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ON THE NATURE OF SOLUTIONS OF THE
DIFFERENCE EQUATION XN+1 = XNXN−3 − 1

C. M. KENT1∗ AND W. KOSMALA2

Abstract. We investigate the long-term behavior of solutions of the difference
equation

xn+1 = xnxn−3 − 1 , n = 0 , 1 , . . . ,

where the initial conditions x−3 , x−2 , x−1 , x0 are real numbers. In particular,
we look at the periodicity and asymptotic periodicity of solutions, as well as the
existence of unbounded solutions.

1. Introduction and preliminaries

Recently there has been a surge of interest in studying nonlinear difference equations
which do not stem from differential equations (see, for example, [1]–[37] and the
references therein). Usual properties which have been studied are the boundedness
character ([8, 14, 16], [29]–[31], [34, 36, 37]), the periodicity [8, 14], asymptotic
periodicity ([17]–[20], [22]), local and global stability ([1, 8, 14, 16, 17], [29]–[35]),
as well as the existence of specific solutions such as those that are monotonic or
nontrivial ([2, 3, 5, 9, 10, 16, 17], [23]–[28]).

In this paper we study solutions of the difference equation

xn+1 = xnxn−3 − 1 , n = 0 , 1 , . . . . (1.1)

Equation (1.1) belongs to the class of equations of the form

xn+1 = xn−lxn−k − 1 , n = 0 , 1 , . . . , (1.2)

with particular choices of k and l, where k , l ∈ {0 , 1 , . . .}. The relatively simple
appearance of Eq.(1.2) is deceiving in that its behavior changes significantly for
different choices of k and l. The cases (1) l = 0 and k = 1, (2) l = 1 and k = 2,
and (3) l = 0 and k = 2 have recently been investigated in papers [10, 11, 12]. This
paper can be regarded as a continuation of our systematic investigation of Eq.(1.2).

Note that Eq.(1.2) has two equilibria:
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x̄1 =
1−
√

5

2
and x̄2 =

1 +
√

5

2

(i.e., the Golden Number and its conjugate). For the sake of comparison in the
sequel, we summarize the important results for the three different choices of k and
l in the general equation xn+1 = xn−lxn−k − 1.
(1) l = 0 , k = 1: The negative equilibrium x̄1 is locally asymptotically stable, and

the positive equilibrium x̄2 is unstable and hyperbolic. There are no eventually
constant solutions, and there do not exist periodic solutions with prime period
two. There exist exactly three prime period-three solutions with the following
sets of initial values:

(i) x−1 = x0 = −1;
(ii) x−1 = −1 , x0 = 0;

(iii) x−1 = 0 , x0 = −1.
The interval (−1 , 0) is invariant, and it is conjectured that every solution in
(−1 , 0) converges to the negative equilibrium x̄1 contained in (−1 , 0). A solu-
tion {xn}∞n=−1 is unbounded if, for example,

(i) x−1 , x0 > x̄2, in which case the solution is strictly increasing to +∞; or
(ii) x−1 , x0 < −1, in which case the subsequences {x3n}∞n=0, {x3n+2}∞n=0 are

strictly decreasing to −∞ and the subsequence {x3n+1}∞n=0 is strictly in-
creasing to +∞.

(2) l = 1 , k = 2: The negative equilibrium x̄1 is nonhyperbolic (its stability nature
is unknown) and the positive equilibrium x̄2 is unstable. There are no eventually
constant solutions, and there do not exist periodic solutions with prime period
two, three, or four. There exist infinitely many period-five solutions each of
which has its set of initial values satisfy one of the following:

(i) x−2 = a , x−1 = b , x0 =
a+ 1

ab− 1
, a , b ∈ R, ab 6= −1;

(ii) x−2 = −1 = x−1 = −1 , x0 = c, c ∈ R;
(iii) x−2 = a , x−1 = 0 , x0 = a− 1, a ∈ R.

The interval (−1 , 0) is invariant, and every solution in (−1 , 0) converges to
a period five solution in (−1 , 0). A solution {xn}∞n=−1 is unbounded if, for
example,

(i) x−2 , x−1 , x0 > x̄2, in which case each of the subsequences {x2n−1}∞n=0,
{x2n}∞n=0 is strictly decreasing to −∞; or

(ii) x−2 = a , x−1 = b , x0 >
a+ 1

ab− 1
, a , b > 0 and ab > 1, in which case the

solution tends to +∞.
(3) l = 0 , k = 2: The negative equilibrium x̄1 and the positive equilibrium x̄2 are

both unstable and hyperbolic. There are no eventually constant solutions, and
there do not exist periodic solutions with prime period three or four. There
exist exactly two prime period-two solutions with the following sets of initial
values:

(i) x−2 = 0 , x−1 = −1 , x0 = 0;
(ii) x−2 = −1 , x−1 = 0 , x0 = −1.

The interval (−1 , 0) is invariant, and under certain conditions, a solution in
(−1 , 0) converges to the two-cycle {−1 , 0}. There also exist solutions which
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converge to the negative equilibrium x̄1 in (−1 , 0). A solution {xn}∞n=−1 is
unbounded if, for example, x−1 , x0 > x̄2, in which case the solution is strictly
increasing to +∞.

2. Periodic solutions

In this section we prove some results regarding periodicity of solutions of Eq.(1.1).
Note that when l = 1 and k = 2 in the general equation

xn+1 = xn−lxn−k − 1 ,

the results obtained are essentially the same as those below, i.e., there are no prime
period-two, three, or four solutions and there exist infinitely many period-five solu-
tions (see [11]).

Theorem 2.1. Eq.(1.1) has no eventually constant solutions.

Proof. Suppose that {xn}∞n=−3 is an eventually constant solution, x̄, of Eq.(1.1),
which cannot be zero. Then there is an integer N ≥ −2 such that xN = xN+1 =
xN+2 = xN+3 = · · · = x̄. In this case, Eq.(1.1) gives xN+3 = xN+2xN−1 − 1, which
implies that x̄ = x̄xN−1 − 1, and thus we have that

xN−1 =
x̄+ 1

x̄
= x̄ .

Repeating this procedure, we obtain xn = x̄ for n ≥ −3, a contradiction. Hence,
there are no eventually constant solutions. �

Theorem 2.2. Eq.(1.1) has no prime period-two solutions.

Proof. Suppose there exists a prime period-two solution, {xn}∞n=−3, of Eq.(1.1), with
initial values x−3 = a , x−2 = b , x−1 = a , x0 = b, where a , b ∈ R and a 6= b. Then
x1 = ab− 1 = a and x2 = ab− 1 = b.
It follows that a = b, a contradiction. �

Theorem 2.3. Eq.(1.1) has no prime period-three solutions.

Proof. Suppose there exists a prime period-three solution, {xn}∞n=−3, of Eq.(1.1),
with initial values x−3 = a , x−2 = b , x−1 = c , x0 = a, where a , b , c ∈ R. Then,
upon computation of x1 , x2 , x3, we obtain the three equations

a2 − 1 = b , (2.1)

b2 − 1 = c , (2.2)

and

c2 − 1 = a . (2.3)

From Eqs.(2.1)-(2.3), we have that a, b, and c all satisfy the equation x8 − 4x6 +
4x4−x− 1 = 0, which is equivalent to (x2−x− 1)(x6 +x5− 2x4−x3 +x2 + 1) = 0.
Suppose that a satisfies x2 − x − 1 = 0. Then either a = x̄1 or a = x̄2. By
Eqs.(2.1)-(2.3), it follows that either
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a = b = c = x̄1 or a = b = c = x̄2 .

Hence, {xn}∞n=−3 is the trivial solution, which is impossible. Consequently, we must
have that a satisfies the equation x6+x5−2x4−x3+x2+1 = 0. By similar arguments
as above, we must also have that b and c satisfy x6 + x5 − 2x4 − x3 + x2 + 1 = 0.

Now, let

P (x) = x6 + x5 − 2x4 − x3 + x2 + 1 .

By Descartes’ rule, P has
(1) either two positive zeros or none;
(2) either two negative zeros or none.

We claim that if P has two positive zeros, then both must be less than one. For, if
we let

f(x) = x6 + x5 + x2 + 1 and g(x) = 2x4 + x3 ,

then f(1) > g(1) and, for x ≥ 1,

f ′(x) = 6x5 + 5x4 + 2x > 6x3 + 5x3 = 11x3 = 8x3 + 3x3 ≥ 8x3 + 3x2 = g′(x) .

Thus, a , b , c ∈ (−∞ , 0) ∪ (0 , 1). Suppose a ∈ (0 , 1). Then, by Eqs.(2.1) and (2.2),
c ∈ (−1 , 0). This, together with Eq.(2.3), implies that a ∈ (−1 , 0), a contradiction.
Therefore, a ∈ (−∞ , 0). Similarly, b , c ∈ (−∞ , 0). However, there cannot be
greater than two negative zeros of P . Thus, a = b, a = c, or b = c. From Eqs.(2.1)-
(2.3), we then have

a = b = c = x̄1 or a = b = c = x̄2 ,

and therefore {xn}∞n=−3 is the trivial solution, which again is impossible.
We conclude that a , b , c, as the initial values of the prime period-three solution
{xn}∞n=−3 of Eq.(1.1), do not satisfy the equation x8 − 4x6 + 4x4 − x− 1 = 0. This
gives us a contradiction, and, hence, Eq.(1.1) has no prime period-three solutions.
The proof is complete. �

Theorem 2.4. Eq.(1.1) has no prime period-four solutions.

Proof. Let {xn}∞n=−3 be a period-four solution of Eq.(1.1), with initial values x−3 =
a , x−2 = b , x−1 = c , x0 = d, where a , b , c , d ∈ R. We consider the following four
cases and show that {xn}∞n=−3 must be trivial.
Case 1.: Suppose that a = 0. Then x1 = ad− 1 = −1 = a, which is a contradic-

tion.
Case 2.: Suppose that a = 1. Then x1 = a and so x2 = ab − 1 = −b − 1 = b,

from which it follows that −1 = 0, an impossibility.
Case 3.: Suppose that b = 1. Then x1 = a, x2 = b, and so x3 = bc−1 = c−1 = c,

which implies that −1 = 0. This is not possible.
Case 4.: Suppose that c = 1. Then x1 = a, x2 = b, x3 = c, and so x4 = cd− 1 =
d− 1 = d, which once again implies that −1 = 0. This is not possible.
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Therefore, a 6= 0, a 6= 1, b 6= 1, and c 6= 1, and from x1 = ad − 1 = a, x2 =
ab− 1 = b, x3 = bc− 1 = c, and x4 = cd− 1 = d, we have that

d =
a+ 1

a
, b =

1

a− 1
, c =

1

b− 1
, and d =

1

c− 1
, (2.4)

respectively. We can then write

d =
1

c− 1
=

1
1

b− 1
− 1

=
b− 1

1− (b− 1)
=
b− 1

2− b
=

1

a− 1
− 1

2− 1

a− 1

=
1− (a− 1)

2(a− 1)− 1
=

2− a
2a− 3

.

This, together with the fact that d =
a+ 1

a
, gives us

a+ 1

a
=

2− a
2a− 3

, or, equiva-

lently, a2 − a− 1 = 0. Thus, a = x̄1 or x̄2, and so from (2.4)

a = b = c = d = x̄1 or a = b = c = d = x̄2 .

Hence, {xn}∞n=−3 is the trivial solution, and we are done. �

We now present the main result of this section, which will play an important role
in the sequel.

Theorem 2.5. There exist prime period-five solutions of Eq.(1.1). Furthermore,
if {xn}∞n=−3 is a prime period-five solution of Eq.(1.1), then its set of initial values
satisfies one of the following:
(i) x−3 = 0 , x−2 = −1 , x−1 = −d− 1 , x0 = d (so x1 = −1), d ∈ R;

(ii) x−3 = −1 , x−2 = 0 , x−1 = −1 , x0 = d (so x1 = −d− 1), d ∈ R;

(iii) x−3 = a , x−2 = b , x−1 =
b+ 1

a
, x0 =

a+ b+ 1

ab
(so x1 =

a+ 1

b
), a , b ∈ R and

ab 6= 0.

Proof. Clearly, any solution {xn}∞n=−3 of Eq.(1.1) whose set of initial values satisfies
(i) x−3 = 0 , x−2 = −1 , x−1 = −d− 1 , x0 = d (so x1 = −1), d ∈ R, or

(ii) x−3 = −1 , x−2 = 0 , x−1 = −1 , x0 = d (so x1 = −d− 1), d ∈ R, or

(iii) x−3 = a , x−2 = b , x−1 =
b+ 1

a
, x0 =

a+ b+ 1

ab
(so x1 =

a+ 1

b
), a , b ∈ R and

ab 6= 0,
is periodic with prime period five. Hence there exist infinitely many prime period-
five solutions of Eq.(1.1).

Now, let {xn}∞n=−3 be a prime period-five solution of Eq.(1.1) with initial values
x−3 = a , x−2 = b , x−1 = c , x0 = d, where a , b , c , d ∈ R. Then

x1 = ad− 1 ≡ e ,
x2 = be− 1 = (ad− 1)b− 1 = a ,
x3 = ac− 1 = b ,
x4 = bd− 1 = c ,
x5 = ce− 1 = d ,
x6 = ad− 1 = e .

From this we obtain the following:
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a = abd− b− 1 , (2.5)

a = be− 1 , (2.6)

b = ac− 1 , (2.7)

and

c = bd− 1 . (2.8)

We consider three cases:
Case 1.: Suppose a = 0. Then x−3 = a = 0. From Eq.(2.7) we have x−2 = b =
ac − 1 = −1. Also, by Eq.(2.8) we have x−1 = c = bd − 1 = −d − 1, with
x0 = d. Note that x1 = ad− 1 = −1. Simple calculations show that these five
values repeat all over again. This gives the solution in Part (i).

Case 2.: Suppose b = 0. Then x−3 = a and x−2 = b = 0. From Eq.(2.8) we have
x−1 = c = bd − 1 = −1. Thus Eq.(2.8) gives us a = −1. Also x0 = d. Then
we have x1 = ad− 1 = −d− 1. Simple calculations show that these five values
repeat all over again. This gives the solution in Part (ii).

Case 3.: Suppose a 6= 0 and b 6= 0. Then we have the solution in Part (iii), where

x−3 = a ;

x−2 = b ;

x−1 = c =
b+ 1

a
from Eq.(2.7);

x0 = d =
a+ b+ 1

ab
from Eq.(2.5);

x1 = e =
a+ 1

b
from Eq.(2.6).

This completes the proof. �

Theorem 2.6. There exist solutions of Eq.(1.1) that are eventually periodic with
prime period five.

Proof. Let {xn}∞n=−3 be a solution of Eq.(1.1) with initial values x−3 = a , x−2 =
b , x−1 = c , x0 = 0, where a , b , c ∈ R. Then we calculate

x1 = −1 , x2 = −b− 1 , x3 = −bc− c− 1 , x4 = −1 , x5 = 0 , x6 = −1 ,

x7 = bc+ c , x8 = −bc− b− 1 .

From Theorem 2.5, it follows that {xn}∞n=4 is periodic with period five. �

Remark 2.7. There also exist eventually prime period-five solutions of Eq.(1.1)
with x0 6= 0. For example, consider the solution {xn}∞n=−3 with initial values x−3 =
1 , x−2 = 1 , x−1 = 1 , x0 = 1.
Then
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{xn}∞n=−3 = 1 , 1 , 1 , 1 , 0 ,−1 ,−2 ,−3 ,−1 , 0 ,−1 , 2 , . . . ,

and the last five values repeat.
Also, the solution {xn}∞n=−3 with initial values x−3 = −1 , x−2 = b , x−1 = c , x0 =
−1 , b, with c ∈ R, is eventually periodic with period five, where

{xn}∞n=−3 = −1 , b , c ,−1 , 0 ,−1 ,−c− 1 , c ,−1 , 0 ,−1 ,−c− 1 , . . . ,

and the last five values repeat.

3. Local stability

Here we study the local stability of the equilibrium points x̄1 =
1−
√

5

2
and

x̄2 =
1 +
√

5

2
.

Theorem 3.1. The positive equilibrium of Eq.(1.1), x̄2, is unstable.

Proof. The linearized equation associated with the equilibrium x̄2 is

xn+1 − x̄2xn − x̄2xn−3 = 0 .

Its characteristic polynomial is

Px̄2(λ) = λ4 − x̄2λ
3 − x̄2 .

Since

Px̄2(1) = 1− 2x̄2 = −
√

5 < 0 and lim
λ→+∞

Px̄2(λ) = +∞ ,

it follows that there is a λ0 > 1 such that Px̄2(λ0) = 0, from which the result follows
for the equilibrium x̄2. �

Remark 3.2. The negative equilibrium of Eq.(1.1), x̄1, turns out to be nonhyper-
bolic:

The linearized equation associated with the equilibrium x̄1 is

xn+1 − x̄1xn − x̄1xn−3 = 0 ,

and so its characteristic polynomial is

Px̄1(λ) = λ4 − x̄1λ
3 − x̄1 .

We then factor the characteristic polynomial as

Px̄1(λ) =

(
x2 − x− 1−

√
5

2

)(
x2 +

1 +
√

5

2
x+ 1

)
,

and determine its zeroes, which are

λ1 , λ̄1 =
1

2
± i1

2

√
2
√

5− 3 , λ2 , λ̄2 =
−1−

√
5

4
± i1

4

√
10− 2

√
5 .

Then, |λ1| = |λ̄1| < 1 and |λ1| = |λ̄1| = 1, and so x̄1 is nonhyperbolic.
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Open Problem 3.3. Determine the sability nature of the negative equilibrium of
Eq.(1.1), x̄1.

4. The case x−3 , x−2 , x−1 , x0 ∈ (−1 , 0)

This section considers the solutions of Eq.(1.1) with initial conditions in the in-
terval (−1 , 0). We first show that the interval (−1 , 0) is invariant, in the general
case xn+1 = xn−lxn−k − 1.

Theorem 4.1. Let {xn}∞n=−k be a solution of Eq.(1.2). If x−k , x−k+1 , . . . x−1 , x0 ∈
(−1 , 0), then xn ∈ (−1 , 0) for all n ≥ −k.

Proof. Let {xn}∞n=−k be a solution of Eq.(1.2) and suppose that x−k , x−k+1 , . . . x−1 , x0 ∈
(−1 , 0). Then x1 = x0x−k−1 ∈ (−1 , 0). From Eq.(1.2) and by induction, we obtain
the result. �

Note that there exist solutions, not all of whose initial conditions are in the interval
(−1 , 0), that eventually enter and remain in the interval (−1 , 0). For example,
suppose {xn}∞n=−3 is a solution of Eq.(1.1) with x−3 = a , x−2 = b , x−1 = c , x0 = d,
where a , b , c ∈ (−1 , 0], abc = 0, and d ∈ (−1 , 0). Then it is easy to show that there
exists N ≥ 2 such that xN , xN+1 , xN+2 ∈ (−1 , 0). By Theorem 4.1, xn ∈ (−1 , 0)
for all n ≥ N . Another example is when either a ∈ (−1 , 0), b , c , d ∈ [−1 , 0), and
any of b , c , d is −1 or d ∈ (−1 , 0), a , b , c ∈ [−1 , 0), and any of a , b , c is −1.

We now present some lemmas that are needed for a final result and conjecture on
the asymptotic periodicity of solutions in the invariant interval (−1 , 0).

Lemma 4.2. There exist infinitely many prime period-five solutions in the interval
(−1 , 0) and they are all of the form

{xn}∞n=−3 = a , b ,
b+ 1

a
,
a+ b+ 1

ab
,
a+ 1

b
, a , b , . . . ,

where a , b ∈ (−1 , 0) and a+ b+ 1 < 0.

Proof. From Theorem 2.5, there exist prime period-five solutions and they are of
the form
(1) {xn}∞n=−3 = 0 ,−1 ,−d− 1 , d ,−1 , 0 ,−1 , . . .; or
(2) {xn}∞n=−3 = −1 , 0 ,−1 , d ,−d− 1 ,−1 , 0 , . . .; or

(3) {xn}∞n=−3 = a , b ,
b+ 1

a
,
a+ b+ 1

ab
,
a+ 1

b
a , b , . . ..

Clearly, the former two forms cannot exist in the open interval (−1 , 0) for any value
of d. On the other hand, one can easily show that if a , b ∈ (−1 , 0) and a+b+1 < 0,

then
b+ 1

a
,
a+ b+ 1

ab
,
a+ 1

b
∈ (−1 , 0), and the proof is complete. �

Of course, if there is (as we consider below) convergence of solutions in the interval
(−1 , 0) to period-five solutions, these period-five solutions can conceivably include
solutions of the form {xn}∞n=−3 = 0 ,−1 ,−d − 1 , d ,−1 , 0 ,−1 , . . . or {xn}∞n=−3 =
−1 , 0 ,−1 , d ,−d− 1 ,−1 , 0 , . . ..
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Lemma 4.3. Let {xn}∞n=−3 be a solution of Eq.(1.1). Then {xn}∞n=−3 satisfies the
identity

xn+10 − xn+5 = xn+5(xn+9xn+2 − xn+7xn+4) , n ≥ 0 . (4.1)

Proof. We obtain the identity (4.1) through several backwards iterations of the right-
hand side of xn+10 = xn+9xn+6 − 1:

xn+10 = xn+9xn+6 − 1
= xn+9(xn+5xn+2 − 1)− 1
= xn+5xn+9xn+2 − (xn+8xn+5 − 1)− 1
= xn+5xn+9xn+2 − (xn+7xn+4 − 1)xn+5

= xn+5xn+9xn+2 − xn+5xn+7xn+4 + xn+5 ,

from which the result follows. �

Observe that from the identity (4.1), we obtain

xn+10 − xn+5 = xn+5[xn+2(xn+9 − xn+4)− xn+4(xn+7 − xn+2)] .

Then, taking absolute values of both sides, we obtain

|xn+10 − xn+5| ≤ |xn+5||xn+2||xn+9 − xn+4|+ |xn+5||xn+4||xn+7 − xn+2| ,
from which we can write

|xn+10 − xn+5| ≤ 2 ·max {|xn+5||xn+2||xn+9 − xn+4| , |xn+5||xn+4||xn+7 − xn+2|} .
Again from (4.1), we have

|xn+9 − xn+4| ≤ 2 ·max {|xn+4||xn+1||xn+8 − xn+3| , |xn+4||xn+3||xn+6 − xn+1|} ;

|xn+7 − xn+2| ≤ 2 ·max {|xn+2||xn−1||xn+6 − xn+1| , |xn+2||xn+1||xn+4 − xn−1|} .
Putting everything together, we end up with

|xn+10 − xn+5| ≤ 22 ·max {|xn+5||xn+2||xn+4||xn+1||xn+8 − xn+3| ,
|xn+5||xn+2||xn+4||xn+3||xn+6 − xn+1| ,
|xn+5||xn+4||xn+2||xn−1||xn+6 − xn+1| ,
|xn+5||xn+4||xn+2||xn+1||xn+4 − xn−1|} .

(4.2)

We continue this backwards iterative process up to that iterative step when one of
the arguments of the maximum function is found to contain any one of the following
differences in absolute value: |x2 − x−3|, |x3 − x−2|, |x4 − x−1|. This will mean that
the number of factors in each argument will be the same in the final inequality. In
actuality, it will turn out that if computations are performed as above, the argument
that will be the first to contain one of these differences in absolute value, |x2−x−3|,
|x3 − x−2|, or |x4 − x−1|, will be the last argument in the list of arguments of the
maximum function. At this point the iterative process will stop.
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Remark 4.4. We look at a generalization of the inequality (4.2) and introduce
some terminology, for the sake of convenience, together with some results that are
necessary for our final result below.

Generalization/Extension of (4.2) up through the final mth iterative step, where
m ∈ {0 , 1 , . . .} and for some q ∈ {5 , 6 , . . .}:

|xq − xq−5| ≤ 2m ·max
{∣∣∣x

p
(1)
1

∣∣∣ · · · ∣∣∣x
p
(1)
2m

∣∣∣ ∣∣xq(1) − xq(1)−5

∣∣ , . . . ,∣∣∣x
p
(m)
1

∣∣∣ · · · ∣∣∣x
p
(m)
2m

∣∣∣ ∣∣xq(m) − xq(m)−5

∣∣} .

(4.3)

Terminology:
(1) We refer to

∣∣xq(i) − xq(i)−5

∣∣, i = 1 , 2 , . . . ,m, as the ith absolute difference
in the ith argument. Without loss of generality, we assume that

∣∣xq(m) − xq(m)−5

∣∣ = |x2 − x−3| , |x3 − x−2| , or |x4 − x−1| .

(2) We refer to
∣∣∣x
p
(i)
1

∣∣∣ , ∣∣∣x
p
(i)
2

∣∣∣ , . . . , ∣∣∣x
p
(i)
2m−1

∣∣∣ , ∣∣∣x
p
(i)
2m

∣∣∣, i = 1 , 2 , . . . ,m, as the

ith collection of 2m factors (or the ith collection of m pairs of factors) in
the ith argument.

(3) We refer to the multiplicative factor 2m of the maximum function as
the multiplier of the maximum function. We emphasize here that the
exponent of the multiplier corresponds to the number of pairs of factors
in each argument.

Now, if {xn}∞n=−3 is a solution of Eq.(1.1) in the interval (−1 , 0), then the absolute
difference and every factor in each argument of the maximum function in Eq.(4.3)
is less than one, by Theorem 4.1. We can then make the following technical obser-
vation.

Observation:

Fix j ∈ {−3 ,−2 ,−1 , 0 , 1} and consider the set of terms Sj = {|x5n+j| : n =
0 , 1 , . . .}, i.e., consider every fifth term in the solution {xn}∞n=−3 starting with
x−3, x−2, x−1, x0, or x1. Then one can show that, with the collection of factors
in each argument of the maximum function in Eq.(4.3), every consecutive block
of eight factors will contain at least one element from Sj. So, if we make the
assumption that, say,

|x5n+j| <
1

221
, for all n ≥ 0 ,

then the product of factors in each argument of the maximum function in
Eq.(4.3) is such that∣∣∣x

p
(i)
1

∣∣∣ ∣∣∣x
p
(i)
2

∣∣∣ · · · ∣∣∣x
p
(i)
2m−1

∣∣∣ ∣∣∣x
p
(i)
2m

∣∣∣ < 1

2m
· 1

22m
.

Thus, from Eq.(4.3),

|xq − xq−5| <
1

22m
·max

{∣∣xq(1) − xq(1)−5

∣∣ , . . . , ∣∣xq(m) − xq(m)−5

∣∣} < 1

22m
,
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where

max
{∣∣xq(1) − xq(1)−5

∣∣ , . . . , ∣∣xq(m) − xq(m)−5

∣∣} < 1 ,

by Theorem 4.1.

Our final result states that if every fifth term in a solution of Eq.(1.1) in the
interval (−1 , 0) is ”small enough” in magnitude, then the solution will converge to
a period-five solution in the interval [−1 , 0].

Theorem 4.5. Let {xn}∞n=−3 be a solution of Eq.(1.1) in the interval (−1 , 0). Sup-
pose that for some j0 ∈ {−3 ,−2 ,−1 , 0 , 1}, N ∈ {0 , 1 , . . .}, and r ∈ {21 , 22 , . . .},

|x5(N+n)+j0| <
1

2r
, for all n ≥ 0 .

Then {xn}∞n=−3 converges to a period-five solution in the interval [−1 , 0].

Proof. Let {xn}∞n=−3 be a solution of Eq.(1.1) in the interval (−1 , 0). Suppose that
for some j0 ∈ {−3 ,−2 ,−1 , 0 , 1}, N ∈ {0 , 1 , . . .}, and r ∈ {21 , 22 , . . .},

|x5(N+n)+j0| <
1

2r
, for all n ≥ 0 .

Without loss of generality, we assume that N = 0. Based on Remark 4.4 and the
discussion prior to it, we make the following computations, with details omitted.
However, we note that all inequalities follow from the fact that there exists the sub-

sequence {x5n+j0}
∞
n=0, all of whose terms are bounded in magnitude by

1

2r
and whose

terms in absolute value occur at least once every eight factors in each argument of
the maximum function, described in Remark 4.4 and the discussion prior to it.

(1) |x10 − x5| < 1 =

(
1

22

)0

, |x15 − x10| <
1

28
<

(
1

22

)1

, |x20 − x15| <
1

212
<

(
1

22

)2

,

|x25 − x20| <
1

214
<

(
1

22

)3

, and |x30 − x25| <
1

218
<

(
1

22

)4

.

(2) |x11 − x6| < 1 =

(
1

22

)0

, |x16 − x11| <
1

28
<

(
1

22

)1

, |x21 − x16| <
1

212
<

(
1

22

)2

,

|x26 − x21| <
1

216
<

(
1

22

)3

, and |x31 − x26| <
1

218
<

(
1

22

)4

.

(3) |x12 − x7| < 1 =

(
1

22

)0

, |x17 − x12| <
1

210
<

(
1

22

)1

, |x22 − x17| <
1

212
<

(
1

22

)2

,

|x27 − x22| <
1

216
<

(
1

22

)3

, and |x32 − x27| <
1

220
<

(
1

22

)4

.

(4) |x13 − x8| < 1 =

(
1

22

)0

, |x18 − x13| <
1

210
<

(
1

22

)1

, |x23 − x18| <
1

214
<

(
1

22

)2

,

|x28 − x23| <
1

216
<

(
1

22

)3

, and |x33 − x28| <
1

220
<

(
1

22

)4

.
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(5) |x14 − x9| <
1

28
<

(
1

22

)0

, |x19 − x14| <
1

210
<

(
1

22

)1

, |x24 − x19| <
1

214
<

(
1

22

)2

,

|x29 − x24| <
1

218
<

(
1

22

)3

, and |x34 − x29| <
1

220
<

(
1

22

)4

.

We conclude by induction that for n ≥ 1 and i ∈ {0 , 1 , 2 , 3 , 4},

|x5(n+1)+i − x5n+i| <
(

1

22

)n−1

;

and so, since lim
K→∞

∞∑
k=K

(
1

22

)k
= 0, given 0 < ε < 1, there exists N = N(ε) ≥ 2

with

∞∑
k=N−2

(
1

22

)k
< ε

such that

|x5(n+1)+i − x5n+i| < ε for all n ,m ≥ N .

Hence, for i ∈ {0 , 1 , 2 , 3 , 4}, the subsequence {x5n+i}∞n=0 ⊂ (−1 , 0) is Cauchy.
Then, for i ∈ {0 , 1 , 2 , 3 , 4} there exists Li ∈ [−1 , 0] such that

lim
n→∞

x5n+i = Li .

We thus have that {xn}∞n=−3 converges to a period-five solution in the interval
[−1 , 0], and the proof is complete. �

As can be seen above, if we wish to use the identity given in Lemma 4.3 to prove
convergence of a solution {xn}∞n=−3 of Eq.(1.1) in the interval (−1 , 0) to a period-
five solution, we need to assume that the following condition holds: Starting with
the term x−3, x−2, x−1, x0, or x1, every fifth term of {xn}∞n=−3 is ”small enough”
in magnitude. We believe that such a condition is not necessary for asymptotic
periodicity and that

Conjecture 4.6. Every solution of Eq.(1.1) in the interval (−1 , 0) converges to a
period-five solution in the interval [−1 , 0].

5. Unbounded solutions of Eq.(1.1)

In this section we state a result that gives a set of initial conditions for which
there exists an unbounded solution.

Theorem 5.1. Let {xn}∞n=−3 be a solution of Eq.(1.1) such that

min{|x−3| , |x−2| , |x−1| , |x0|} > x̄2 =
1 +
√

5

2
.

Then

x̄2 < |x0| < |x1| < |x2| < · · · < |xn| < · · · .
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Proof. From the hypothesis, we have that |x−3|−1 > x̄2−1, and so |x0| (|x−3 − 1) > x̄2 (x̄2 − 1) = 1.
Therefore, |x0||x−3| − |x0| > 1, which in turn implies that |x0||x−3| − 1 > |x0|. We
also have |x1| = |x0x−3 − 1| ≥ |x0||x−3| − 1. Combining these last two inequalities,
we then have that x̄2 < |x0| < |x1|. By induction, the result follows. �

Corollary 5.2. Let {xn}∞n=−3 be a solution of Eq.(1.1) such that

min{x−3 , x−2 , x−1 , x0} > x̄2 =
1 +
√

5

2
.

Then the solution tends to +∞.

Proof. Let {xn}∞n=−3 be a solution of Eq.(1.1) such that

min{x−3 , x−2 , x−1 , x0} > x̄2 =
1 +
√

5

2
,

By Theorem 5.1,

x̄2 < x0 < x1 < x2 < · · · < xn < · · · .
Now, assume to the contrary that the solution does not tend to +∞. Since the
sequence of terms of the solution is increasing and bounded, then it must converge.
However, Eq.(1.1) has only two equilibria, and they are both less than x0. We have
a contradiction, and so this solution must tend to infinity. �

Stević [38] provides a generalization of Theorem 5.1 and Corollary 5.2 for Eq.(1.2,
given that the condition gcd(k , l) = 1 holds. We present modified versions of his
results, which do not require that the condition gcd(k , l) = 1 hold in their proofs.

For the following lemma, we need some notation and terminology for continued
fractions (see [13]). Consider the following continued fraction representation for a
real number β:

β = b1 +
1

b2 +
1

b3 + · · ·+ 1

bn +
1

βn+1

.

The numbers b1 , b2 , b3 , . . . , bn are called the partial denominators of β, and βn+1 is
the (n+ 1)st remainder. A continued fraction that is periodic is one whose sequence
of partial denominators, {bn}∞n=1, is periodic. Shorthand notation for this continued
fraction of β is

β = b1 +
1

b2+

1

b3+
. . .

1

bn+

1

βn+1
or

β = [b1 , b2 , b3 , . . . , bn , βn+1] ;

and the expression
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[b1 , b2 , b3 , . . . , bn] ,

represents a number called the nth convergent of β. The process of generating
the continued fraction representation for β is referred to as the continued fraction
algorithm (and if the process terminates, the continued fraction represents a rational
number).

Lemma 5.3. Consider Eq.(1.2), where k , l ∈ {0 , 1 , . . .}, k > l. Then there do not
exist period-(l + 1) solutions of Eq.(1.2) all of whose terms are strictly greater than

x̄2 =
1 +
√

5

2
.

Proof. For the sake of contradiction, assume that we have a period-(l+ 1) solution,
{xn}∞n=−k = {ai}∞i=1 such that ai > x̄2 for all i = 1 , 2 , . . .. We begin with the
following relations, which follow from the assumption that {xn}∞n=−k is periodic
with period l + 1 and that k > l.
(1) Since k > l, we have the relation

k + 1 = u(l + 1) + (r − 1) , u ∈ N , r − 1 ∈ {0 , 1 , . . . , l} . (5.1)

Observe that r is such that x1 = ar. Equivalently, we have

k + 2 = u(l + 1) + r , u ∈ N , r ∈ {1 , 2 , . . . , l + 1} .
(2) Given that {xn}∞n=−k is periodic with period l + 1 and that k > l, we have the

relation

s ≡ (k + 1)− l (mod l + 1) , (5.2)

where s is such that x−l = as. Then, from Eq.(5.2), there exists some positive
integer v such that

s = (k + 1)− l − v(l + 1) ,

which implies that

s = (l + 2)− (l + 1)− v(l + 1) ,

which, in turn, implies that

k + 2 = (v + 1)(l + 1) + s . (5.3)

Given Eqs.(5.1) and (5.3), we then have, by uniqueness in application of Euclid’s
algorithm, (v + 1 = u and) s = r. Therefore, x−l = ar = x1.

We now consider the following two cases.
Case 1.: k + 1 is a multiple of l + 1.

Note that if k + 1 is a multiple of l + 1, then from Eq.(5.1) and the assumtion
that {xn}∞n=−k = {ai}∞i=1 is periodic with period-(l+ 1), we see that r = 1, and
thus

a1 = x1 = x−lx−k − 1 = a1a1 − 1 ,

which implies that
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a1 = x1 = x−k = x−l = x̄1 or x̄2 .

But then, we do not have ai > x̄2 for all i = 1 , 2 , . . . (where x̄2 > x̄1). This
case gives us a contradiction and so is not possible.

Case 2.: k + 1 is not a multiple of l + 1.
Since k + 1 is not a multiple of l + 1, we then have that r 6= 1 and

ar = x1 = x−lx−k − 1 = ara1 − 1 ,

which implies that

a1 = 1 +
1

ar
. (5.4)

We also then have

ar+1 = x2 = x−l+1x−k+1 − 1 = ar+1a2 − 1

and

ar+2 = x3 = x−l+2x−k+2 − 1 = ar+2a3 − 1 .

By induction, we have

a2r−1 = ar+(r−1) = xr = x−l+(r−1)x−k+(r−1) = a2r−1ar − 1 ,

which implies that

ar = 1 +
1

a2r−1

. (5.5)

By Eqs.(5.4) and (5.5), we can express a1 as the continued fraction

a1 = 1 +
1

1 +
1

a2r−1

. (5.6)

Next

a3r−2 = ar+(2r−2) = x2r−1 = x−l+(2r−2)x−k+(2r−2) = a3r−2a2r−1 − 1 ,

which implies that

a2r−1 = 1 +
1

a3r−2

. (5.7)

By Eqs.(5.6) and (5.7), we can express a1 as the continued fraction

a1 = 1 +
1

1 +
1

1 +
1

a3r−2

. (5.8)

Then, by induction, we obtain the continued fractions, for m = 1 , 2 , . . .,
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a1 = 1 +
1

1 +
1

1 +
1

1 + · · · 1

a(m+1)r−m

,

or

a1 = [b1 , b2 , . . . bm+1 , a(m+1)r−m] = [1 , 1 , . . . , 1 , a(m+1)r−m] ,

where bj = 1 for j = 1 , 2 , . . . ,m+ 1. We claim that there exists m0 such that

(m0 + 1)r −m0 ≡ 1 (mod l + 1) ,

i.e., there exists some m0 such that a(m0+1)r−m0 = a1, with {ai}∞n=1 periodic
with period-(l + 1)), for we have that

(m0 + 1)r −m0 ≡ 1 (mod l + 1) ,

if and only if

(m0 + 1)r − (m0 + 1) ≡ 0 (mod l + 1) ,

if and only if

(m0 + 1)(r − 1) = t(l + 1) , for some t ∈ N , (5.9)

and certainly Eq.(5.9) holds for m0 = l and t = r − 1. Then

a1 = 1 +
1

1 +
1

1 +
1

1 + · · · 1

a1

, (5.10)

or

a1 = [b1 , b2 , . . . bm0+1 , a1] = [1 , 1 , . . . , 1 , a1] .

where bj = 1 for j = 1 , 2 , . . . ,m0 +1. However, given Eq.(5.10) with remainder
a1, we can write a1 as the infinite periodic continued fraction

a1 = 1 +
1

1 +
1

1 +
1

1 + · · ·

, (5.11)

or

[1 , 1 , . . .] = [1̄] .

Since the continued fraction is infinite and periodic with partial denominaters
all ones, Eq.(5.11) can equivalently be written as

a1 = 1 +
1

a1

.
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Solving for a1, we obtain

a1 = x̄1 or x̄2 .

In either case, we do not have that a1 > x̄2 for all i = 1 , 2 , . . .. Again we have
a contradiction.

Therefore, there do not exist any period-(l + 1) solutions, all of whose terms are
strictly greater than x̄2, and the proof is complete. �

Theorem 5.4. Let {xn}∞n=−k be a solution of Eq.(1.2), where k , l ∈ {0 , 1 , . . .} and
k > l, and such that

min{|x−k| , |x−k+1| , . . . , |x0|} > x̄2 =
1 +
√

5

2
.

Then there are exactly l + 1 disjoint subsequences,{
|x(l+1)n+j|

}∞
n=0

, j = −l ,−l + 1 , . . . ,−1 , 0 ,

of the sequence {|xn|}∞n=−k, each of which is strictly increasing from above x̄2.

Proof. From the hypothesis, we have that |x−k|−1 > x̄2−1, and so |x−l| (|x−k| − 1) > x̄2 (x̄2 − 1) = 1.
Therefore, |x−l||x−k| − |x−l| > 1, which in turn implies that |x−l||x−k| − 1 > |x−l|.
We also have |x1| = |x−lx−k − 1| ≥ ||x−l||x−k| − 1| = |x−l||x−k| − 1. Combining
these last two inequalities, we then have that x̄2 < |x−l| < |x1|. Continuing this
process, we then have the following:

|x1| > |x1−(l+1)| = |x−l| or |x1·(l+1)+(−l)| > |x0·(l+1)+(−l)|
|x2| > |x2−(l+1)| = |x−l+1| or |x1·(l+1)+(−l+1)| > |x0·(l+1)+(−l+1)|

...
|xl| > |xl−(l+1)| = |x−1| or |x1·(l+1)+(−1)| > |x0·(l+1)+(−1)|
|xl+1| > |x(l+1)−(l+1)| = |x0| or |x1·(l+1)+0| > |x0·(l+1)+0|
|xl+2| > |x(l+2)−(l+1)| = |x1| > |x−l| or |x2·(l+1)+(−l)| > |x1·(l+1)+(−l)| > |x0·(l+1)+(−l)|
|xl+3| > |x(l+3)−(l+1)| = |x2| > |x−l+1| or |x2·(l+1)+(−l+1)| > |x1·(l+1)+(−l+1)| > |x0·(l+1)+(−l+1)|

...

Clearly, by induction, we see that there exist l + 1 strictly increasing subsequences{
|xn(l+1)+j|

}∞
n=0

, j = −l ,−l + 1 , . . . ,−1 , 0 ,

all of whose terms are greater than x̄2. Furthermore, these l + 1 subsequences are
disjoint. Otherwise, there exist u , v ∈ {0 , 1 , . . .} and r , s ∈ {−l ,−l+1 , . . . ,−1 , 0},
with u 6= v or r 6= s, such that xu(l+1)+r = xv(l+1)+s. Then u(l+ 1) + r = v(l+ 1) + s,
and so

|(u− v)(l + 1)| = |r − s| .
But |r − s| ≤ l, which gives us a contradiction. The proof is complete. �

Corollary 5.5. Let {xn}∞n=−k be a solution of Eq.(1.2), where k ∈ {0 , 1 , . . .} and
k > l, and such that
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min{x−k , x−k+1 , . . . , x0} > x̄2 =
1 +
√

5

2
.

Then the solution tends to +∞.

Proof. In order to prove that the solution, {xn}∞n=−k, of Eq.(1.2) tends to +∞, we
assume to the contrary, that it is bounded, i.e., there does not exist a subsequence
{xni
}∞i=0 such that xni

↑ ∞. Then, given the hypothesis

min{x−k , x−k+1 , . . . , x0} > x̄2 =
1 +
√

5

2
,

we have, by assumption and Theorem 5.4, that each of the following l + 1 disjoint
subsequences {

xn(l+1)+j

}∞
n=0

, j = −l ,−l + 1 , . . . ,−1 , 0 ,

of the solution is bounded (otherwise, by definition, {xn}∞n=−k is unbounded) and

strictly increasing from above x̄2 =
1 +
√

5

2
, and so must converge. Therefore, the

solution converges to a period-(l + 1) solution of Eq.(1.2), all of whose terms are
greater than x̄2. But, by Lemma 5.3, there do not exist period-(l + 1) solutions
of Eq.(1.2) all of whose terms are strictly greater than x̄2. Hence we obtain a
contradiction, and the proof is complete. �
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12. C. M. Kent, W. Kosmala, and S. Stević, On the difference equation xn+1 = xnxn−2−1, Abstr.
Appl. Anal., vol. 2011, Article ID 815285, 15 pages, 2011. 1



42 C. M. KENT AND W. KOSMALA

13. Helmut Koch, Number Theory: Algebraic Numbers and Functions, vol. 24 of Graduate Studies
in Mathematics, American Mathematical Society, Providence, Rhode Island, USA, 2000. 5

14. V. L. Kocic and G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order
with Applications, vol. 256 of Mathematics and its Applications, Kluwer Academic Publishers,
Dordrecht, The Netherlands, 1993. 1

15. W. Kosmala, A period 5 difference equation, Int. J. Nonlinear Anal. Appl., 2 (1) (2011) 82–84.
16. M. R. S. Kulenovic and G. Ladas, Dynamics of Second Order Rational Difference Equations

with Open Problems and Conjectures, Chapman & Hall/CRC, Boca Ratin, Florida, 2002. 1
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