TY - JOUR
ID - 6015
TI - Extended Hermite-Hadamard $(H-H)$ and Fejer's inequalities based on $(h_1,h_2,s)$-convex functions
JO - International Journal of Nonlinear Analysis and Applications
JA - IJNAA
LA - en
SN -
AU - Yasin, Sabir
AU - Misiran, Masnita
AU - Omar, Zurni
AD - Department of Mathematics and Statistics, School of Quantitative Sciences, Utara University, Malaysia, 06010 UUM Sintok, Kedah, Malaysia
Y1 - 2022
PY - 2022
VL - 13
IS - 1
SP - 2885
EP - 2895
KW - inequality
KW - Hermite-Hadamard (H-H)
KW - Fejer
KW - convex function
DO - 10.22075/ijnaa.2022.6015
N2 - In this paper, $(h_1,h_2)$-convex and $s$-convex functions are merged to form $(h_1,h_2,s)$-convex function. Inequalities of the Hermite-Hadamard (H-H) and Fejer's types will then be extended by using the $(h_1,h_2,s)$-convex function and its derivatives. Some special cases for these extended H-H and Fejer's inequalities are also explored in order to get the previously specified results. The relationship between newly constructed Hermite-Hadamard $(H-H)$ and Fejer's types of inequalities with the average (mean) values are also discussed.
UR - https://ijnaa.semnan.ac.ir/article_6015.html
L1 - https://ijnaa.semnan.ac.ir/article_6015_f31de2ea969c8c698a5215bea39db2ce.pdf
ER -