Semnan University International Journal of Nonlinear Analysis and Applications 2008-6822 2 2 2011 06 01 Hyers-Ulam and Hyers-Ulam-Rassias stability of nonlinear integral equations with delay 1 6 EN J. R. Morales Departamento de Matematicas, Universidad de Los Andes, Merida, Venezuela. E. M. Rojas Departamento de Matematicas, Pontificia Universidad Javeriana, Bogota, Colom- bia. 10.22075/ijnaa.2011.47 In this paper we are going to study the Hyers{Ulam{Rassias types<br />of stability for nonlinear, nonhomogeneous Volterra integral equations with delay<br />on nite intervals. Hyers{Ulam{Rassias stability https://ijnaa.semnan.ac.ir/article_47.html https://ijnaa.semnan.ac.ir/article_47_7fd8f693b5d94a2551e2b82f27c91bf7.pdf
Semnan University International Journal of Nonlinear Analysis and Applications 2008-6822 2 2 2011 06 01 Two common fixed Point theorems for compatible mappings 7 18 EN A. Razani Department of Mathematics, Faculty of Science, I. Kh. International University, P.O. Box: 34149-16818, Qazvin, Iran. M. Yazdi Department of Mathematics, Faculty of Science, I. Kh. International University, P.O. Box: 34149-16818, Qazvin, Iran. 10.22075/ijnaa.2011.52 Recently, Zhang and Song [Q. Zhang, Y. Song, Fixed point theory for generalized \$varphi\$-weak contractions, Appl. Math. Lett. 22(2009) 75-78] proved a common fixed point theorem for two maps<br />satisfying generalized \$varphi\$-weak contractions. In this paper, we prove a common fixed point theorem for a family of compatible maps. In fact, a new generalization of Zhang and Song's theorem is given. Common fixed point,Compatible mappings,weakly compatible mappings,\$varphi\$-weak contraction,Complete metric space https://ijnaa.semnan.ac.ir/article_52.html https://ijnaa.semnan.ac.ir/article_52_df6e4b461764631205c5fc39343adf56.pdf
Semnan University International Journal of Nonlinear Analysis and Applications 2008-6822 2 2 2011 06 01 New inequalities for a class of differentiable functions 19 23 EN Z. Dahmani Laboratory of Pure and Applied Mathematics, Faculty of SESNV, UMAB, University of Mostaganem Adelhamid Ben Badis, Algeria. 10.22075/ijnaa.2011.89 In this paper, we use the Riemann-Liouville fractional<br />integrals to establish some new integral inequalities related to<br />Chebyshev's functional in the case of two differentiable functions. Chebyshev's functional,Differentiable function,Integral inequalities,Riemann-Liouville fractional integral https://ijnaa.semnan.ac.ir/article_89.html https://ijnaa.semnan.ac.ir/article_89_5b6298d52740d7db0485f5512b6c49dd.pdf
Semnan University International Journal of Nonlinear Analysis and Applications 2008-6822 2 2 2011 06 01 On the nature of solutions of the difference equation \$mathbf{x_{n+1}=x_{n}x_{n-3}-1}\$ 24 43 EN C. M. Kent Department of Mathematics and Applied Mathematics, Virginia Commonwealth University, P. O. Box 842014, Richmond, Virginia 23284-2014 USA. W. Kosmala Department of Mathematical Sciences, Appalachian State University, Boone, North Carolina 28608 USA. 10.22075/ijnaa.2011.91 We investigate the long-term behavior of solutions of the difference equation<br /><br />[ x_{n+1}=x_{n}x_{n-3}-1 ,, n=0 ,, 1 ,, ldots ,, ]<br /><br />noindent where the initial conditions \$x_{-3} ,, x_{-2} ,, x_{-1} ,, x_{0}\$ are real numbers.  In particular, we look at the periodicity and asymptotic periodicity of solutions, as well as the existence of unbounded solutions. Difference equations,boundedness,periodicity,Asymptotic periodicity,Eventual periodicity,Invariant interval,Continued fractions https://ijnaa.semnan.ac.ir/article_91.html https://ijnaa.semnan.ac.ir/article_91_6887491e117b8ae9d1a60123865da966.pdf
Semnan University International Journal of Nonlinear Analysis and Applications 2008-6822 2 2 2011 06 01 On the fixed point of order 2 44 50 EN M. Alimohammady Department of Mathematics, University of Mazandaran, Babolsar, Iran. A. Sadeghi Department of Mathematics, University of Mazandaran, Babolsar, Iran. 10.22075/ijnaa.2011.92 This paper  deals with a new type  of fixed point, i.e;<br />"fixed point of order 2" which is introduced in a metric space<br />and some results are achieved. https://ijnaa.semnan.ac.ir/article_92.html https://ijnaa.semnan.ac.ir/article_92_f2ee30bea7399e73de67fec6f2b17bca.pdf
Semnan University International Journal of Nonlinear Analysis and Applications 2008-6822 2 2 2011 06 01 Equilibrium problems and fixed point problems for nonspreading-type mappings in hilbert space 51 61 EN U. Singthong Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand S. Suntai Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand 10.22075/ijnaa.2011.94 In this paper by using the idea of mean convergence, we<br />introduce an iterative scheme for finding a common element of the<br />set of solutions of an equilibrium problem and the fixed points set<br />of a nonspreading-type mappings in Hilbert space. A strong<br />convergence theorem of the proposed iterative scheme is established<br />under some control conditions. The main result of this paper extend<br />the results obtained by Osilike and Isiogugu (Nonlinear Analysis 74<br />(2011) 1814-1822) and Kurokawa and Takahashi (Nonlinear Analysis 73<br />(2010) 1562-1568). We also give an example and numerical results are<br />also given. \$k\$-strictly pseudononspreading mappings,nonspreading mappings,fixed points,strong convergence,equilibrium problem,Hilbert spaces https://ijnaa.semnan.ac.ir/article_94.html https://ijnaa.semnan.ac.ir/article_94_7de5ce5a173b8d14a8554699ab8c911f.pdf
Semnan University International Journal of Nonlinear Analysis and Applications 2008-6822 2 2 2011 06 01 On absolute generalized Norlund summability of double orthogonal series 62 74 EN X. Z. Krasniqi Department of Mathematics and Computer Sciences, University of Prishtina Avenue "Mother Theresa " 5, Prishtin\"e, 10000, KOSOV\"{E} 10.22075/ijnaa.2010.96 In the paper [Y. Okuyama, {it On the absolute generalized N"{o}rlund summability of orthogonal series},<br />Tamkang J. Math. Vol. 33, No. 2, (2002), 161-165] the author has found some sufficient conditions under which an orthogonal series<br />is summable \$|N,p,q|\$ almost everywhere. These conditions are expressed in terms of coefficients of the series. It is the purpose of<br />this paper to extend this result to double absolute summability \$|N^{(2)},mathfrak{p},mathfrak{q}|_k\$, \$(1leq kleq 2)\$ Double orthogonal series,Double N"{o}rlund summability https://ijnaa.semnan.ac.ir/article_96.html https://ijnaa.semnan.ac.ir/article_96_ce6901634dfc9861e8522cb54eb1520f.pdf
Semnan University International Journal of Nonlinear Analysis and Applications 2008-6822 2 2 2011 06 01 A Class of nonlinear \$(A,eta)\$-monotone operator inclusion problems with iterative algorithm and fixed point theory 75 85 EN M. Alimohammady Department of Mathematics, University of Mazandaran, Babolsar, Iran. M. Koozehgar Kallegi Department of Mathematics, University of Mazandaran, Babolsar, Iran. 10.22075/ijnaa.2011.99 A new class of nonlinear set-valued variational<br />inclusions involving \$(A,eta)\$-monotone mappings in a Banach<br />space setting is introduced, and then based on the generalized<br />resolvent operator technique associated with<br />\$(A,eta)\$-monotonicity, the existence and approximation<br />solvability of solutions using an iterative algorithm and fixed<br />pint theory is investigated. \$(A,eta)\$-monotonicity,\$delta\$-Lipschitz,\$(H,eta)\$-monotone operator https://ijnaa.semnan.ac.ir/article_99.html https://ijnaa.semnan.ac.ir/article_99_700c2ca46f47a5614a8b1fa0eb72426b.pdf
Semnan University International Journal of Nonlinear Analysis and Applications 2008-6822 2 2 2011 06 01 Further growth of iterated entire functions in terms of its maximum term 86 91 EN R.K. Dutta Department of Mathematics, Siliguri Institute of Technology, Post.-Sukna, Siliguri, Dist.-Darjeeling, Pin-734009, West Bengal, India. 10.22075/ijnaa.2011.102 In this article we consider relative iteration of entire functions and study<br />comparative growth of the maximum term of iterated entire functions with<br />that of the maximum term of the related functions. Entire functions,maximum term,Maximum modulus,Iteration,Order,Lower order https://ijnaa.semnan.ac.ir/article_102.html https://ijnaa.semnan.ac.ir/article_102_a93fda21b7a1387fab1e17fce4ce82fe.pdf
Semnan University International Journal of Nonlinear Analysis and Applications 2008-6822 2 2 2011 06 01 Non-Archimedean stability of Cauchy-Jensen Type functional equation 92 102 EN H. Azadi Kenary Department of Mathematics, Yasouj University, Yasouj 75914-353, Iran. 10.22075/ijnaa.2011.104 In this paper we investigate the generalized Hyers-Ulam<br />stability of the following Cauchy-Jensen type functional equation<br />\$\$QBig(frac{x+y}{2}+zBig)+QBig(frac{x+z}{2}+yBig)+QBig(frac{z+y}{2}+xBig)<br />=2[Q(x)+Q(y)+Q(z)]\$\$ in non-Archimedean spaces generalized Hyers-Ulam stability,Non-Archimedean spaces,Fixed point method https://ijnaa.semnan.ac.ir/article_104.html https://ijnaa.semnan.ac.ir/article_104_2ed6c80666d79b4fbb85860b2e472e3b.pdf
Semnan University International Journal of Nonlinear Analysis and Applications 2008-6822 2 2 2011 06 01 Strongly \$[V_{2}, lambda_{2}, M, p]-\$ summable double sequence spaces defined by orlicz function 103 108 EN A. Esi University, Science and Art Faculty, Department of Mathematics, 02040, Adiyaman, Turkey. 10.22075/ijnaa.2011.105 In this paper we introduce strongly \$left[  V_{2},lambda_{2},M,pright]<br />-\$summable double vsequence spaces via Orlicz function and examine some<br />properties of the resulting these spaces. Also we give natural relationship<br />between these spaces and \$S_{lambda_{2}}-\$statistical convergence. P-convergent,double statistical convergence,Orlicz function https://ijnaa.semnan.ac.ir/article_105.html https://ijnaa.semnan.ac.ir/article_105_2a1aff4726f50b3aeec83d7e677edc29.pdf
Semnan University International Journal of Nonlinear Analysis and Applications 2008-6822 2 2 2011 06 01 Maximum modulus of derivatives of a polynomial 109 113 EN A. Zireh Department of Mathematics, Shahrood University of Technology, Shahrood, Iran. 10.22075/ijnaa.2011.106 For an arbitrary entire function f(z), let M(f;R) = maxjzj=R jf(z)j<br />and m(f; r) = minjzj=r jf(z)j. If P(z) is a polynomial of degree n having no zeros<br />in jzj < k, k  1, then for 0  r    k, it is proved by Aziz et al. that<br />M(P0; )  n<br />+k f( +k<br />k+r )n[1 􀀀 k(k􀀀)(nja0j􀀀kja1j)n<br />(2+k2)nja0j+2k2ja1j ( 􀀀r<br />k+ )( k+r<br />k+ )n􀀀1]M(P; r)<br />􀀀[ (nja0j+k2ja1j)(r+k)<br />(2+k2)nja0j+2k2ja1j  [(( +k<br />r+k )n 􀀀 1) 􀀀 n( 􀀀 r)]]m(P; k)g:<br />In this paper, we obtain a re nement of the above inequality. Moreover, we obtain<br />a generalization of above inequality for M(P0;R), where R  k. Polynomial,inequality,Maximum modulus,Restricted Zeros https://ijnaa.semnan.ac.ir/article_106.html https://ijnaa.semnan.ac.ir/article_106_66c2451d8e6ad71dad8a4cddbb00cbeb.pdf