TY - JOUR
ID - 28
TI - Sigma-weak amenability of Banach algebras
JO - International Journal of Nonlinear Analysis and Applications
JA - IJNAA
LA - en
SN -
AU - Yazdanpanah, T.
AU - Mozzami Zadeh, I.
AD - Department of Mathematics, Persian Gulf University, Bushehr, 75168, Iran
Y1 - 2013
PY - 2013
VL - 4
IS - 1
SP - 66
EP - 73
KW - Banach algebra
KW - -derivation
KW - weak amenability
DO - 10.22075/ijnaa.2013.28
N2 - Let A be a Banach algebra, be continuous homomorphism on A with (A) = A. The boundedlinear map D : A ! A is derivation, ifD(ab) = D(a) (b) + (a) D(b) (a; b 2 A):We say that A is -weakly amenable, when for each bounded derivation D : A ! A, there existsa 2 A such that D(a) = (a) a a (a). For a commutative Banach algebra A, we showA is weakly amenable if and only if every derivation from A into a symmetric BanachAbimodule X is zero. Also, we show that a commutative Banach algebra A is weakly amenableif and only if A# is #weakly amenable, where #(a + ) = (a) + .
UR - https://ijnaa.semnan.ac.ir/article_28.html
L1 - https://ijnaa.semnan.ac.ir/article_28_0ec73acaf4acf95cbff958392ec4552b.pdf
ER -