TY - JOUR
ID - 6997
TI - A new subclass of bi-univalent functions associated with q-Chebychev polynomial
JO - International Journal of Nonlinear Analysis and Applications
JA - IJNAA
LA - en
SN -
AU - D, Kavitha
AU - Dhanalakshmi, K.
AU - Manikandan, P.
AD - Department of Mathematics, SRM Institute of Science and Technology, Ramapuram, Chennai, 605108, Tamilnadu, India
AD - PG & Research Department of Mathematics, Theivanai Ammal College for Women (Autonomous), Villupuram, 605602, Tamilnadu, India
AD - Department of Mathematics, Anjalai Ammal Mahalingam Engineering College, Kovilvenni, 614403, Tamilnadu, India
Y1 - 2023
PY - 2023
VL - 14
IS - 1
SP - 1849
EP - 1856
KW - Univalent functions
KW - subordination
KW - q-derivative
KW - q-Chebyshev polynomial and Fekete-SzegĂ¶ inequality
DO - 10.22075/ijnaa.2022.28252.3845
N2 - In this article, using the concept of q-analogue, we define a new class of analytic functions associated with Chebyshev polynomial of second kind. Then with the help of symmetric q-Chebyshev polynomial, we introduce and estimating first two Maclaurin coefficients for new subclasses of analytic functions. Also as application of the results, we estimate the relevant connection to the famous classical Fekete- SzegĂ¶ inequality belonging to the class $\tilde{S}_{\Sigma}^{q}(\lambda,\gamma,s).$
UR - https://ijnaa.semnan.ac.ir/article_6997.html
L1 - https://ijnaa.semnan.ac.ir/article_6997_de719169ca1301b4d19f1566c21adb8e.pdf
ER -