TY - JOUR
ID - 4195
TI - Some results on second transpose of a dual valued derivation
JO - International Journal of Nonlinear Analysis and Applications
JA - IJNAA
LA - en
SN -
AU - Essmaili, Morteza
AD - Department of Mathematics, Faculty of Mathematical and Computer Science, Kharazmi University, 50 Taleghani Avenue, 15618 Tehran, Iran
Y1 - 2019
PY - 2019
VL - 10
IS - 2
SP - 267
EP - 273
KW - Derivation
KW - second transpose
KW - Banach module
KW - module actions
DO - 10.22075/ijnaa.2019.4195
N2 - Let $A$ be a Banach algebra and $X$ be an arbitrary Banach $A$-module. In this paper, we study the second transpose of derivations with value in dual Banach $A$-module $X^{*}.$ Indeed, for a continuous derivation $D:A\longrightarrow X^{*}$ we obtain a necessary and sufficient condition such that the bounded linear map $\Lambda\circ D^{\prime\prime}:A^{**}\longrightarrow X^{***}$ to be a derivation, where $\Lambda$ is composition of restriction and canonical injection maps. This characterization generalizes some well known results in [2].
UR - https://ijnaa.semnan.ac.ir/article_4195.html
L1 - https://ijnaa.semnan.ac.ir/article_4195_d36bb72cb9e9acb7cd765a8cfcd281bc.pdf
ER -