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Abstract

This paper presents the following new definition which is a natural combination of the definition for
asymptotically double equivalent, double statistically limit and double λ2− sequences. The double
sequence λ2 = (λm,n) of positive real numbers tending to infinity such that

λm+1,n ≤ λm,n + 1, λm,n+1 ≤ λm,n + 1,

λm,n − λm+1,n ≤ λm,n+1 − λm+1,n+1, λ1,1 = 1,

and
Im,n = {(k, l) : m− λm,n + 1 ≤ k ≤ m, n− λm,n + 1 ≤ l ≤ n} .

For double λ2−sequence; the two non-negative sequences x = (xk,l) and y = (yk,l) are said to be
λ2−asymptotically double statistical equivalent of multiple L provided that for every ε > 0

P − lim
m,n

1

λm,n

∣∣∣∣{(k, l) ∈ Im,n :

∣∣∣∣xk,lyk,l
− L

∣∣∣∣ ≥ ε

}∣∣∣∣ = 0

(denoted by x
SL
λ2v y) and simply λ2−asymptotically double statistical equivalent if L = 1.
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1. Introduction and preliminaries

In 1993, Marouf [2] presented definitions for asymptotically equivalent sequences and asymptotic
regular matrices. In 2003, Patterson [5] extends these concepts by presenting an asymptotically
statistical equivalent analog of these definitions and natural regularity conditions for non-negative
summability matrices. Later these definitions extended to λ−sequences by Savaş and Başarır in [8].
This paper extends the definitions presented in [8] to double λ2− sequences. In addition to these
definitions, natural inclusion theorems shall also be presented.

2. Definitions and Notations

Now we give a brief history for asymptotical equivalence for single sequences and double sequences.

Definition 2.1. (Marouf, [2]) Two non-negative sequence x = (xk) and y = (yk) are said to be
asymptotically equivalent if

lim
k

xk
yk

= 1

(denoted by x v y ).

Definition 2.2. (Fridy, [1]) The sequence x = (xk) has statistic limit L provided that for every
ε > 0,

lim
n

1

n
|{k ≤ n : |xk − L| ≥ ε}| = 0

The next definition is natural combination of definitions (2.1) and (2.2).

Definition 2.3. (Patterson, [5]) Two non-negative sequence x = (xk) and y = (yk) are said to
be asymptotically statistical equivalent of multiple L provided that for every ε > 0,

lim
n

1

n

∣∣∣∣{ k ≤ n :

∣∣∣∣xkyk − L
∣∣∣∣ ≥ ε

}∣∣∣∣ = 0

(denoted by x
SLv y ) and simply asymptotically statistical equivalent if L = 1.

Definition 2.4. (Mursaleen, [3]) Let Λ = (λn) be a non-decreasing sequence of positive real numbers
tending to infinitiy and λ1 = 1 and λn+1 ≤ λn + 1. A sequence x = (xk) is said to be λ−statistically
convergent or Sλ−convergent to L if for every ε > 0

lim
n

1

λn
|{ k ∈ In : |xk − L| ≥ ε}| = 0

where In = [n− λn + 1, n] for n = 1, 2, · · · .

Definition 2.5. (Savaş and Başarır, [8]) Let Λ = (λn) be a non-decreasing sequence of positive
real numbers tending to infinitiy and λ1 = 1 and λn+1 ≤ λn + 1. The two non-negative sequences
sequences x = (xk) and y = (yk) are Sλ-asymptotically equivalent of multiple L provided that

lim
n

1

λn

∣∣∣∣{ k ∈ In :

∣∣∣∣xkyk − L
∣∣∣∣ ≥ ε

}∣∣∣∣ = 0

where In = [n− λn + 1, n] for n = 1, 2, · · · .
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Definition 2.6. (Savaş and Başarır, [8]) Let Λ = (λn) be a non-decreasing sequence of positive
real numbers tending to infinitiy and λ1 = 1 and λn+1 ≤ λn + 1. The two non-negative sequences
sequences x = (xk) and y = (yk) are strong λ-asymptotically equivalent of multiple L provided that

lim
n

1

λn

∑
k∈In

∣∣∣∣xkyk − L
∣∣∣∣ = 0,

where In = [n− λn + 1, n] for n = 1, 2, ....

In 1900 Pringsheim presented the following definition for the convergence of double sequences.

Definition 2.7. (Pringsheim, [7]) A double sequence x = (xk,l) has Pringsheim limit L (denoted
by P − limx = L) provided that given ε > 0 there exists N ∈ N such that |xk,l − L| < ε whenever
k, l > N. We shall describe such an x = (xk,l) more briefly as ”P-convergent”.

We shall denote the space of all P-convergent sequences by cıı.By a bounded double sequence
we shall mean there exists a positive number K such that |xk,l| < K for all (k, l) and denote such
bounded by ‖x‖(∞,2) = supk,l |xk,l| <∞. We shall also denote the set of all bounded double sequences
by lıı∞. We also note in contrast to the case for single sequence, a P-convergent double sequence need
not be bounded.

Definition 2.8. (Patterson, [6]) The two non-negative double sequences x = (xk,l) and y = (yk,l)
are said to be asymptotically double equivalent of multiple L provided that for every ε > 0,

P − lim
k,l,

xk,l
yk,l

= L

(denoted by x
P
v y ) and simply asymptotically double equivalent if L = 1.

Definition 2.9. (Mursaleen and Edely, [4]) A real double sequence x = (xk,l) is to be statistically
convergent to L, provided that for each ε > 0

P − lim
m,n

1

mn
|{(k, l) : k ≤ m and l ≤ n, |xk,l − L| ≥ ε}| = 0.

In this case we write SL − limx = L or xk,l → L
(
SL
)
.

Definition 2.10. The two non-negative double sequences x = (xk,l) and y = (yk,l) are said to be
asymptotically double statistical equivalent of multiple L provided that for every ε > 0,

P − lim
m,n

1

mn

∣∣∣∣{(k, l) : k ≤ m and l ≤ n,

∣∣∣∣xk,lyk,l
− L

∣∣∣∣ ≥ ε

}∣∣∣∣ = 0.

(denoted by x
SL
v y ) and simply asymptotically double statistical equivalent if L = 1.

Definition 2.11. The double sequence λ2 = (λm,n) of positive real numbers tending to infinity such
that

λm+1,n ≤ λm,n + 1, λm,n+1 ≤ λm,n + 1,

λm,n − λm+1,n ≤ λm,n+1 − λm+1,n+1, λ1,1 = 1,

and
Im,n = {(k, l) : m− λm,n + 1 ≤ k ≤ m, n− λm,n + 1 ≤ l ≤ n} .
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The generalized double de Vallee-Poussin mean is defined by

tm,n = tm,n (xk,l) =
1

λm,n

∑
(k,l)∈Im,n

xk,l.

Now we give some new definitions which are natural combination of definitions (2.10) and (2.11).

Definition 2.12. For double λ2−sequence; the two non-negative double sequences x = (xk,l) and
y = (yk,l) are said to be λ2−asymptotically double statistical equivalent of multiple L provided that
for every ε > 0,

P − lim
m,n

1

λm,n

∣∣∣∣{ (k, l) ∈ Im,n :

∣∣∣∣xk,lyk,l
− L

∣∣∣∣ ≥ ε

}∣∣∣∣ = 0

(denoted by x
SL
λ2v y ) and simply asymptotically double statistical equivalent if L = 1. Furthermore,

let SLλ2 denote the set of all sequences x = (xk,l) and y = (yk,l) such that x
SL
λ2v y.

For double λ2−sequence; the two double sequences x = (xk,l) and y = (yk,l) are said to be strong
λ2−asymptotically double equivalent of multiple L provided that

P − lim
m,n

1

λm,n

∑
(k,l)∈Im,n

∣∣∣∣xk,lyk,l
− L

∣∣∣∣ = 0,

(denoted by x
NL
λ2v y ) and simply strong λ2−asymptotically double equivalent if L = 1. In addition,

let NL
λ2 denote the set of all sequences x = (xk,l) and y = (yk,l) such that x

NL
λ2v y.

3. Main Results

Theorem 3.1. For double λ2−sequence;

(i). (a) If x
NL
λ2v y then x

SL
λ2v y.

(b) NL
λ2 is a proper subset of SLλ2 .

(ii). If x = (xk,l) ∈ lıı∞ and x
SL
λ2v y then x

NL
λ2v y .

(iii). SLλ2 ∩ lıı∞ = NL
λ2 ∩ lıı∞.

Proof . (i).

(a) If ε > 0 and x
NL
λ2v y then∑
(k,l)∈Im,n

∣∣∣∣xk,lyk,l
− L

∣∣∣∣ ≥ ∑
(k,l)∈Im,ns &

∣∣∣∣xk,lyk,l
−L

∣∣∣∣≥ε

∣∣∣∣xk,lyk,l
− L

∣∣∣∣
≥ ε

∣∣∣∣{ (k, l) ∈ Im,n :

∣∣∣∣xk,lyk,l
− L

∣∣∣∣ ≥ ε

}∣∣∣∣ .
Therefore x

SL
λ2v y.
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(b)To show the inclusion is strict, we define x = (xk,l) as follows:

xk,l =



1 2 3 ...
[

3
√
λm,n

]
0 0 ...

2 2 3 ...
[

3
√
λm,n

]
0 0 ...

...
...

...
. . .

...
...

...
. . .

2
[

3
√
λm,n

] [
3
√
λm,n

]
...

[
3
√
λm,n

]
0 0 ...

0 0 0 ... 0 0 0 ...
...

...
...

. . .
...

...
...

. . .


.

Then x
SL
λ2v y but the following fails x

NL
λ2v y.

(ii). Suppose that x = (xk,l) and y = (yk,l) are in lıı∞ and x
SL
λ2v y . Then we can assume that∣∣∣∣xk,lyk,l

− L
∣∣∣∣ < H, for all k and l.

Given ε > 0
1

λm,n

∑
(k,l)∈Im,n

∣∣∣∣xk,lyk,l
− L

∣∣∣∣ =
1

λm,n

∑
(k,l)∈Im,n &

∣∣∣∣xk,lyk,l
−L

∣∣∣∣≥ε

∣∣∣∣xk,lyk,l
− L

∣∣∣∣
+

1

λm,n

∑
(k,l)∈Im,n &

∣∣∣∣xk,lyk,l
−L

∣∣∣∣<ε

∣∣∣∣xk,lyk,l
− L

∣∣∣∣
≤ H

λm,n

∣∣∣∣{ (k, l) ∈ Im,n :

∣∣∣∣xk,lyk,l
− L

∣∣∣∣ ≥ ε

}∣∣∣∣+ ε.

Therefore x
NL
λ2v y.

(iii). It follows from (i) and (ii). �
In the next theorem we prove the following relation.

Theorem 3.2. For double λ2−sequence; x
SL
v y implies x

SL
λ2v y if

lim inf
m,n

1

λm,n
> 0.

Proof . For given ε > 0{
(k, l) : k ≤ m and l ≤ n,

∣∣∣∣xk,lyk,l
− L

∣∣∣∣ ≥ ε

}
⊃
{

(k, l) ∈ Im,n :

∣∣∣∣xk,lyk,l
− L

∣∣∣∣ ≥ ε

}
.

Therefore

1

mn

∣∣∣∣{(k, l) : k ≤ m and l ≤ n,

∣∣∣∣xk,lyk,l
− L

∣∣∣∣ ≥ ε

}∣∣∣∣
≥ 1

mn

∣∣∣∣{ (k, l) ∈ Im,n :

∣∣∣∣xk,lyk,l
− L

∣∣∣∣ ≥ ε

}∣∣∣∣
≥ λm,n

mn
.

1

λm,n

∣∣∣∣{ (k, l) ∈ Im,n :

∣∣∣∣xk,lyk,l
− L

∣∣∣∣ ≥ ε

}∣∣∣∣ .
Taking the limits as n,m → ∞ in Pringsheim sense and using lim infm,n

1
λm,n

> 0, we get desired

result. This completes the proof. �
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