, x_n)\| = \lim_{m \to \infty} \frac{1}{2^m} \|D_1f(2^m x_1, \ldots, 2^m x_n)\| \]

\[\leq \lim_{m \to \infty} \frac{1}{2^m} \varphi(2^m x_1, \ldots, 2^m x_n, 0, 0) = 0 \]

for all $x_1, \ldots, x_n \in \mathcal{A}$. So $D_1d(x_1, \ldots, x_n) = 0$. By Lemma 2.2, the function $d: \mathcal{A} \to \mathcal{A}$ is additive. Moreover, passing the limit $m \to \infty$ in (2.12), we get the inequality (2.5). Now, let $d': \mathcal{A} \to \mathcal{A}$ be another additive function satisfying (1.3) and (2.5). So

\[\|d(x) - d'(x)\| = \frac{1}{2^m} \|d(2^m x) - d'(2^m x)\| \]

\[\leq \frac{1}{2^m} (\|d(2^m x) - f(2^m x)\| + \|d'(2^m x) - f(2^m x)\|) \]

\[\leq \frac{2}{2^m 2^{n-1}} \varphi(2^m x) \]

which tends to zero as $m \to \infty$ for all $x \in \mathcal{A}$. So we can conclude that $d(x) = d'(x)$ for all $x \in \mathcal{A}$. This proves the uniqueness of d.

A similar argument shows that there exist unique additive mappings $\delta, \epsilon: \mathcal{A} \to \mathcal{A}$ satisfying (2.5). The additive mappings $\delta, \epsilon: \mathcal{A} \to \mathcal{A}$ are by

\[\delta(x) := \lim_{m \to \infty} \frac{g(2^m x)}{2^m} \]

(2.13)

and

\[\epsilon(x) := \lim_{m \to \infty} \frac{h(2^m x)}{2^m} \]

(2.14)

for all $x \in \mathcal{A}$.

Let $\mu \in \mathbb{T}^1$. Set $x_1 = x$ and $u = b = x_i = 0$ ($i = 2, \ldots, n$) in (2.6). Then by the relation (2.9), we get

\[\|2^{n-1} f(\mu x) - 2^{n-1} \mu f(x)\| \leq \varphi(x, 0, \ldots, 0, 0, 0) \]

(2.15)

for all $x \in \mathcal{A}$. So that

\[\|2^{-m}(f(2^m \mu x) - \mu f(2^m x))\| \leq \frac{2^{-m}}{2^{m-1}} \varphi(2^m x, 0, \ldots, 0, 0, 0) \]

for all $x \in \mathcal{A}$. Since the right hand side tends to zero as $m \to \infty$, we have

\[d(\mu x) = \lim_{m \to \infty} \frac{f(2^m \mu x)}{2^m} = \lim_{m \to \infty} \frac{\mu f(2^m x)}{2^m} = \mu d(x) \]

for all $\mu \in \mathbb{T}^1$ and all $x \in \mathcal{A}$. Obviously, $d(0x) = 0 = 0d(x)$.

Now, let $\gamma \in \mathbb{C}$ ($\gamma \neq 0$) and L an integer greater than $4|\gamma|$. Then $|\frac{2}{L}| < \frac{1}{4} < \frac{1}{3}$.

By Theorem 1 of [14], there exist three elements $\mu_1, \mu_2, \mu_3 \in \mathbb{T}^1$ such that $3\mu_1 = \gamma \mu_2 = \gamma \mu_3$.
Thus
\[d(\gamma x) = d\left(\frac{L}{3} \cdot 3 \cdot \frac{\gamma}{L} x\right) = \frac{L}{3} d\left(3 \cdot \frac{\gamma}{L} x\right) = \frac{L}{3} \left(3 \cdot \frac{\gamma}{L} d(x)\right) = \frac{L}{3} d(3 \cdot \frac{\gamma}{L} x) \]
for all \(x \in A \). Hence \(d : A \to A \) is a \(\mathbb{C} \)-linear mapping. A similar argument shows that \(\delta, \epsilon \) are \(\mathbb{C} \)-linear.

By (2.2) and (2.4), we get
\[d(u^*) = \lim_{m \to \infty} \frac{f(2^m u^*)}{2^m} = \lim_{m \to \infty} \frac{f(2^m u)}{2^m} = \lim_{m \to \infty} \frac{f(2^m u)^*}{2^m} = d(u)^*, \]
\[\delta(u^*) = \lim_{m \to \infty} \frac{g(2^m u^*)}{2^m} = \lim_{m \to \infty} \frac{g(2^m u)}{2^m} = \lim_{m \to \infty} \frac{g(2^m u)^*}{2^m} = \delta(u)^*, \]
\[\epsilon(u^*) = \lim_{m \to \infty} \frac{h(2^m u^*)}{2^m} = \lim_{m \to \infty} \frac{h(2^m u)}{2^m} = \lim_{m \to \infty} \frac{h(2^m u)^*}{2^m} = \epsilon(u)^*, \]
for all \(u \in U(A) \). Since \(d : A \to A \) is \(\mathbb{C} \)-linear and each \(x \in A \) is a finite linear combination of unitary elements (see Theorem 4.17 of [15]), i.e., \(x = \sum_{j=1}^l \lambda_j u_j \) (\(\lambda_j \in \mathbb{C}, u_j \in U(A) \)),
\[d(x^*) = d\left(\sum_{j=1}^l \lambda_j u_j^*\right) = \sum_{j=1}^l \lambda_j d(u_j^*) = \sum_{j=1}^l \lambda_j d(u_j)^* \]
\[= \left(\sum_{j=1}^l \lambda_j d(u_j)\right)^* = d\left(\sum_{j=1}^l \lambda_j u_j\right)^* = d(x)^* \]
for all \(x \in A \). By the same method, one can obtain that \(\delta(x^*) = \delta(x)^* \) and \(\epsilon(x^*) = \epsilon(x)^* \) for all \(x \in A \). Setting \(x_1 = x_2 = \ldots = x_n = 0 \) in the inequality (2.6), we get
\[\|C_{f,g,h}(u, b)\| \leq \varphi(0, 0, \ldots, 0, u, b), \]
that is,
\[\frac{1}{2^m} \|f([2^m u]) - f(2^m u) - [2^m u, f(2^m b)] - [\delta(2^m u) - \epsilon(2^m b)] \|
- \|\epsilon(2^m u) - \delta(2^m b)\| \leq \frac{1}{2^m} \varphi(0, 0, \ldots, 0, 2^m u, 2^m b) \]
\[\leq \frac{1}{2^m} \varphi(0, 0, \ldots, 0, 2^m u, 2^m b) \]
for all \(b \in A \) and all \(u \in U(A) \). Since the right hand side tends to zero as \(m \to \infty \), we have
\[d([u, b]) = [d(u, b)] + [u, d(b)] + [\delta(u), \epsilon(b)] + [\epsilon(u), \delta(b)] \]
for all $b \in \mathcal{A}$ and all $u \in U(\mathcal{A})$. Since $d : \mathcal{A} \to \mathcal{A}$ is \mathbb{C}–linear and each $a \in \mathcal{A}$ is $a = \sum_{j=1}^{l} \lambda_j u_j \ (\lambda_j \in \mathbb{C}, u_j \in U(\mathcal{A}))$,

$$d([a, b]) = d(\sum_{j=1}^{l} [\lambda_j u_j, b]) = \sum_{j=1}^{l} \lambda_j d([u_j, b])$$

$$= \sum_{j=1}^{l} \lambda_j ([u_j, d(b)] + [\delta(u_j), \epsilon(b)] + [\epsilon(u_j), \delta(b)])$$

$$= [d(\sum_{j=1}^{l} \lambda_j u_j), b] + [\delta(\sum_{j=1}^{l} \lambda_j u_j), \epsilon(b)] + [\epsilon(\sum_{j=1}^{l} \lambda_j u_j), \delta(b)]$$

$$= [d(a), b] + [a, d(b)] + [\delta(a), \epsilon(b)] + [\epsilon(a), \delta(b)]$$

for all $a, b \in \mathcal{A}$. Hence the \mathbb{C}–linear mapping $d : \mathcal{A} \to \mathcal{A}$ is a Lie $\ast - (\delta, \epsilon)$–double derivation, as desired. \hfill \Box

Corollary 2.4. If $f, g, h : \mathcal{A} \to \mathcal{A}$ are mappings for which exist constants $\theta \geq 0$ and $p \in [0, 1)$ such that

$$\max\{\|D_\mu f(x_1, x_2, ..., x_n) - C_{f,g,h}(u, b), D_\mu g(x_1, x_2, ..., x_n) - C_{f,g,h}(u, b)\|\}$$

$$\leq \theta(1 + \|b\|^p + \sum_{i=1}^{n} \|x_i\|^p), \quad (2.16)$$

$$\max\{f(2^m u^*) - f(2^m u^*), g(2^m u^*) - g(2^m u^*), h(2^m u^*) - h(2^m u^*)\}$$

$$\leq \theta(n + 2)2^{np} \quad (2.17)$$

for all $\mu \in \mathbb{T}^1$, all $u \in U(\mathcal{A})$, $m = 0, 1, ...$, and all $a, b \in \mathcal{A}$, then there exist unique \mathbb{C}–linear \ast–mappings $d, \delta, \epsilon : \mathcal{A} \to \mathcal{A}$ such that

$$\max\{\|f(x) - d(x)\|, \|g(x) - \delta(x)\|, \|h(x) - \epsilon(x)\|\} \leq \frac{2\theta}{2n-1} + \frac{2\theta}{2n-1(1 - 2p-1)} \|x\|^p \quad (2.18)$$

for all $x \in \mathcal{A}$. Moreover, $d : \mathcal{A} \to \mathcal{A}$ is a Lie $\ast - (\delta, \epsilon)$–double derivation on \mathcal{A}.

Proof. Define $\varphi(x_1, x_2, ..., x_n, u, b) := \theta(1 + \|b\|^p + \sum_{i=1}^{n} \|x_i\|^p)$ for all $u \in U(\mathcal{A})$ and $b, x_i \in \mathcal{A} (i = 1, ..., n)$, and apply Theorem 2.3. \hfill \Box

Corollary 2.5. Suppose that $f, g, h : \mathcal{A} \to \mathcal{A}$ are mappings satisfying (2.3) and (2.4). If there exists a function $\varphi^{n+2} : \mathcal{A} \to [0, \infty)$ such that

$$\tilde{\varphi}(x) := \sum_{j=1}^{\infty} 2^j \varphi\left(\frac{x}{2^j}, \frac{x}{2^j}, ..., 0, 0, 0, 0\right) < \infty,$$

$$\lim_{j \to -\infty} 2^j \varphi\left(\frac{x_1}{2^j}, \frac{x_2}{2^j}, ..., \frac{a}{2^j}, \frac{b}{2^j}\right) = 0$$

for all $a, b, x_i \in \mathcal{A} (i = 1, ..., n)$, then there exist unique \mathbb{C}–linear \ast–mappings $d, \delta, \epsilon : \mathcal{A} \to \mathcal{A}$ such that

$$\max\{\|f(x) - d(x)\|, \|g(x) - \delta(x)\|, \|h(x) - \epsilon(x)\|\} \leq \frac{1}{2n} \tilde{\varphi}(x)$$
for all \(x \in A \). Moreover, \(d : A \to A \) is a Lie \(\ast - (\delta, \epsilon) - \) double derivation on \(A \).

Proof. By the same method as in the proof of Theorem 2.3, one can obtain that
\[
d(x) = \lim_{m \to \infty} 2^m f\left(\frac{x}{2^m}\right),
\]
\[
\delta(x) = \lim_{m \to \infty} 2^m g\left(\frac{x}{2^m}\right),
\]
\[
\epsilon(x) = \lim_{m \to \infty} 2^m h\left(\frac{x}{2^m}\right)
\]
for all \(x \in A \). The rest of the proof is similar to the proof of Theorem 2.2. \(\square \)

Corollary 2.6. If \(f, g, h : A \to A \) are mappings for which exist constants \(\theta \geq 0 \) and \(p > 1 \) satisfying (2.16) and (2.17). Then there exist unique \(C - \) linear \(\ast - \) mappings \(d, \delta, \epsilon : A \to A \) such that
\[
\max\{\|f(x) - d(x)\|, \|g(x) - \delta(x)\|, \|h(x) - \epsilon(x)\|\} \leq \frac{2\theta}{2^{n-1}} + \frac{2\theta}{2^{n-1}(21-p-1)}\|x\|^p
\]
for all \(x \in A \). Moreover, \(d : A \to A \) is a Lie \(\ast - (\delta, \epsilon) - \) double derivation on \(A \).

References

Department of Mathematics, Urmia University, Urmia, Iran.
E-mail address: ghobadipour.n@gmail.com