Int. J. Nonlinear Anal. Appl. 5 (2014) No. 2, 16-21

ISSN: 2008-6822 (electronic) http://www.ijnaa.semnan.ac.ir

On λ^2- Asymptotically Double Statistical Equivalent Sequences

Ayhan Esia,*, Mehmet Acikgozb

^aAdiyaman University, Science and Art Faculty, Department of Mathematics, 02040, Adiyaman, Turkey. ^bGaziantep University, Science and Art Faculty, Department of Mathematics, 27200, Gaziantep, Turkey.

(Communicated by A. Ebadian)

Abstract

This paper presents the following new definition which is a natural combination of the definition for asymptotically double equivalent, double statistically limit and double λ^2 – sequences. The double sequence $\lambda^2 = (\lambda_{m,n})$ of positive real numbers tending to infinity such that

$$\lambda_{m+1,n} \le \lambda_{m,n} + 1, \ \lambda_{m,n+1} \le \lambda_{m,n} + 1,$$

 $\lambda_{m,n} - \lambda_{m+1,n} \le \lambda_{m,n+1} - \lambda_{m+1,n+1}, \lambda_{1,1} = 1,$

and

$$I_{m,n} = \{(k,l): m - \lambda_{m,n} + 1 \le k \le m, n - \lambda_{m,n} + 1 \le l \le n\}.$$

For double λ^2 -sequence; the two non-negative sequences $x=(x_{k,l})$ and $y=(y_{k,l})$ are said to be λ^2 -asymptotically double statistical equivalent of multiple L provided that for every $\varepsilon>0$

$$P - \lim_{m,n} \frac{1}{\lambda_{m,n}} \left| \left\{ (k,l) \in I_{m,n} : \left| \frac{x_{k,l}}{y_{k,l}} - L \right| \ge \varepsilon \right\} \right| = 0$$

(denoted by $x \stackrel{S_{\lambda^2}^L}{\backsim} y$) and simply λ^2 -asymptotically double statistical equivalent if L = 1.

Keywords: Pringsheim Limit Point, P-convergent, Double Statistical Convergence. 2000 MSC: Primary 40A99 Secondary 40A05.

Email addresses: aesi23@hotmail.com (Ayhan Esi), acikgoz@gantep.edu.tr (Mehmet Acikgoz)

Received: August 2013 Revised: September 2013

^{*}Corresponding author

1. Introduction and preliminaries

In 1993, Marouf [2] presented definitions for asymptotically equivalent sequences and asymptotic regular matrices. In 2003, Patterson [5] extends these concepts by presenting an asymptotically statistical equivalent analog of these definitions and natural regularity conditions for non-negative summability matrices. Later these definitions extended to λ -sequences by Savaş and Başarır in [8]. This paper extends the definitions presented in [8] to double λ^2 - sequences. In addition to these definitions, natural inclusion theorems shall also be presented.

2. Definitions and Notations

Now we give a brief history for asymptotical equivalence for single sequences and double sequences.

Definition 2.1. (Marouf, [2]) Two non-negative sequence $x = (x_k)$ and $y = (y_k)$ are said to be asymptotically equivalent if

 $\lim_{k} \frac{x_k}{y_k} = 1$

(denoted by $x \sim y$).

Definition 2.2. (Fridy, [1]) The sequence $x = (x_k)$ has statistic limit L provided that for every $\varepsilon > 0$,

$$\lim_{n} \frac{1}{n} |\{k \le n : |x_k - L| \ge \varepsilon\}| = 0$$

The next definition is natural combination of definitions (2.1) and (2.2).

Definition 2.3. (Patterson, [5]) Two non-negative sequence $x = (x_k)$ and $y = (y_k)$ are said to be asymptotically statistical equivalent of multiple L provided that for every $\varepsilon > 0$,

$$\lim_{n} \frac{1}{n} \left| \left\{ k \le n : \left| \frac{x_k}{y_k} - L \right| \ge \varepsilon \right\} \right| = 0$$

(denoted by $x \stackrel{S_L}{\backsim} y$) and simply asymptotically statistical equivalent if L = 1.

Definition 2.4. (Mursaleen, [3]) Let $\Lambda = (\lambda_n)$ be a non-decreasing sequence of positive real numbers tending to infinitiy and $\lambda_1 = 1$ and $\lambda_{n+1} \leq \lambda_n + 1$. A sequence $x = (x_k)$ is said to be λ -statistically convergent or S_{λ} -convergent to L if for every $\varepsilon > 0$

$$\lim_{n} \frac{1}{\lambda_n} \left| \left\{ k \in I_n : |x_k - L| \ge \varepsilon \right\} \right| = 0$$

where $I_n = [n - \lambda_n + 1, n]$ for $n = 1, 2, \dots$.

Definition 2.5. (Savaş and Başarır, [8]) Let $\Lambda = (\lambda_n)$ be a non-decreasing sequence of positive real numbers tending to infinitiy and $\lambda_1 = 1$ and $\lambda_{n+1} \leq \lambda_n + 1$. The two non-negative sequences sequences $x = (x_k)$ and $y = (y_k)$ are S_{λ} -asymptotically equivalent of multiple L provided that

$$\lim_{n} \frac{1}{\lambda_{n}} \left| \left\{ k \in I_{n} : \left| \frac{x_{k}}{y_{k}} - L \right| \ge \varepsilon \right\} \right| = 0$$

where $I_n = [n - \lambda_n + 1, n]$ for $n = 1, 2, \dots$.

18 Esi and Acikgoz

Definition 2.6. (Savaş and Başarır, [8]) Let $\Lambda = (\lambda_n)$ be a non-decreasing sequence of positive real numbers tending to infinitiy and $\lambda_1 = 1$ and $\lambda_{n+1} \leq \lambda_n + 1$. The two non-negative sequences sequences $x = (x_k)$ and $y = (y_k)$ are strong λ -asymptotically equivalent of multiple L provided that

$$\lim_{n} \frac{1}{\lambda_n} \sum_{k \in I_n} \left| \frac{x_k}{y_k} - L \right| = 0,$$

where $I_n = [n - \lambda_n + 1, n]$ for n = 1, 2,

In 1900 Pringsheim presented the following definition for the convergence of double sequences.

Definition 2.7. (Pringsheim, [7]) A double sequence $x = (x_{k,l})$ has Pringsheim limit L (denoted by $P - \lim x = L$) provided that given $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that $|x_{k,l} - L| < \varepsilon$ whenever k, l > N. We shall describe such an $x = (x_{k,l})$ more briefly as "P-convergent".

We shall denote the space of all P-convergent sequences by c^{i} . By a bounded double sequence we shall mean there exists a positive number K such that $|x_{k,l}| < K$ for all (k,l) and denote such bounded by $||x||_{(\infty,2)} = \sup_{k,l} |x_{k,l}| < \infty$. We shall also denote the set of all bounded double sequences by l_{∞}^{i} . We also note in contrast to the case for single sequence, a P-convergent double sequence need not be bounded.

Definition 2.8. (Patterson, [6]) The two non-negative double sequences $x = (x_{k,l})$ and $y = (y_{k,l})$ are said to be asymptotically double equivalent of multiple L provided that for every $\varepsilon > 0$,

$$P - \lim_{k,l,} \frac{x_{k,l}}{y_{k,l}} = L$$

(denoted by $x \stackrel{P}{\backsim} y$) and simply asymptotically double equivalent if L = 1.

Definition 2.9. (Mursaleen and Edely, [4]) A real double sequence $x = (x_{k,l})$ is to be statistically convergent to L, provided that for each $\varepsilon > 0$

$$P - \lim_{m,n} \frac{1}{mn} |\{(k,l): k \le m \text{ and } l \le n, |x_{k,l} - L| \ge \varepsilon\}| = 0.$$

In this case we write $S^L - \lim x = L$ or $x_{k,l} \to L(S^L)$.

Definition 2.10. The two non-negative double sequences $x = (x_{k,l})$ and $y = (y_{k,l})$ are said to be asymptotically double statistical equivalent of multiple L provided that for every $\varepsilon > 0$,

$$P - \lim_{m,n} \frac{1}{mn} \left| \left\{ (k,l) : k \le m \text{ and } l \le n, \left| \frac{x_{k,l}}{y_{k,l}} - L \right| \ge \varepsilon \right\} \right| = 0.$$

(denoted by $x \stackrel{S^L}{\backsim} y$) and simply asymptotically double statistical equivalent if L = 1.

Definition 2.11. The double sequence $\lambda^2 = (\lambda_{m,n})$ of positive real numbers tending to infinity such that

$$\lambda_{m+1,n} \le \lambda_{m,n} + 1, \ \lambda_{m,n+1} \le \lambda_{m,n} + 1,$$

 $\lambda_{m,n} - \lambda_{m+1,n} \le \lambda_{m,n+1} - \lambda_{m+1,n+1}, \lambda_{1,1} = 1,$

and

$$I_{m,n} = \{(k,l): m - \lambda_{m,n} + 1 \le k \le m, n - \lambda_{m,n} + 1 \le l \le n\}.$$

The generalized double de Vallee-Poussin mean is defined by

$$t_{m,n} = t_{m,n} (x_{k,l}) = \frac{1}{\lambda_{m,n}} \sum_{(k,l) \in I_{m,n}} x_{k,l}.$$

Now we give some new definitions which are natural combination of definitions (2.10) and (2.11).

Definition 2.12. For double λ^2 -sequence; the two non-negative double sequences $x=(x_{k,l})$ and $y = (y_{k,l})$ are said to be λ^2 -asymptotically double statistical equivalent of multiple L provided that for every $\varepsilon > 0$,

 $P - \lim_{m,n} \frac{1}{\lambda_{m,n}} \left| \left\{ (k,l) \in I_{m,n} : \left| \frac{x_{k,l}}{y_{k,l}} - L \right| \ge \varepsilon \right\} \right| = 0$

(denoted by $x \overset{S_{\lambda^2}^L}{\hookrightarrow} y$) and simply asymptotically double statistical equivalent if L = 1. Furthermore, let $S_{\lambda^2}^L$ denote the set of all sequences $x = (x_{k,l})$ and $y = (y_{k,l})$ such that $x \stackrel{S_{\lambda^2}^L}{\sim} y$.

For double λ^2 -sequence; the two double sequences $x = (x_{k,l})$ and $y = (y_{k,l})$ are said to be strong λ^2 -asymptotically double equivalent of multiple L provided that

$$P - \lim_{m,n} \frac{1}{\lambda_{m,n}} \sum_{(k,l) \in I_{m,n}} \left| \frac{x_{k,l}}{y_{k,l}} - L \right| = 0,$$

(denoted by $x \stackrel{N_{\lambda_2}^L}{\hookrightarrow} y$) and simply strong λ^2 -asymptotically double equivalent if L = 1. In addition, let $N_{\lambda^2}^L$ denote the set of all sequences $x = (x_{k,l})$ and $y = (y_{k,l})$ such that $x \stackrel{N_{\lambda^2}^L}{\hookrightarrow} y$.

Main Results

Theorem 3.1. For double λ^2 -sequence;

- (i). (a) If $x \overset{N_{\lambda^2}^L}{\stackrel{>}{\sim}} y$ then $x \overset{S_{\lambda^2}^L}{\stackrel{>}{\sim}} y$. (b) $N_{\lambda^2}^L$ is a proper subset of $S_{\lambda^2}^L$.
- (ii). If $x = (x_{k,l}) \in l_{\infty}^n$ and $x \stackrel{S_{\lambda^2}^L}{\hookrightarrow} y$ then $x \stackrel{N_{\lambda^2}^L}{\hookrightarrow} y$. (iii). $S_{\lambda^2}^L \cap l_{\infty}^n = N_{\lambda^2}^L \cap l_{\infty}^n$.

Proof. (i).

(a) If $\varepsilon > 0$ and $x \stackrel{N_{\lambda^2}^L}{\backsim} y$ then

$$\sum_{(k,l)\in I_{m,n}} \left| \frac{x_{k,l}}{y_{k,l}} - L \right| \ge \sum_{(k,l)\in I_{m,ns} \ \& \left| \frac{x_{k,l}}{y_{k,l}} - L \right| \ge \varepsilon} \left| \frac{x_{k,l}}{y_{k,l}} - L \right|$$

$$\geq \varepsilon \left| \left\{ (k,l) \in I_{m,n} : \left| \frac{x_{k,l}}{y_{k,l}} - L \right| \geq \varepsilon \right\} \right|.$$

Therefore $x \stackrel{S_{\lambda^2}^L}{\backsim} y$.

Esi and Acikgoz

(b) To show the inclusion is strict, we define $x = (x_{k,l})$ as follows:

$$x_{k,l} = \begin{pmatrix} 1 & 2 & 3 & \dots & \begin{bmatrix} \sqrt[3]{\lambda_{m,n}} \end{bmatrix} & 0 & 0 & \dots \\ 2 & 2 & 3 & \dots & \begin{bmatrix} \sqrt[3]{\lambda_{m,n}} \end{bmatrix} & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots \\ 2 & \begin{bmatrix} \sqrt[3]{\lambda_{m,n}} \end{bmatrix} & \begin{bmatrix} \sqrt[3]{\lambda_{m,n}} \end{bmatrix} & \dots & \begin{bmatrix} \sqrt[3]{\lambda_{m,n}} \end{bmatrix} & 0 & 0 & \dots \\ 0 & 0 & \dots & 0 & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}.$$

Then $x \stackrel{S_{\lambda^2}^L}{\backsim} y$ but the following fails $x \stackrel{N_{\lambda^2}^L}{\backsim} y$.

(ii). Suppose that $x=(x_{k,l})$ and $y=(y_{k,l})$ are in $l_{\infty}^{\imath\imath}$ and $x\stackrel{S_{\lambda}^{L}}{\backsim}^{2}y$. Then we can assume that

$$\left| \frac{x_{k,l}}{y_{k,l}} - L \right| < H$$
, for all k and l .

Given $\varepsilon > 0$

$$\frac{1}{\lambda_{m,n}} \sum_{(k,l) \in I_{m,n}} \left| \frac{x_{k,l}}{y_{k,l}} - L \right| = \frac{1}{\lambda_{m,n}} \sum_{(k,l) \in I_{m,n}} \frac{1}{k \left| \frac{x_{k,l}}{y_{k,l}} - L \right| \ge \varepsilon} \left| \frac{x_{k,l}}{y_{k,l}} - L \right|$$

$$+ \frac{1}{\lambda_{m,n}} \sum_{(k,l) \in I_{m,n}} \frac{1}{k \left| \frac{x_{k,l}}{y_{k,l}} - L \right| < \varepsilon} \left| \frac{x_{k,l}}{y_{k,l}} - L \right|$$

$$\leq \frac{H}{\lambda_{m,n}} \left| \left\{ (k,l) \in I_{m,n} : \left| \frac{x_{k,l}}{y_{k,l}} - L \right| \ge \varepsilon \right\} \right| + \varepsilon.$$

Therefore $x \stackrel{N_{\lambda^2}^L}{\backsim} y$.

(iii). It follows from (i) and (ii). \square

In the next theorem we prove the following relation.

Theorem 3.2. For double λ^2 -sequence; $x \stackrel{S^L}{\backsim} y$ implies $x \stackrel{S^L_{\lambda^2}}{\backsim} y$ if

$$\lim \inf_{m,n} \frac{1}{\lambda_{m,n}} > 0.$$

Proof . For given $\varepsilon > 0$

$$\left\{ (k,l): \ k \leq m \text{ and } l \leq n, \left| \frac{x_{k,l}}{y_{k,l}} - L \right| \geq \varepsilon \right\} \supset \left\{ \left| (k,l) \in I_{m,n} : \left| \frac{x_{k,l}}{y_{k,l}} - L \right| \geq \varepsilon \right\}.$$

Therefore

$$\frac{1}{mn} \left| \left\{ (k,l) : k \leq m \text{ and } l \leq n, \left| \frac{x_{k,l}}{y_{k,l}} - L \right| \geq \varepsilon \right\} \right| \\
\geq \frac{1}{mn} \left| \left\{ (k,l) \in I_{m,n} : \left| \frac{x_{k,l}}{y_{k,l}} - L \right| \geq \varepsilon \right\} \right| \\
\geq \frac{\lambda_{m,n}}{mn} \cdot \frac{1}{\lambda_{m,n}} \left| \left\{ (k,l) \in I_{m,n} : \left| \frac{x_{k,l}}{y_{k,l}} - L \right| \geq \varepsilon \right\} \right|.$$

Taking the limits as $n, m \to \infty$ in Pringsheim sense and using $\liminf_{m,n} \frac{1}{\lambda_{m,n}} > 0$, we get desired result. This completes the proof. \square

References

- [1] J. A. Fridy, On statistical convergence, Analysis, 5 (1985), 301-313.
- [2] M. Marouf, Asymptotic equivalence and summability, Internat. J. Math. Math. Sci. 16 (4) (1993), 755-762.
- [3] M. Mursaleen, λ-statistical convergence, Math. Slovaca 50 (1) (2000), 111-115.
- [4] M. Mursaleen and O. H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl. 288 (1) (2003), 223-231.
- [5] R. F. Patterson, On asymptotically statististically equivalent sequences, Demonstratio Math. 36 (1) (2003), 149-153.
- [6] R. F. Patterson, Some characterization of asymptotic equivalent double sequences, (in press).
- [7] A. Pringsheim, Zur theorie der zweifach unendlichen Zahlenfolgen, Mathematische Annalen 53 (1900), 289-321.
- [8] R. Savaş and M. Başarır, (σ, λ) -asymptotically statististically equivalent sequences, Filomat 20 (1) (2006), 35-42.