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ON THE STUDY OF HILBERT-TYPE INEQUALITIES
WITH MULTI-PARAMETERS: A SURVEY

B. YANG!'* AND TH. M. RASSIAS?

ABSTRACT. In this paper, we provide a short account of the study of Hilbert-type
inequalities during the past almost 100 years by introducing multi-parameters
and using the method of weight coefficients. A basic theorem of Hilbert-type
inequalities with the homogeneous kernel of —A—degree and parameters is proved.

1. INTRODUCTION: HILBERT’S INEQUALITY WITH NO PARAMETER

In 1908, H. Weyl published the following well known Hilbert’s inequality: If
{a,},{b,} are real sequences, such that 0 < >>>° a2 < oo and 0 < Y o2 b < oo,
then!!]

i i nszl < W(i a? ibi)é (1.1)
n=1 n=1

n=1 m=1

where the constant factor 7 is the best possible. The integral analogue of (1.1) states
as follows: If f(z), g(x) are measurable functions, such that

0< / fA(z)dx < 00, 0 < / g*(x)dr < oo,
0 0

/OOO /0°° %‘Q(yg)da:dy < W(/Ooo f*(z)dx /Ooo g*(z)dr)?,

where the constant 7 is still the best possible.
The operator expression of (1.1) can be stated as follows: If

thenm

N|=
—~
—_
[\
~—

= {a = {amtilllallz == (Y a?)2 < oo}

is a space of real sequences, T : [ — [? is a linear operator, such that for a = {a,,} €
I2, there exists a unique ¢ = {c,} € [?, satisfying
[e.e]

¢n = (Ta)(n) = e

m=1

am

(n € N), (1.3)
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then for b = {b,} € I?, the inner product of T'a and b is defined as follows:

(Ta,b):(c,b):Z(Zm+n szﬂ (1.4)

Indicating the norm of a as ||al|; = (320, a2)z, we may rewrite (1.1) as follows:
(Ta,b) < 7l||al|2||b||2, where ||a||2, ||b]|2 > 0. The equivalent form is stated as follows:
|Tal|2 < 7||a||2, which makes ¢ € [? and ||T||» < 7. It can be written in an equivalent

form to (1.1) as follows:

S ma_’:n)z <Y al, (1.5)

2

S
o
3
I
o
S
[
A

where the constant factor 7 is the best possible. Hence the Hilbert’s operator T°
defined by (1.3) is bounded and ||T|| = 7 (cf. [3]).

Similarly we may define Hilbert’s integral operator T as follows: If L?*(0,00) is a
real space of functions, T : L?(0,00) — L?(0,00), such that for any f € L*(0, 00),
there exists only h = T'f € L*(0, o), satisfying

T =nw = [

x (y € (0,00)). (1.6)

Then for g € L*(0,00), the inner product of Tf and g is defined as follows:

~. [ [ flz) [ [ f(@)g(y)
(Tf,g)—/o (0 mdx)g(y)dy—/ / x—ﬂ/dxdy- (1.7)

Defining the norm of f by ||f|[ = (J;~ f2 )dz)z, we may rewrite (1.2) as follows:

(Tf,9) < x||fl2]|g]l2, and prove that!! [|Tf||, < 7||f||> and ||T|| = . Hence we
can get the equivalent form of (1.2) as follows

/OOO</OOO £<—f>ydx)2dy <7 /OOO fA(z)dz, (1.8)

where the constant factor 72 is still the best possible.

Hilbert’s inequalities (1.1) and (1.2) are important in mathematical analysis and
its applications. In the past 100 years, a large number of mathematicians have
investigated the subject of Hilbert’s inequalities as well as Hilbert-type inequalities
in a very broad context and proved a variety of several inequalities. In the present
paper, we provide an overview of the study of Hilbert-type inequalities including
(1.1) and (1.2) depending upon parameters.

2. HILBERT’S INEQUALITY WITH ONE PAIR OF CONJUGATE EXPONENTS

In 1925, G. H. Hardy provided the best extensions of (1.1) and (1.5) by introducing
one pair of conjugate exponents (p, q)(% + % =1)asl’l: If p > 1,a,,b, > 0,n € N,
such that 0 < >° a2 < oo and 0 < ) 7, b% < oo, then

PP i NEO DAL (2.1)

n=1 m=1
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(o SINe o]

Z<Z marn sm ) Za (2.2)

n=1 m=1
where the constant factors 7/sin(%) and [r/ sm(p)]p are the best possible, and in-
equalities (2.1) and (2.2) are equivalent. For p = ¢ = 2, inequality (2.1) reduces
o (1.1), and (2.2) reduces to (1.5). We name inequality (2.1) Hardy-Hilbert’s in-
equality. The integral analogues of (2.1) and (2.2) are indicated as follows!"l: If
f(x), g(x) are non-negative measurable functions, such that 0 < [;° fP(z)dz < oo
and 0 < [ ¢?(z)dz < oo, then

/0/0 fngyy /f” dxi»/ (r)dr)t,  (2.3)
/ / :B+y sm ) / Sl (2.4)

where the constant factors 7/sin(%) and [r/ sm(;{)]p are the best possible, and in-
equalities (2.3) and (2.4) are equivalent. For p = ¢ = 2, inequality (2.3) reduces to
(1.2), and (2.4) reduces to (1.8). Inequality (2.3) is called Hardy-Hilbert’s integral
inequality. In 1934, Hardy, Littlewood and Polya [0] gave some important appli-
cations of (2.1)-(2.4). For the general homogeneous kernel of —1—degree, a basic
theorem was given as follows (see [6], Theorem 319, Theorem 318 and Theorem 336):

Theorem 2.1. Ifp > 1,1 5+ l =1,k(z,y) is a homogeneous function of —1—degree,
satisfying k(ux,uy) = 1k(:r; Y)(u,z,y > 0), k = [k uVPdu is a finite
number, and f(x),g(x) are non-negative measumble functzons then the following
equivalent inequalities hold:

/OOO /OOO E(z,y)f(x)g(y)dedy < k(/oOO fp(;c)d:c)i(/ooo ¢4 (x)dz)s, (2.5)

/OOO(/OOO k(xz,y)f(z)dz)Pdy < kP /OOO fP(2)dz, (2.6)

where the constant factors k and kP are the best possible.
If both k(u, )u="? and k(1,u)u" are decreasing functions, one still has the
following equivalent inequalities with the best constant factors:

ZZkzmnamb <kZ %qu% (2.7)

n=1m=1

ZZk‘mnam”<k‘pZa” (2.8)

ForO<p<1, ifk= fo k(u, 1)u=VPdu is ﬁmte, then one has the reverse forms
of (2.5) and (2.6).

Remark 2.2. (a) Hardy, Littlewood and Polya [6] had not proved that the constant
factors in (2.5), (2.6), (2.7) and (2.8) are the best possible. This is still an essential
open problem. (b) Another open problem is to prove the reverse and reverse-type
forms of inequalities (2.5)-(2.8).
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For some particular types of functions of k(z,y) (adding as well some conditions
upon (2.3) and (2.5)), we obtain some classical Hilbert-type inequalities as follows:

(i) For k(z,y) = I—}ry, since k = m/sin(7), (2.5) and (2.6) reduce to (2.3) and
(2.4), (2.7) and (2.8) reduce to (2.1) and (2.2);

(i) for k(z,y) = since k = pq, (2.5) -(2.8) reduce to

max{z y} ’

/ / max{x y}dxdy<PQ/ f(x d:c)zlz(/ Iz )dx)%, (2.9)

/ / max{ac y} z)*dy < (pq) / fP(x (2.10)

SIS n}wz@“zbzé e
n=1m=1

Z Z max{m n} (pa)” 2_ (2.12)

(iii) for k(z,y) = In(z yy)7 since k = [rr/ sm(p)] (2. ) (2.8) reduce to
/ /Oo o x/y ) W gray < [ﬂ/sin<g)]2( Oof”(x)dx)é(/ooogq(m)dm)é,
’ (2.13)
= W) [
/0 (/o x—y du)'dy < [Sin(%)] /0 fP(z)dz, (2.14)
2:12 111(77;{?1)2771% = [smﬂz ]2(2 2)7( qu )s, (2.15)

(Z ln(::/_nzlam < Sm 2p Z av. (2.16)

Hardy, Littlewood and Polya [6] proved various multlple generalizations of (2.5)
and (2.7). In [0], it was introduced a pair of non-conjugate exponents (p, q) and the
following was proved. If p > 1, l—i-l >1 O<)\:2—(l+$) <1, then

ZE—J’:‘; DDA ST

n=1

//f dxdy<Kp’ /fp dm)l(/ooogq(x)dw)é, (2.18)

where K (p, q) is the best value only for A = 1. In 1937, Levin [7] proved an extension
of (2.18) for the kernel

n=1 m=1

1
K

In 1951, Bonsall [¢] considered the forms of (2.17) and (2.18) in the case of general
kernel (but the constants are not the best possible unless (p, q) is a pair of conjugate
exponents). In 1991, Mitrinovic, Pecaric and Fink [9] provided an extensive analysis
of these inequalities in their book.

(z,y € (=00,00)).
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3. HILBERT’S INEQUALITY WITH AN INDEPENDENT PARAMETER

In the period 1979-2002, a number of mathematicians investigated (1.1) and (1.2)
in several ways as follows:
(a) Hu [10] provided an improvement of (1.2) (for f = g) as follows

//fxﬂ dxdy<7r/ o dx——/ () cos Vade)2,  (3.1)

and then he obtained some interesting estimates (see [11]).
(b) In 1998, B.G.Pachpatte provided a proof of the following inequality that is

similar to (1. 2) by using Jensen’s inequalityl' “:

/ / o ddy< V— b( / (a — ) f*(z)dz /Ob(b—x>g'2(x>dx>%. (3.2)

For additional results the readers are referred to [13].
(c) In 1999, Gao [11] obtained the following improvement of (1.2) by applying
techniques from Algebra and Mathematical Analysis:

//f dxdy<7r 1— /f2 dx/ 2(z)dz)z,  (3.3)

Where R (HgH ||fH)27u == \/g(ga e),'U =V 27T<f7 €_S>7e(t> = Ooo z—_i-stds

(d) In 2002, K. Zhang [15] gave an improvement of (1.2) by using operator theory

as follows:
/ / f@)aly) . dy
o Jo THY
T o o0 o0 1
< U Pads [ g ([ sl (34)
V2'Jo 0 0
(e) In 1991, Xu et al. [16] proved the following inequality:
ZZ i[n— 9402 i[w— 9 2y (3.5)
n=1 m=1 m + n n=1 \/ﬁ n=1 \/ﬁ
where 6 = 1.1213". The proof is as follows: By Cauchy’s inequality,
= = 1 m. 1 n. 1
= —)dam||(— 7bn
;;Wh% ;mzlern[(n)‘*a JHC) 104
< Q_wnay Y wm)b)z, (3.6)
n=1 n=1
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Setting w(n) =m — %, it follows that

o) =[r— 3 ()2

— m+n

By applying methods from Mathematical Analysis, we obtain 6(n) > 6 = 1.1213".
Following the same method, Xu at al [1 7] proved a strengthened version of inequality
(2.1) in the following form:

0
w(n) <m— ﬁ(n e N,0 =1.1213"),

and by (3.6), it follows that inequality (3.5) is valid.
By the same way, Xu et al.[17] also gave a strengthened version of (2.1) as follows:

o0

T p—1 1t
ZZ m+n Z[sin(ﬁ) nl/p+n*1/q]a”}p
n=1 p

n=1 m=1

| .
ik
X{Z sin( nl/q—i—n 7ot

In the year 1997-1998, Yang and Gao [18], [19] applying methods from [16], [17]
proved a strengthened version of (2.1) in the following form:

1— 1Lna, T 1
ZZ m+n {Z sin(Z) nl/g]aﬁ}p{;[sm(%) N nl/q ] b,

n=1m=1

where 1 —~ = 0.42278433" (~ is the Euler constant). In 1998, again by applying the
approach of weight coefficient, Yang [20] first introduced an independent parameter
0<A<1and proved an extension of inequality (1.2) as follows:

/ / f H@9W) 4. g, <B(; ;)(/ 1‘*J”(l")dw/Oooiv1 g (@)de)E, (37)

where B(u,v)(u,v > () is the Beta function. For A = 1, (3.7) reduces to (1.2).
In 1999, Kuang [ ] proved another extension of (1.2) in the form :

Since then several mathematicians proved a number of best extensions of (1.1), (1.2),
(2.1) and (2.3) (cf. [22]-[31]). For example,

(a) in 2001, Yang [32] proved an extension of (1.1) in the following form : For
0 < A <4, then

A A - 1
ZZ b < B g 0ot otk (3.9)

n=1m=1

x(;vhe)re B(%7 %) is the best possible; Hong [33] also proved a multiple extension of
1.2).
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(b) In 2002, Yang [31] obtained another extension of (1.1) as follows:

ZZmA+nA /\sm {an 1)(1— Aap} {Zn(q 1)(1— )\be}q (3.10)

n=1 m=1

where the constant factor 37Ty (0 < A < 2) is the best possible.
P

(c) In 2003, Yang and Rassias [35] studied the way of weight coefficient and
introduced independent parameters to prove certain improvements as well as best
extensions of Hilbert-type inequalities.

4. HILBERT’S INEQUALITY WITH TWO PAIRS OF CONJUGATE EXPONENTS

In 2004, Yang [30] proved the dual form of (2.3) in the following form:

Z Z —— sin?ﬁ) (Do nrar)r (3o n2b)s, (4.1)

n=1m=1

where 7/sin(%) is the best possible. For p = ¢ = 2, both (4.1) and (2.1) reduce to
(1.1). This means that there are two different best extensions of inequality (1.1).

Yang [37] proved an extension of inequality (2.3) by introducing two pairs of
conjugate exponents and an independent parameter as follows: If p,r > 1, % + % =
L,I4+1=11>0,f9>0such that 0 < ||f||p0 := [[° 2?01 fr(x )dz]r < oo
and 0 < |[g]|g= == [~ xq(l_%)_lgq(x)dx]% < 00, then

T
[ L ey < sl (42)

where the constant factor m/[Asin(T)] is the best possible. In 2005, Yang et al. [35]
gave a best multiple extension of (2.3) and deduced the following particular result:

| / Tty < B 1 fllol 9l (1.3)

where the constant factor B (— ;) is the best possible.
For A =1,7r = ¢q,s = p, both (4.2) and (4.3) reduce to (2.3); For A\=1,r =p,s =
q, both (4.2) and (4.3) reduce to the dual form of (2.3) as:

/OOO /OOO %g;y)dxdy < SH:E%)(/OOO xp_zfp(iv)dif)’l’(/ooo 21y (a)dr)s. (44)

In 2005, Yang [39] gave an extension of (3.9) and (3.10) with two pairs of conjugate
exponents and two parameters o, A > 0(a\ < min{r, s}) as

> = 1 )\ )\ > a 1 s a\ 1
_B - p(l_T)_l p ) q(l—T)—lbq g 4
2D ey < Q2 DI AP )i, (45)

n=1 m=1
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where the constant factor £B(2,2) is the best possible. In [39] a reverse type
inequality of (4.5) was obtained as follows: for 0 < p <1,

1 A A
ZZ ma+na EB(;’E)

n=1 m=1
x{2[1—9p< =7 1ar 5 {3 pa= -1y (4.6)
n=1 n=1

where the constant £ B(2,2) is the best possible (0 < 6,(n) = O(—x7) < 1).
In 2006, Hong [10] gave a best extension of (4.2) and (4.3) with the kernel

1
He ) = (e ey

(a,8,A>0;z,y € RY}).

Brnetic et al. [11] considered an extension of (4.3) with the general homogeneous
kernel k(z,y). A number of mathematicians have also considered an operator for-
mulation of (2.5) and (2.6).

Suppose tha t k(z,y) > 0 is symmetric with k(y,z) = k(x,y), and ko(p) =
fo dy (r = p,q;x > 0) is a finite number independent of x. Define

Hllbert type mtegral operator T' : L"(0,00) — L"(0,00) (r = p,q) as follows: for
f(>0) € LP(0,00), there exists a unique h = T'f € L?(0,00), such that

(TF)(y) = h(y) = / k(e y) f@)d, y € (0,00). (4.7)

Then we may define the formal inner product of T'f and ¢ as follows

(Tf,9) = h(y / / (z,y) f(2)g(y)dzdy. (4.8)

Yang [12] proved that T is bounded and ||T'|| < ko(p); if for € > 0 small enough, the
integral fooo y)( ) = dy = k<(p) is also a finite number independent of z > 0, and
k-(p) = kolp) +o(1)(e — 0%), then ||| = ko(p); i [[T]] > 0, f(= 0) € LP(0, 0), g(=
0) € L1(0,00) and [|f|[, = (f," f7(x)dx) > .|lgll; > 0, then one has two equivalent
inequalities as follows:

(Tf,9) <WTI-(1Al - Nlglles NTf 1l < TN - 11, (4.9)

where the constant factor ||T|| is the best possible.
Note. In particular, for k(z,y) being —1 —degree homogeneous, inequalities (4.9)
reduce to (2.7)-(2.8)(in the symmetric kernel).

In 2006-2007, Yang et al. [13]-[18] also considered (4.9) in the cases of inner
product spaces, the dispersed space I"(r = p, ¢q) and the multiple integral operator
T. In 2008, Yang et al. [19],[50] considered some conditions which make sure the

Hilbert-type integral operators are bounded.

5. A BASIC THEOREM OF HILBERT-TYPE INEQUALITY WITH PARAMETERS

If ky(z,y) is a measurable function, satisfying for A\, u,z,y > 0,
k)x(um7 Uy) = U_Ak}\(l‘, y)a

then we call ky(z,y) the homogeneous function of -A-degree. In 2009, Yang [51]
obtained the following result.
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Theorem 5.1. Suppose that p,r > 1, l + l =1, l + 1 =1,A>0,k\(z,y)(>0) is

a homogeneous function of —\-degree, and k:,\ fo (u, 1) Ur ~du is a positive
number for all (r,s). If f(x), g(z) are non- negatwe measurable functions,

< Wl = ([ 00 Pyl <
0
and -
0 < [lgllyw = [ / 290-D19(2)da]t < oo,
0

then we have the equivalent inequalities as:

I = / / (2, 9) £ (2)g(w)dzdy < ka ()| f]pullg

[ (5.1)

Iy = / g5 / () f (@) de)dy < K ()| f]12. (5.2)

where the constant factors ky(r) and k5 (r) are the best possible.

If both k(u, )u™*~! and k(1,u)u*"~1 are decreasing functions, which are
strictly decreasing respectively in a subinterval, a, b, > 0, such that

0 < |la|lpw = Zn” ) ap%<oo

and -
0 < [bllgee = [>_ 0/~ 71]7 < o0,
then we have the following equivalenttllequalities with the best constant factors:
L= 303 kalm )by < ka(r)lfal ol e (53)
n=1m=1
D= 30 ka(m,n)ag)? < KL(r)[all?. (5.4)
For 0 < p <1, we ha\rzle:%che reveylrrLs:e1 forms of (5.1) and (5.2). If
k(u,1) = O(%)(a > %;u — 00),

and in a subinterval containing 1, ky(u, 1) > 0, then we have three equivalent reverse

forms of (5.3) and (5.4) as

I > ka(r) {31 = Oyl 7} b (5.5)
n=1
Ty > KR(r) 2[1 — O(r, n)]n =D al, (5.6)
n=1
> ka m,n)b)? < K ()] bl]5.o. (5.7)

mzl[l—@,\rm )]t

where the constant factors are the best p0881b1e (Ox(r,n) = O(ﬁ) € (0,1)(N > 0)).
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We only prove the case of integrals (for the case of series, see [71]).

Proof. (a) For p > 1, setting ky(s ) as: ky(s = [[Tk(1 ,u)us ~'du, then it follows
ka(r) = ka(s). In fact, setting v =1, we obtaln

. o 1 -~ d o

Ta(s) :/ k(L - 1 :/ ka(v, D)o?~do = k(r).
0 v v 0

For z,y € (0,00), define the weight functions wy(r,y) and w,(s, x) as:

A A

o = o0 Tr
arlr) = [ o)L m(sn) = [ b
0 X v 0 ’y s
Setting = yu in the integral wy(r,y) and y = zv in the integral w, (s, z), we find
that wy(r,y) = kx(r) and @y (s,x) = kx(s). Then it follows that

wr(r,y) = wa(s,x) = kz(r), for z,y € (0,00). (5.9)

dy. (5.8)

By Hélder’s inequality!”“], in view of (5.8) and (5.9), for y > 0, we have

- = 2(1-2)/a (1-2)/p
(| mwwﬂwwwzy/Axakawgwm%Avu@p

A A

00 x(l—*)(P (1—*)(11—1)
/ O AT dﬂ/ INCRY LA WV
0 Yy~ -
(

[ L(1=2)(p-1)
:[mmrz/s/’muw%:FT—ﬂ@mm (5.10)
0 B

Then in view of (5.8), (5.9) and (5.10), by Fubini’s Theorem!’"!, it follows
x(l—— )(p—1)
ho< P [ ke ey

x(l—éxp )
= o [ b@@—;;;—%ﬂ@ﬂm

= / wa(s, z)xP P (1) de = KX (IFIP - (5.11)

We need to show that (5.10) keeps the strict sign-inequality. If for a fixed y > 0,
inequality (5.10) keeps the form of equality, then [7“], there exist constants A and
B, such that they are not all zero and

1-2)(p-1) (1-2)(¢—1)
Agj—fp< ) = yT
y' R
It follows AzP=2) fP(z) = Byt=%) qe. in (0,00). We affirm that A # 0 (oth-
erwise B = A = 0). Hence 2#(=2)71f2(z) = [Byt1=3)]/(Az) ae. in (0,00). This
contradicts the fact that 0 < ||f]|,» < co. Hence (5.11) still preserves the strict
sign-inequality and thus (5.2) is satisfied. By Hélder’s inequality, we obtain

I)\:/O [y%lJr% ; /{:)\(ZE,y)f(x)dx][yifég(y)]dySJ%HQHWD. (5.12)

IN

a.e.in (0, 00).
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In view of inequality (5.2), one obtains (5.1). Suppose that (5.1) is valid. Setting
pA 0 —

9) =y [y ka(z,y) f(x)de)P~", then ||g||? = Jy. If Jx = oo, then by (5.11),

it leads to a contradiction; if J = 0, then (5.2) is naturally valid. Assuming that

0 < Jy < oo, by (5.1), we find

0 <llgllfew = JIx = Ix < Ea()[[fllpellglle= < 00,

l/p < k()| f|lpw, and we obtain (5.2), which is equivalent to (5.1).
For 0<e< mm{p’\ q)‘} setting f.(z) = g.(z) = 0, for x € (0,1); f(z) =

A_ e

zr !t go(x) = i , for x € [1,00), if there exists a constant 0 < k < ky(r),
such that inequality (5.1) is still valid when we replace ky(r) by k, then

ldives

Home [ [ b @e.0)dedy < bl Llllolle =k (513
0 0

Setting = y/u in the following, by using Fubini’s Theorem and (5.13), we find

00 £_ Y A_E_
b e [y ) Laddy
1 0

0 y .
= 8/ y_l_g[/ kzk(l,u)u%JrE_ldu]dy
1 0

1 o0 y .
= / kx(1, u)u v du—i—s/ yle[/ k,\(l,u)u%’LTldu]dy
0 1 1
1 ] e8]
= / /{:A(l,u)u§+;1du~l—€/ [/ y_l_ady]k:,\(l,u)u%+§fldu
0 1 u
1 o)
= / ka(1, u)us O du+/ ka(1, u) ~du. (5.14)
0 1

Since /@(1 u)u%+%—1 < (1, wWui~l u e (0,1); k(1 u)uz—*—1< ka(1, w)us !,
u € [1,00), and fo (1, w)us"du < ky(r fl kn(1,u)us"*du < ky(r), then by
Lebesgue’s Control Convergence Theorem!””!, it follows

1 1
/ kk(l,u)u%Jr%_ldu = / Ea(1, u) “ldu + 0,(1),
0 0
/ ka(1, u)uéfifldu = / Ea(1,u)us Ty + 02(1)(e — 0T).  (5.15)
1 1

In view of (5.14) and (5.15), it follows k& > ky(r)(e — 07). Hence k = ky(r) is the
best value of (5.1). We conform that the constant factor in (5.2) is the best possible.
Otherwise, by (5.12), we can get a contradiction that the constant factor in (5.1) is
not the best possible.

(b) For 0 < p < 1, by reverse Hélder’s inequality applying the same way, we can
obtain the equivalent reverse forms of (5.1) and (5.2). Suppose that there exists a
constant K > ky(r), such that the reverse of (5.1) is valid if we replace ky(r) by K.
In particular, for 0 < e < ¢y < %”\ setting f, ge as (a), we can obtain the following
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inequality:

1 o)
K < H)\:/ ka(1, u) ldu—i-/ k,\(l,u)uéf%ldu
0 1

1 o]
< /km wusdu + / ka(1,w)us " du. (5.16)
0 1

Setting (ro,s): ~ = % + % — 2 we find rg > 1, % + % =1, and

&

g\’

/ k,\(l,u)u%_i_ldu < kx(rg) < 0.
1

By making use of Lebesgue’s Control Convergence Theorem, we obtain the second
expression of (5.15). Because of (5.16), it follows K < ky(r)(e — 01). Hence the
constant factor K = ky(r) in the reverse of (5.1) is the best possible. By the reverse
inequality of (5.12) and the above result, we can show that the constant factor k% (r)
in the reverse of (5.2) is still the best possible. O

Remark 5.2. (a) For A = 1,5 = p,r = ¢, it follows that (5.1) and (5.2) re-
duce,respectively,to (2.5) and (2.6). It is obvious that Theorem 5.1 is partially an
extension of Theorem 1.1; (b) we still can define an operator T to express Theorem
5.1 in the form (4.8); (c) in particular, for ky(z,y) = $A+yx, (m+y)A in (5.1), we have

(4.2) and (4.3); for ky(z,y) = L @/9) (X > 0) in (5.1), we obtain!” )

max{z™ g ]’ A —g
<[ flo)g(y) r
/ / max{x*,y*}dxdy< )
> In( x/y T )
EUEZEN 1
L[ SR @ty < (g lbelllae, 619

which are extensions of (2.9) and (2.13); for k(z,y) = —=9 (A > 0), (0 < A < 1)

max{z?,y*}

(5.17)

n (5.1), we obtain!”"h /]

ool 2 2
| [ R D daay < e (519

max{z*, y*}

A A
/ / |x_y|xdd <BA-AD)+ B A lpullgllem: (520

which are new Hilbert-type integral inequalities with the particular kernels and best
constant factors.
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