TY - JOUR
ID - 5229
TI - Viscous dissipation and thermal radiation effects on the flow of Maxwell nanofluid over a stretching surface
JO - International Journal of Nonlinear Analysis and Applications
JA - IJNAA
LA - en
SN - 2008-6822
AU - Narender, G
AU - Govardhan, K
AU - Sreedhar Sarma, G
AD - Department of Humanities and Sciences(Mathematics), CVR College of Engineering, Hyderabad, Telangana State, India
AD - Department of Mathematics, GITAM University, Hyderabad, Telangana State, India
AD - Department of Humanities and Sciences(Mathematics), CVR College of Engineering, Hyderabad,Telangana State, India.
Y1 - 2021
PY - 2021
VL - 12
IS - 2
SP - 1267
EP - 1287
KW - Maxwell Nanofluid
KW - viscous dissipation
KW - Prandtl number
KW - Velocity ratio parameter
KW - Adam’s – Moultan Method
DO - 10.22075/ijnaa.2020.18958.2045
N2 - An analysis is made to examine the viscous dissipation and thermal effects on magneto hydrodynamic mixed convection stagnation point flow of Maxwell nanofluid passing over a stretching surface. The governing partial differential equations are transformed into a system of ordinary differential equations by utilizing similarity transformations. An effective shooting technique of Newton is utilize to solve the obtained ordinary differential equations. Furthermore, we compared our results with the existing results for especial cases. which are in an excellent agreement. The effects of sundry parameters on the velocity, temperature and concentration distributions are examined and presented in the graphical form. These non-dimensional parameters are the velocity ratio parameter $(A)$, Biot number $(Bi$), Lewis number $(Le)$, magnetic parameter $(M)$, heat generation/absorption coefficients $\left(A^*,B^*\right)$, visco-elastic parameters $\left(\beta\right)$, Prandtl number $(Pr)$, Brownian motion parameter $(Nb)$, Eckert number $\left(Ec\right)$, Radiation parameter $\left(R\right)$ and local Grashof number $(Gc;\ Gr).$An analysis is made to examine the viscous dissipation and thermal effects on magneto hydrodynamic mixed convection stagnation point flow of Maxwell nanofluid passing over a stretching surface. The governing partial differential equations are transformed into a system of ordinary differential equations by utilizing similarity transformations. An effective shooting technique of Newton is utilize to solve the obtained ordinary differential equations. Furthermore, we compared our results with the existing results for especial cases. which are in an excellent agreement. The effects of sundry parameters on the velocity, temperature and concentration distributions are examined and presented in the graphical form. These non-dimensional parameters are the velocity ratio parameter $(A)$, Biot number $(Bi$), Lewis number $(Le)$, magnetic parameter $(M)$, heat generation/absorption coefficients $\left(A^*,B^*\right)$, visco-elastic parameters $\left(\beta\right)$, Prandtl number $(Pr)$, Brownian motion parameter $(Nb)$, Eckert number $\left(Ec\right)$, Radiation parameter $\left(R\right)$ and local Grashof number $(Gc;\ Gr).$
UR - https://ijnaa.semnan.ac.ir/article_5229.html
L1 - https://ijnaa.semnan.ac.ir/article_5229_6f5b3e7698473398ec0ff1d986109d53.pdf
ER -