TY - JOUR
ID - 223
TI - Free and constrained equilibrium states in a variational problem on a surface
JO - International Journal of Nonlinear Analysis and Applications
JA - IJNAA
LA - en
SN -
AU - Vyridis, Panayotis
AD - Department of Physics and Mathematics, National Polytechnical Institute (I.P.N.), Campus Zacatecas (U.P.I.I.Z) P. C. 098160, Zacatecas, Mexico.
Y1 - 2015
PY - 2015
VL - 6
IS - 1
SP - 119
EP - 134
KW - Calculus of Variations
KW - Critical points for the Energy Functional
KW - Boundary Value Problem for an Elliptic PDE
KW - Surface
KW - Curvature
DO - 10.22075/ijnaa.2015.223
N2 - We study the equilibrium states for an energy functional with a parametric force field on a region of a surface. Consideration of free equilibrium states is based on Lyusternik - Schnirelman's and Skrypnik's variational methods. Consideration of equilibrium states under a constraint of geometrical character is based on an analog of Skrypnik's method, described in [P. Vyridis, {\it Bifurcation in a Variational Problem on a Surface with a Constraint}, Int. J. Nonlinear Anal. Appl. 2 (1) (2011), 1-10]. In local coordinates, equilibrium points satisfy an elliptic boundary value problem.
UR - https://ijnaa.semnan.ac.ir/article_223.html
L1 - https://ijnaa.semnan.ac.ir/article_223_a1f8208d0e720dfe30bb5073ee0b5d14.pdf
ER -