On a More Accurate Multiple Hilbert-Type Inequality

Qiliang Huang, Bicheng Yang∗
Department of Mathematics, Guangdong University of Education, Guangzhou, Guangdong 510303, P. R. China.

Dedicated to the Memory of Charalambos J. Papaioannou
(Communicated by Th. M. Rassias)

Abstract
By using Euler-Maclaurin’s summation formula and the way of real analysis, a more accurate multiple Hilbert-type inequality and the equivalent form are given. We also prove that the same constant factor in the equivalent inequalities is the best possible.

Foundation item: This work is supported by the National Natural Science Foundation of China (No.61370186).

Keywords: Multiple Hilbert-Type Inequality, Weight Coefficient, Euler-Maclaurin’s Summation Formula.

2010 MSC: 26D15.

1. Introduction
If \(p > 1, \frac{1}{p} + \frac{1}{q} = 1, a_n, b_n \geq 0, 0 < \sum_{n=1}^{\infty} a_n^p < \infty, 0 < \sum_{n=1}^{\infty} b_n^q < \infty \), then a new inequality with the homogeneous kernel of degree 1 is given as (cf. [12])

\[
\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \min\{m,n\} a_m b_n < \sum_{n=1}^{\infty} (na_n)^p \left(\frac{1}{p} \right)^\frac{1}{p} \sum_{n=1}^{\infty} (nb_n)^q \left(\frac{1}{q} \right)^\frac{1}{q},
\]

(1.1)

∗Corresponding author

Email addresses: qlhuang@yeah.net (Qiliang Huang), bcyang@gdei.edu.cn (Bicheng Yang)

Received: March 2013 Revised: February 2014
where the constant factor pq is the best possible. Hilbert-type inequalities including \([1.1]\) are important in analysis and its applications (cf. \([1, 5, 13]\)).

By introducing another pair of conjugate exponents $(r, s)(r > 1, \frac{1}{r} + \frac{1}{s} = 1)$ and a parameter $0 < \lambda \leq \min\{r, s\}$, (1) has been extended as (cf. \([12]\)):

$$
\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} (\min\{m, n\})^{\lambda} a_m b_n < \frac{rs}{\lambda} \left\{ \sum_{n=1}^{\infty} n^{p\left(1+\frac{1}{r}\right)-1} a_n^p \right\}^{\frac{1}{p}} \left\{ \sum_{n=1}^{\infty} n^{q\left(1+\frac{1}{s}\right)-1} b_n^q \right\}^{\frac{1}{q}},
$$

(1.2)

where the constant factor $\frac{rs}{\lambda}$ is the best possible. For $\lambda = 1, r = p, s = q$, (1.2) reduces to (1.1).

Recently, by introducing $\alpha \geq \sqrt{\frac{21}{12} - \frac{3}{4}} = -0.3681^+, 0 < \lambda \leq 1$, Yang gave a more accurate best extension of (1.2) and the equivalent form as (cf. \([7]\)):

$$
\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} (\min\{m, n\} + \alpha) \lambda a_m b_n < \frac{rs}{\lambda} \left\{ \sum_{n=1}^{\infty} (n + \alpha)^{p\left(1+\frac{1}{r}\right)-1} a_n^p \right\}^{\frac{1}{p}} \left\{ \sum_{n=1}^{\infty} (n + \alpha)^{q\left(1+\frac{1}{s}\right)-1} b_n^q \right\}^{\frac{1}{q}},
$$

(1.3)

$$
\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} (\min\{m, n\} + \alpha)^{\lambda} a_m b_n < \frac{rs}{\lambda} \left\{ \sum_{n=1}^{\infty} (n + \alpha)^{p\left(1+\frac{1}{r}\right)-1} a_n^p \right\}^{\frac{1}{p}} \left\{ \sum_{n=1}^{\infty} (n + \alpha)^{q\left(1+\frac{1}{s}\right)-1} b_n^q \right\}^{\frac{1}{q}},
$$

(1.4)

For $\alpha = 0$, inequality (1.3) reduces to (1.2). Another more accurate Hilbert-type inequalities were given by \([3, 13, 10, 9, 11, 15]\). Yang and Huang also considered the multiple Hilbert-type integral inequality (cf. \([8-3]\)). Recently, Huang gave a more accurate multiple Hilbert’s inequality (cf. \([2]\)).

In this paper, by using Euler-Maclaurin’s summation formula and the way of real analysis, a more accurate multiple Hilbert-type inequality and the equivalent form are given, which are the best extensions of (1.3) and (1.4).

2. Some lemmas

Lemma 2.1. If $n \in \mathbb{N}\setminus\{1\}, p_i, r_i > 1 (i = 1, \cdots, n), \sum_{i=1}^{n} \frac{1}{p_i} = 1, \sum_{i=1}^{n} \frac{1}{r_i} = 1, 0 < \lambda \leq 1, \alpha \geq \sqrt{\frac{12}{27} - \frac{3}{4}}$, then

$$
A := \prod_{i=1}^{n} \left[(m_i + \alpha)^{\frac{1}{r_i}+1}(p_i-1) \prod_{j=1, j \neq i}^{n} \frac{1}{(m_j + \alpha)^{1+(\lambda/r_j)}} \right]^{\frac{1}{p_i}} = 1.
$$

(2.1)

Proof. We find

$$
A = \prod_{i=1}^{n} \left[(m_i + \alpha)^{\frac{1}{r_i}+1}(p_i-1)+\frac{1}{r_i} \prod_{j=1}^{n} \frac{1}{(m_j + \alpha)^{1+(\lambda/r_j)}} \right]^{\frac{1}{r_i}}
$$
Maclaurin's summation formula (cf. [13]), we obtain

\[\prod_{i=1}^{n} \left((m_i + \alpha)^{\frac{1}{r_i}+1} \right)^{\frac{1}{r_i}} = \prod_{i=1}^{n} \left((m_j + \alpha)^{1+\lambda/(r_j)} \right)^{\frac{1}{r_j}}, \]

and then (2.1) is valid. \(\square \)

Lemma 2.2. If \(n \in \mathbb{N}, r > 1, \frac{1}{r} + \frac{1}{s} = 1, 0 < \lambda \leq 1, \alpha \geq \frac{\sqrt{3}}{12} - \frac{3}{4}, \) then

\[\frac{rs}{\lambda} \left[1 - \frac{1}{r} \left(\frac{1 + \alpha}{n + \alpha} \right)^{\frac{1}{r}} \right] < \sum_{n=1}^{\infty} \frac{(\min\{n, m\} + \alpha)^{\lambda}}{(n + \alpha)^{1/s}(m + \alpha)^{1+\lambda/(r)}} < \frac{rs}{\lambda}. \]

(2.2)

Proof. For \(x \in (-\alpha, \infty) \), setting \(f(x) := \frac{(\min\{n, x\} + \alpha)^{\lambda}}{(n + \alpha)^{1/s}(x + \alpha)^{1+\lambda/(r)}} \), \(f_1(x) := (n + \alpha)^{-\frac{1}{2}}(x + \alpha)^{-\frac{1}{2}-1} \), \(f_2(x) := (n + \alpha)^{\frac{1}{2}}(x + \alpha)^{-\frac{1}{2}-1} \). We find \((-1)^i f_{j(i)}(x) > 0, f_{j(i)}(\infty) = 0 (i = 0, 1, 2, 3, 4; j = 1, 2) \). By Euler-Maclaurin’s summation formula (cf. [13]), we obtain

\[\sum_{m=1}^{n} f_1(m) < \int_{1}^{n} f_1(x)dx + \frac{1}{2} [f_1(1) + f_1(n)] + \frac{1}{12} f'_1(x) \bigg|_1^n, \]
\[\sum_{m=n}^{\infty} f_2(m) < \int_{n}^{\infty} f_2(x)dx + \frac{1}{2} f_2(n) - \frac{1}{12} f_2'(n). \]

\(\square \)

For \(f_1(n) = f_2(n) \), we have the following:

\[\sum_{m=1}^{\infty} \frac{(\min\{n, m\} + \alpha)^{\lambda}}{(n + \alpha)^{1/s}(m + \alpha)^{1+\lambda/(r)}} = \sum_{m=1}^{n} f_1(m) + \sum_{m=n}^{\infty} f_2(m) - f_1(n) \]

\[< \int_{1}^{\infty} f(x)dx + \frac{1}{2} f_1(1) - \frac{1}{12} f'_1(1) + \frac{1}{12} (f'_1(n) - f_2(n)) \]
\[= \int_{-\alpha}^{\infty} f(x)dx - \left[\int_{-\alpha}^{1} f_1(x)dx - \frac{1}{2} f_1(1) + \frac{1}{12} f'_1(1) - \frac{1}{12} (f'_1(n) - f'_2(n)) \right], \]

\[\int_{-\alpha}^{\infty} f(x)dx = \int_{-\alpha}^{1} f_1(x)dx + \int_{1}^{\infty} f_2(x)dx = \frac{s}{\lambda} + \frac{r}{\lambda} = \frac{rs}{\lambda}, \]
\[= \frac{s}{\lambda} (n + \alpha)^{-\frac{1}{2}}(1 + \alpha)^{\frac{1}{2}} - \frac{1}{2} (n + \alpha)^{-\frac{1}{2}}(1 + \alpha)^{-\frac{1}{2}} - \frac{\lambda}{12} (n + \alpha)^{-2} \]
\[= \frac{(\frac{1}{s} + \frac{1}{n + \alpha})^{\lambda/s}(s/\lambda)}{12(1 + \alpha)^2} \]
\[\times \left\{ (\frac{\lambda}{s})^2 - [6(1 + \alpha) + 1](\frac{\lambda}{s}) + 12(1 + \alpha)^2 - \frac{\lambda^2}{s} (\frac{1 + \alpha}{n + \alpha})^{(1+\lambda/3)} \right\}. \]
Proof. Moreover, it follows (decreasing in n, ω)

As the assumption of Lemma 1, define the weight coefficients $\omega_i(m_i) = \omega_\lambda(m_i, r_i; r_1, \ldots, r_{i-1}, r_{i+1}, \ldots, r_n)$ as

$$\omega_i(m_i) : = \frac{1}{(m_i + \alpha)^{\lambda/\alpha}} \sum_{m_{n+1} = 1}^{\infty} \cdots \sum_{m_{i+1} = 1}^{\infty} \sum_{m_{i-1} = 1}^{\infty} \sum_{m_1 = 1}^{\infty} \times (\min_{1 \leq k \leq n} \{m_k\} + \alpha)^\lambda \prod_{j=1}^{n} \frac{1}{(m_j + \alpha)^{1+(\lambda/r_j)}}$$ \hspace{1cm} (2.3)

($i = 1, \ldots, n$), then we have

$$\frac{1}{\lambda^{n-1}} \prod_{j=1}^{n} r_j \left[1 - O\left(\frac{1}{(m_n + \alpha)^{\lambda/r_n}}\right)\right] < \omega_n(m_n) = \frac{1}{(m_n + \alpha)^{\lambda/r_n}}$$

$$\times \sum_{m_{n+1} = 1}^{\infty} \cdots \sum_{m_{i+1} = 1}^{\infty} \sum_{m_{i-1} = 1}^{\infty} \sum_{m_1 = 1}^{\infty} \frac{\min_{1 \leq k \leq n} \{m_k\} + \alpha}{\prod_{j=1}^{n-1} (m_j + \alpha)^{1+(\lambda/r_j)}} < \frac{1}{\lambda^{n-1}} \prod_{j=1}^{n} r_j.$$ \hspace{1cm} (2.4)

Moreover, it follows

$$\omega_i(m_i) < \frac{1}{\lambda^{n-1}} \prod_{j=1}^{n} r_j (i = 1, \ldots, n).$$ \hspace{1cm} (2.5)

Proof. Proof. We prove (2.4) by mathematical induction. For $n = 2$, by (2.2), setting $n = m_2, m = m_1, r = r_1, s = r_2$, we have (2.4). Assuming that for $n \geq 2$, (2.4) are valid, then for $n + 1$, setting $m_0 + \alpha = \min_{2 \leq k \leq n+1} \{m_k\} + \alpha, s_1 := (1 - \frac{1}{r_1})^{-1}$, then by (2.3), we have the following:

$$\omega_{n+1}(m_{n+1}) = \frac{1}{(m_{n+1} + \alpha)^{\lambda/r_{n+1}}} \sum_{m_{n+1} = 1}^{\infty} \cdots \sum_{m_2 = 1}^{\infty} (m_{n+1} + \alpha)^{\lambda/s_1} \sum_{m_1 = 1}^{\infty} \frac{(\min_{2 \leq k \leq n+1} \{m_k\} + \alpha)^\lambda}{(m_{n+1} + \alpha)^{1+(\lambda/r_1)}}$$

$$< \frac{r_1 s_1}{\lambda (m_{n+1} + \alpha)^{\lambda/r_{n+1}}} \sum_{m_{n+1} = 1}^{\infty} \cdots \sum_{m_2 = 1}^{\infty} \frac{\min_{2 \leq k \leq n+1} \{m_k\} + \alpha}{\prod_{j=2}^{n} (m_j + \alpha)^{1+(\lambda/r_j)}}.$$ \hspace{1cm} (2.6)
Setting $\tilde{\lambda} = \frac{\lambda}{s_1}, \tilde{r}_j = \frac{r_j}{s_1}$ in (2.6), since $\sum_{j=2}^{n+1} \tilde{r}_j^{-1} = 1, 0 < \tilde{\lambda} \leq 1$, by the assumption of induction, it follows that

$$\omega_{n+1}(m_{n+1}) < \frac{r_1 s_1}{\lambda} \frac{1}{\lambda^{n-1}} \prod_{j=2}^{n+1} \tilde{r}_j = \frac{1}{\lambda^n} \prod_{j=1}^{n+1} r_j. \quad (2.7)$$

By (2.3) and the assumption of induction, we still have

$$\omega_{n+1}(m_{n+1}) > \frac{r_1 s_1}{\lambda} \left(\frac{1}{(m_{n+1} + \alpha) \lambda^{r_{n+1}}} \right) \sum_{m_{n+1}} \cdots \sum_{m_2} \left(\min_{2 \leq k \leq n+1} \{m_k\} + \alpha \right)^{\lambda/s_1} \prod_{j=2}^{n+1} (m_j + \alpha)^{1+(\lambda/r_j)} \left[1 - \frac{1}{r_1} \left(\frac{1 + \alpha}{m_{j_0} + \alpha} \right)^{n_1} \right]$$

$$= \frac{r_1 s_1}{\lambda} \left(\frac{1}{\lambda^{n-1}} \prod_{j=2}^{n+1} \tilde{r}_j \right) \left(1 - O \left(\frac{1}{(m_{n+1} + \alpha) \lambda^{r_{n+1}}} \right) \right) - \frac{\beta}{(m_{n+1} + \alpha) \lambda^{r_{n+1}}},$$

$$= \frac{1}{\lambda^n} \prod_{j=1}^{n+1} r_j \left[1 - O \left(\frac{1}{(m_{n+1} + \alpha) \lambda^{r_{n+1}}} \right) \right], \quad (2.8)$$

where $\beta = \frac{(1+\alpha)^{\lambda/s_1}}{\lambda} \prod_{j=2}^{n+1} \sum_{m_{j+1}} \cdots \sum_{m_2} \left(\min_{2 \leq k \leq n+1} \{m_k\} + \alpha \right)^{\lambda/s_1} \in \mathbb{R}$. By (2.7) and (2.8), (2.4) are valid for $n+1$. By mathematical induction, (2.4) are valid for $n \in \mathbb{N} \setminus \{1\}$.

Setting $\tilde{m}_n = m_i, \tilde{r}_n = r_i, \tilde{m}_j = m_{j+1}, \tilde{r}_j = r_{j+1} (i = 1, \ldots, n-1), \tilde{m}_j = m_j, \tilde{r}_j = r_j (j = 1, \ldots, i-1)$, then we have the following:

$$\omega_i(m_i) = \omega_{\lambda}(\tilde{m}_n, \tilde{r}_n, \tilde{r}_1, \cdots, \tilde{r}_{n-1}) < \frac{1}{\lambda^{n-1}} \prod_{i=1}^{n} \tilde{r}_i = \frac{1}{\lambda^{n-1}} \prod_{i=1}^{n} r_i.$$

Hence (2.5) is valid. □

3. Main Results

Theorem 3.1. Suppose that $n \in \mathbb{N} \setminus \{1\}, p_i, r_i > 1 (i = 1, \ldots, n), \sum_{i=1}^{n} \frac{1}{p_i} = 1, \sum_{i=1}^{n} \frac{1}{r_i} = 1, \frac{1}{q_n} = 1 - \frac{1}{p_n}, 0 < \lambda \leq 1, \alpha > \frac{\sqrt{21}}{12} - \frac{3}{4}$. If $a_{m_i}^{(i)} \geq 0, 0 < \sum_{m_i=1}^{\infty} (m_i + \alpha)^{p_i(1+\frac{\lambda}{r_i})^{-1}} (a_{m_i}^{(i)})^{p_i} < \infty (i = 1, \ldots, n)$, then we have the following equivalent inequalities:

$$I : = \sum_{m_n=1}^{\infty} \cdots \sum_{m_1=1}^{\infty} \left(\min_{1 \leq k \leq n} \{m_k\} + \alpha \right)^{\lambda} \prod_{i=1}^{n} a_{m_i}^{(i)}$$

$$< \frac{1}{\lambda^{n-1}} \prod_{i=1}^{n} r_i \left(\sum_{m_i=1}^{\infty} (m_i + \alpha)^{p_i(1+\frac{\lambda}{r_i})^{-1}} (a_{m_i}^{(i)})^{p_i} \right)^{\frac{1}{r_i}}, \quad (3.1)$$

$$J : = \left\{ \sum_{m_n=1}^{\infty} \left(\sum_{m_{n-1}=1}^{\infty} \frac{1}{m_n + \alpha} \frac{1}{(q_n \lambda/r_n)} \right) \prod_{m_{n-1}=1}^{\infty} \cdots \sum_{m_1=1}^{\infty} \left(\min_{1 \leq k \leq n} \{m_k\} + \alpha \right)^{\lambda}$$

$$\times \prod_{i=1}^{n-1} a_{m_i}^{(i)} \right\} \leq \frac{r_n}{\lambda^{n-1}} \prod_{i=1}^{n} r_i \left(\sum_{m_i=1}^{\infty} (m_i + \alpha)^{p_i(1+\frac{\lambda}{r_i})^{-1}} (a_{m_i}^{(i)})^{p_i} \right)^{\frac{1}{r_i}}. \quad (3.2)$$
Lemma 3.2. Proof. We have proven the theorem for $n = 2$ (cf. [7]). In the following, we prove the theorem for $n \geq 3$. □

Since $\frac{1}{p_n} + \frac{1}{q_n} = 1$, by (2.1), (2.4) and Hölder’s inequality (cf. [4]), we find

$$
\left[\sum_{m_{n-1}=1}^{\infty} \cdots \sum_{m_1=1}^{\infty} \left(\min_{1 \leq k \leq n} \{m_k\} + \alpha \right)^{\lambda} \prod_{i=1}^{n-1} a_{m_i}^{(i)} \right]^{q_n}
\leq \left\{ \sum_{m_{n-1}=1}^{\infty} \cdots \sum_{m_1=1}^{\infty} \left(\min_{1 \leq k \leq n} \{m_k\} + \alpha \right)^{\lambda} \prod_{j=1}^{n} \frac{1}{(m_j + \alpha)^{1+(\lambda/r_j)}} \right\}^{q_n}
\leq \left(\frac{1}{\lambda^{n-1}} \prod_{i=1}^{n} r_i \right) \left(m_n + \alpha \right)^{1+\frac{q_n}{p_n}} \sum_{m_{n-1}=1}^{\infty} \cdots \sum_{m_1=1}^{\infty} \left(\min_{1 \leq k \leq n} \{m_k\} + \alpha \right)^{\lambda}
\times \prod_{i=1}^{n-1} \left[(m_i + \alpha)^{\frac{\lambda}{r_i}+1+(\lambda/r_i)} \prod_{j=1}^{n} \frac{1}{(m_j + \alpha)^{1+(\lambda/r_j)}} \right] \left(a_{m_i}^{(i)} \right)^{q_n},
$$

$$
J \leq \left(\frac{1}{\lambda^{n-1}} \prod_{i=1}^{n} r_i \right) \left(m_n + \alpha \right)^{1+\frac{q_n}{p_n}} \sum_{m_{n-1}=1}^{\infty} \cdots \sum_{m_1=1}^{\infty} \left(\min_{1 \leq k \leq n} \{m_k\} + \alpha \right)^{\lambda}
\times \prod_{i=1}^{n-1} \left[(m_i + \alpha)^{\frac{\lambda}{r_i}+1+(\lambda/r_i)} \prod_{j=1}^{n} \frac{1}{(m_j + \alpha)^{1+(\lambda/r_j)}} \right] \left(a_{m_i}^{(i)} \right)^{q_n},
$$

(3.3)

For $n \geq 3$, since $\sum_{i=1}^{n-1} \frac{q_n}{p_n} = 1$, by Hölder’s inequality again in (3.3), we find

$$
J \leq \left(\frac{1}{\lambda^{n-1}} \prod_{i=1}^{n} r_i \right) \prod_{i=1}^{n-1} \left\{ \sum_{m_{n-1}=1}^{\infty} \cdots \sum_{m_1=1}^{\infty} \left(\min_{1 \leq k \leq n} \{m_k\} + \alpha \right)^{\lambda} \right\}
$$
Then by (3.4), it follows that (3.2) is valid, which is equivalent to (3.1).

Proof. (3.2) is the best possible. Then (3.2) is valid, which is equivalent to (3.1).

0 naturally valid. Suppose \(\tilde{r}_n = \left(\sum_{m_n=1}^\infty (m_n + \alpha)^{\frac{1}{r_n}} \right) < \infty \). Then by (3.4), it follows that (3.2) is valid, which is equivalent to (3.3). Then by (3.3), it follows that (3.2) is valid, which is equivalent to (3.1).

\[\tilde{I} : = \sum_{m_n=1}^\infty \cdots \sum_{m_1=1}^\infty \left(\min_{1 \leq k \leq n} \{ m_k \} + \alpha \right)^\lambda \prod_{i=1}^n a_{m_i}^{(i)} = \sum_{m_n=1}^\infty \left(\frac{1}{(m_n + \alpha)^{\frac{1}{r_n}}} \right) \]

Then (3.3) is valid, which is equivalent to (3.1). □

Theorem 3.3. As the assumption of Theorem 1, the same constant factor \(\frac{1}{\lambda_n - r_i} \prod_{i=1}^n r_i \) in (3.1) and (3.2) is the best possible.

Proof. For \(0 < \varepsilon < \frac{q \lambda}{r_n} \), setting \(\tilde{r}_i = (1 + \frac{1}{r_n}) - \varepsilon, \tilde{a}_{m_i}^{(i)} = (m_i + \alpha)^{\frac{1}{r_i}} - \varepsilon, \) we have \(\tilde{r}_i > 1(i = 1, \cdots, n), \sum_{i=1}^n \frac{1}{r_i} = 1 \). Then by (2.4), we find

\[\tilde{I} : = \sum_{m_n=1}^\infty \cdots \sum_{m_1=1}^\infty \left(\min_{1 \leq k \leq n} \{ m_k \} + \alpha \right)^\lambda \prod_{i=1}^n \tilde{a}_{m_i}^{(i)} = \sum_{m_n=1}^\infty \left(\frac{1}{(m_n + \alpha)^{\frac{1}{r_n}}} \right) \]
that the constant factor

In virtue of (3.6) and (3.7), it follows,

by (3.5) that the constant factor in (3.1) is not the best possible.

Remark 3.4. For \(k \) in (3.4), we have a multiple best extension of (1.2) as

\[
\begin{align*}
\sum_{m_n=1}^{\infty} \cdots \sum_{m_1=1}^{\infty} \left(\min_{1 \leq k \leq n} \{ m_k \} \right)^{\lambda} & \prod_{i=1}^{n} a_{m_i}^{(i)} \\
< & \frac{1}{\lambda^{n-1}} \prod_{i=1}^{n} r_i \left(\sum_{m_i=1}^{\infty} m_i p_i(1+\frac{1}{r_i})^{-1} (a_{m_i}^{(i)}) \right)^{\frac{1}{p_i}}.
\end{align*}
\] (3.8)

References

