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Abstract

In this paper, by applying three functional operators the previous results on the (Poisson) variance
of the external profile in digital search trees will be improved. We study the profile built over n
binary strings generated by a memoryless source with unequal probabilities of symbols and use a
combinatorial approach for studying the Poissonized variance, since the probability distribution of
the profile is unknown.
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1. Introduction

Digital trees like tries or digital search trees are important in many computer science applications like
data compression, pattern matching or hashing. For example, the popular Lempel-Ziv compression
scheme is strongly related to digital search trees. Digital trees have been widely studied in the
literature. The motivation for studying the profiles of such trees is multifold. Of course, digital
trees are used in various applications. For example, the profile represents the number of phrases
of length k in the Lempel-Ziv’78 built over n phrases. Second, the profile is a fine shape measure
closely connected to many other cost measures (height, saturation level, depth, path length, etc.).
And finally, the related analytical problems are mathematically challenging and lead to interesting
distributional results [3].

Digital search trees are intended for the same kind of problems as binary search trees. However,
they are not constructed from the total order structure of the keys for the data stored in the internal
nodes of the tree but from digital representations (or binary sequences) which serve as keys.
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Figure 1: A digital search tree built on eight strings s1, . . . , s8.

In a digital search tree strings are directly stored in internal nodes. More precisely, the root
contains the first string and the next string occupies the right or the left child of the root depending
on whether its first symbol is “0” or “1”. The remaining strings are stored in available nodes which
are directly attached to nodes already existing in the tree (external nodes). A digital search tree
with n internal nodes is completed with n + 1 external nodes. These external nodes can be seen as
those positions where the next item can be stored. The resulting tree is then a complete binary tree
with the external nodes as leaves. The search for an available node follows the prefix structure of
a new string [2]. Figure 1 shows a digital search tree built on eight strings s1, ..., s8 (i.e., s1 = 0...,
s2 = 1..., s3 = 01..., s4 = 11..., etc.) with internal (ovals) and external (squares) nodes, respectively.

In this paper, we are concerned with probabilistic properties of the external profile defined as
the number of external nodes at the same distance from the root. It is a function of the number
of strings stored in a tree and the distance from the root. We write Bn,k for the external profile.
Actually we study the external profile built over n binary strings generated by a memoryless source
with unequal probabilities of symbols (asymmetric case), that is, we assume each string is a binary
independently and identically distributed (i.i.d.) sequence with p being the probability of a “1” and
q = 1− p (0 < p < q < 1).

Definition 1.1. Let Xn be a sequence of integer random variable and XN its corresponding Poisson
driven sequence, where N is a Poisson random variable with mean z. Let G(z, u) = E(uXN ) =∑

n≥0 E(uXn) z
n

n!
e−z be its Poisson transform. The Poisson variance is introduced as

V (z) = G
′′

u(z, 1) +G′u(z, 1)−
(
G′u(z, 1)

)2
,

where G′u(z, 1) and G
′′
u(z, 1) denote respectively the first and the second derivative of G(z, u) with

respect to u at u = 1.

2. The Previous Results

In the following, we first review the main equations and results described in [2]. Let Bn,k denotes the
(random) number of external nodes at level k in a digital search tree built over n strings generated



Probabilistic analysis of the asymmetric digital search trees 6 (2015) No. 2, 161-173 163

by a memoryless source with parameter q > p = 1− q. We recall the initial conditions

Bn,0 =

{
1, for n = 0
0, for n ≥ 1.

The probability generating function of the external profile, Pn,k(u) = E(uBn,k), satisfies the following
recurrence relation

Pn+1,k(u) =
n∑
j=0

(
n
j

)
pjqn−jPj,k−1(u)Pn−j,k−1(u), (2.1)

with initial conditions P0,k(u) = 1 for k ≥ 1, P0,0(u) = u, Pn,0(u) = 1 for n ≥ 1. The corresponding
exponential generating function

Gk(x, u) =
∑
n≥0

Pn,k(u)
xn

n!

fulfills the following functional recurrence

∂

∂x
Gk(x, u) = Gk−1(px, u)Gk−1(qx, u), k ≥ 1, (2.2)

with initial conditions G0(x, u) = u + ex − 1 and Gk(0, u) = 1 (k ≥ 1). By taking derivatives with
respect to u and setting u = 1 we obtain for the exponential generating function

E
(1)
k (x) =

∑
n≥0

E(Bn,k)
xn

n!

the following functional recurrence

E
′(1)
k (x) = eqxE

(1)
k−1(px) + epxE

(1)
k−1(qx), (2.3)

with initial conditions E
(1)
0 (x) = 1 and E

(1)
k (0) = 0 (k ≥ 1). The Poisson transform of E

(1)
k (x),

namely

∆
(1)
k (x) = e−x

∑
n≥0

E(Bn,k)
xn

n!
= e−xE

(1)
k (x), k ≥ 0

translates recurrence (2.3) into

∆
′(1)
k (x) + ∆

(1)
k (x) = ∆

(1)
k−1(px) + ∆

(1)
k−1(qx), k ≥ 1, (2.4)

with initial conditions ∆
(1)
0 (x) = e−x and ∆

(1)
k (0) = 0 (k ≥ 1). Similarly, by taking second derivatives

with respect to u and setting u = 1 we obtain for the exponential generating function

E
(2)
k (x) =

∑
n≥0

E(B2
n,k)

xn

n!

the following functional recurrence

E
′(2)
k (x) = eqxE

(2)
k−1(px) + epxE

(2)
k−1(qx) + 2E

(1)
k−1(px)E

(1)
k−1(qx), (2.5)
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with initial conditions E
(2)
0 (x) = 1 and E

(2)
k (0) = 0 (k ≥ 1). Furthermore, the Poisson transform of

E
(2)
k (x), namely

∆
(2)
k (x) = e−x

∑
n≥0

E(B2
n,k)

xn

n!
= e−xE

(2)
k (x), k ≥ 0

translates recurrence (2.5) into

∆
′(2)
k (x) + ∆

(2)
k (x) = ∆

(2)
k−1(px) + ∆

(2)
k−1(qx) + wk(x), k ≥ 1, (2.6)

where wk(x) = 2∆
(1)
k−1(px)∆

(1)
k−1(qx), ∆

(2)
0 (x) = e−x and ∆

(2)
k (0) = 0 (k ≥ 1).

By induction it is easy to prove that ∆
(2)
k (x) can be represented as finite linear combinations of

functions of the form e−p
`1q`2x with `1, `2 ≥ 0, and of products of two of these functions. Hence, the

Mellin transform of ∆
(2)
k (x),

∆
∗(2)
k (s) =

∫ ∞
0

∆
(2)
k (x)xs−1dx.

exists for all s with <(s) > 0 (see [1]). Since Bn,k = 0 for k > n it follows that E
(2)
k (x) = O(xk) as

x→ 0 which ensures that ∆
∗(2)
k (s) actually exists for s with <(s) > −k.

Let us now express ∆
∗(2)
k (s) as

∆
∗(2)
k (s) = Γ(s)F

(2)
k (s),

where Γ(s) is the Euler gamma function. By definition, we know that F
(2)
k (s) is the finite linear com-

binations of functions a−s (with certain values of a). Thus, F
(2)
k (s) is an entire function. Furthermore

(2.6) translates into

F
(2)
k (s)− F (2)

k (s− 1) = T (s)F
(2)
k−1(s) +H

(2)
k (s), k ≥ 0 (2.7)

where

H
(2)
k (s) =

1

Γ(s)

∫ ∞
0

wk(x)xs−1dx,

and F
(2)
0 (s) = 1. Note that (2.7) does not only hold for <(s) > −k where the Mellin transform

exists. Since F
(2)
k (s) continues analytically to an entire function, (2.7) holds for all s, too. The

inhomogeneous part in (2.7) is very large compared to the order of magnitude of the homogeneous
equation

F
(1)
k (s)− F (1)

k (s− 1) = T (s)F
(1)
k−1(s), k ≥ 0, (2.8)

for the first moment. Since F
(1)
k (s) behaves geometrically as T (s)k it seems that the term F

(1)
k+1(s−1)

is negligible compared to the other two terms in (2.8). This phenomenon will also occur for F
(2)
k (s)

and Fk(s). We introduce the so-called Poisson variance

Vk(x) := ∆
(2)
k (x)−

(
∆

(1)
k (x)

)2
,

which should be a good approximation for the variance of the profile ([3]). By (2.4) and (2.6), Vk(x)
satisfies

Vk(x) + V ′k(x) = Vk−1(px) + Vk−1(qx) +
(

∆
′(1)
k (x)

)2
, (2.9)
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with initial condition V0(x) = e−x(1− e−x) and Vk(0) = 0 (k ≥ 1). The Mellin transform of Vk(x) is
then given as

V ∗k (s) =

∫ ∞
0

Vk(x)xs−1dx,

and again, we can use a factorization of the form

V ∗k (s) = Γ(s)Fk(s),

where V ∗k (s) and Fk(s) can be written in terms of ∆
∗(1)
k (s), ∆

∗(2)
k (s), F

(1)
k (s), and F

(2)
k (s) respectively.

In particular, (2.9) translates into

Fk(s)− Fk(s− 1) = T (s)Fk−1(s) +Hk(s), k ≥ 0, (2.10)

where

Hk(s) =
1

Γ(s)

∫ ∞
0

(
∆
′(1)
k (x)

)2
xs−1dx

and also F0(s) = 1− 2−s. We also observe that Fk(−r) = 0 for k > r, since Γ(s)Fk(s) is the Mellin
transform of Vk(x) that exists for <(s) > −k. We will use this property.

The inhomogeneous part of (2.10) (i.e., Hk(s)) does not dependent on p and q in comparison with
the inhomogeneous part of the functional-differential equation satisfied by variance of the profile (see
Section 2.1 in [2] for details: page 6). Thus asymptotic analysis of the variance done there through
Poissonized variance is not a precise analysis. In other words, the analytic function arising there
D(s, w) ([2, Lemma 4]) is not completely explicit. Let I be an identity operator and A[f ](s) =∑

j≥0 f(s− j)T (s− j) for some function f .
Kazemi and Vahidi-Asl [2] showed the following results:

Lemma 2.1. The function f(s, w) =
∑

k≥0 Fk(s)w
k can be represented as

f(s, w) = D(s, w)g(s, w),

where the functions g(s, w) = (I− wA)−1(s) and D(s, w) is analytic for |w| < 1/T (<(s)/2− 1)2.

Theorem 2.2. Let Vk(x) denote the Poisson variance of the profile in unbalanced digital search
trees with underlying probabilities 0 < p < q = 1 − p. Let k and n be positive integers such that
k/ log n satisfies (log 1

p
)−1 + ε ≤ k/ log n ≤ (log 1

q
)−1 − ε. Then uniformly

Vk(n) = L
(
ρn,k, logp/q p

kn
) (p−ρn,k + q−ρn,k)kn−ρn,k√

2πβ(ρn,k)k

(
1 +O

(
1√
k

))
, (2.11)

where ρn,k = ρ(k/ log n) and L(ρ, x) is a non-zero periodic function with period 1 in x.

The function L(ρ, x) can be represented as L(ρ, x) =
∑

j∈Z f(ρ + itj)Γ(ρ + itj)e
−2jπix, where f(s)

has the form
f(s) = g(s− 1, 1/T (s))D(s, 1/T (s)).
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Lemma 2.3. For every real interval [a, b] there exist k0, γ > 0 and ε > 0 such that

Fk(s) = f(s)T (s)k
(
1 +O

(
e−γk

))
, (2.12)

uniformly for all s with <(s) ∈ [a, b], |=(s)− 2`π log(q/p)| ≤ ε for some integer ` and k ≥ k0, where

f(s) = D(s, 1/T (s))g(s− 1, 1/T (s))

is an analytic function that satisfies f(−r) = 0 for r = 1, 2, . . . and is bounded in this region.
Furthermore, if |=(s)− 2`π log(q/p)| > ε for for all integers `, then we have

Fk(s) = O
(
T (<(s))k e−γk

)
, (2.13)

uniformly for <(s) ∈ [a, b].

In Theorem 3.4 below we show that

f(s) =
r∑
`=0

F`(−r)w`T (s)−`
h1(s, 1/T (s))

A(−r, 1/T (s))
.
T (s)− T (−r)

T (s)

+
r∑
`=0

F`(−r)w`T (s)−`
h2(s, 1/T (s))

B(−r, 1/T (s))
.
T (s)− T (−r)
T (s)− η

(2.14)

where

A(−r, w) = h1(−r, w) +
1− wT (−r)

1− w(T (−r)− η)
h2(−r, w)

and

B(−r, w) = h2(−r, w) +
1− w(T (−r)− η)

1− wT (−r)
h1(−r, w).

In this function all parts are explicit and are analytic for |w| < T (<(s) − η)−1 (see [2] for h1(s, w)
and Lemma 3.3 for h2(s, w)).

We obtain an explicit solution of (2.10) by introducing two proper functional operators:

C[f ](s) =
∑
j≥0

f(s− j),

D[f ](s) =
∑
j≥1

f(s− j, w)
wT (s− j)

1− w(T (s− j)− η)

1− w(T (s)− η)

1− wT (s)
,

for some function f and η > 0. Set

Rk(s) = Ak[1](s),

H̃`(s) = C[H`−1](s)−C[H`−1](c),

Tk,`(s) = Ak[H̃`](s),

G(s, w) =
∑
k≥0

H̃k(s)w
k,

for all k, ` ≥ 1.
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3. The New Results

Lemma 3.1. Suppose f(s, w) =
∑

k≥0 Fk(s)w
k. Then for all k ≥ 1 and complex s,

f(s, w)g(c, w) = g(s, w) + n(s, w), (3.1)

where

n(s, w) = g(c, w)G(s, w)

+
(I− wA)−1[H̃k](s)− (I− wA)−1[H̃k](c)

1− w
+ g(c, w)(I− wA)−1[G](s, w)

+ g(s, w)(I− wA)−1[G](c, w), w 6= 1. (3.2)

Proof . See Appendix A. �

Remark 3.2. The proof of (3.1) makes use of the fact that Fk(c) = 0 for k ≥ 1. However, we also
have Fk(−r) = 0 for k > r [2]. In particular, if we set s = −r in (3.1) we find that

f(−r, w)g(c, w) = g(−r, w) + n(−r, w)

and consequently

f(s, w)(g(−r, w) + n(−r, w)) = (g(s, w) + n(s, w))
r∑
`=0

F`(−r)w`.

First of all, we have the following result by convolution of Laplace transform [2]:

|Hk(s)| =
∣∣∣ 1

Γ(s)

∫ ∞
0

(
∆
′(1)
k (x)

)2
xs−1dx

∣∣∣
=

∣∣∣ 1

Γ(s)

∣∣∣ ∣∣∣∣ 1

2πi

∫ c+i∞

c−i∞
∆
′∗(1)
k (t)∆

′∗(1)
k (s− t)dt

∣∣∣∣
≤ C

′′

|Γ(s)|

∫ c+i∞

c−i∞
|t||s− t||Γ(t)||Γ(s− t− 1)|

(
T (<(t)− 1)T (<(s− t)− 1)

)k
dt

≤ CT (c− 1)2k <(t) = c = <(s− t),

= CT

(
<(s)

2
− 1

)2k

c =
<(s)

2
,

≤ C
(
T (<(s))− η

)k
, (3.3)

for constants C ′′ and C and for some η > 0.

Lemma 3.3. There exists a function h2(s, w) that is analytic for all w and s satisfying

w(T (s− n)− η) 6= 1, for all n ≥ 1,

such that

n(s, w) =
h2(s, w)

1− w(T (s)− η)
. (3.4)

Thus, n(s, w) has a meromorphic continuation where w0 = 1/(T (s)− η) is a polar singularity.



168 Kazemi, Vahidi-Asl

Proof . By definition of H̃k(s) and (3.3), n(s, w) converges absolutely and represents an analytic
function, since |T (s− j)| ≤ |T (s)|max(pq)j for j ≥ 0. Also

(I− wA)[n(s, .)](s) = r(s, w),

where

r(s, w) = G(s, w) +
(
H̃k(s)− H̃k(c)

)
(1− w)−1 +G(s, w)m(c, w)−G(c, w)g(s, w).

If we substitute n(s, w) by
h2(s, w)

1− w(T (s)− η)
,

then

h2(s, w) = D[h2](s) +
1− w(T (s)− η)

1− wT (s)
r(s, w).

For convenience, set

V (s− j, w) =
wT (s− j)

1− w(T (s− j)− η)
.
1− w(T (s)− η)

1− wT (s)
, j ≥ 1.

By induction it follows that

Dk[1](s) =
∑
j1≥0

∑
j2≥0

· · ·
∑
jk≥0

V (s− j1, w)V (s− j1 − j2, w)

· · · V (s− j1 − · · · − jk, w)

=
∑
nk≥k

nk−1∑
nk−1=k−1

nk−1−1∑
nk−2=k−2

· · ·
n2−1∑
n1=1

V (s− n1, w)V (s− n2, w)

· · · V (s− nk, w).

Hence,

|Dk[1](s)| ≤
∑
nk≥k

∑
nk−1≥k−1

∑
nk−2≥k−2

· · ·
∑
n1≥1

|V (s− n1, w)V (s− n2, w)

· · · V (s− nk, w)|
≤

∑
nk≥k

|V (s− nk, w)|
∑

nk−1≥k−1

|V (s− nk−1, w)|

· · ·
∑
n1≥1

|V (s− n1, w)|.

Using the fact that T (s− n) = O(qn), it follows directly that the series

S :=
∑
n≥1

|V (s− n,w)| =
∑
n≥1

∣∣∣wT (s− n)
(

1− w(T (s)− η)
)∣∣∣

|1− w(T (s− n)− η)||1− wT (s)|
,

converges if w(T (s− n)− η) 6= 1 for all n ≥ 1 and 1 6= wT (s). Let now k0 be any value such that∑
n≥k0

|V (s− n,w)| ≤ 1

2
,
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Then we have for all k ≥ k0,

|Dk[1](s)| ≤
(1

2

)k
(2S)k0 .

Since |r(s, w)| ≤ C(1− w(T (<(s)− η))−1 and

h2(s, w) =

[∑
k≥0

Dk[1](s)

]
1− w(T (s)− η)

1− wT (s)
r(s, w),

thus |h2(s, w)| ≤ 2(2S)k0 + C ′ for constant C ′. �

Theorem 3.4. For every real interval [a, b] there exist k0, γ > 0 and ε > 0 such that

Fk(s) = f(s)T (s)k
(
1 +O

(
e−γk)

))
(3.5)

uniformly for all s with <(s) ∈ [a, b], |=(s)− 2`π log(q/p)| ≤ ε for some integer ` and k ≥ k0, where
f(s) is an analytic function that satisfies f(−r) = 0 for r = 1, 2, . . ..

Furthermore, if |=(s)− 2`π log(q/p)| > ε for for all integers ` then we have

Fk(s) = O
(
T (s)k e−γk)

)
. (3.6)

uniformly for <(s) ∈ [a, b] where f(s) described in (2.14).

Proof . Let h1(s, w) =
∏

j≥1 1/(1− wT (s− j)) [2]. We have

f(s, w) =
r∑
`=0

F`(−r)w`
g(s, w) + n(s, w)

g(−r, w) + n(−r, w)

=
r∑
`=0

F`(−r)w`
g(s, w))

g(−r, w) + n(−r, w)

+
r∑
`=0

F`(−r)w`
n(s, w)

n(−r, w) + n(−r, w)

=
r∑
`=0

F`(−r)w`
h1(s, w)

A(−r, w)

1− wT (−r)
1− wT (s)

+
r∑
`=0

F`(−r)w`
h2(s, w)

B(−r, w)

1− w(T (−r)− η)

1− w(T (s)− η)

= f1(s, w) + f2(s, w). (3.7)

Suppose first that s > −r − 1 for some integer r ≥ 0 but s is not a positive integer. The function
h1(s, w) is analytic for |w| < 1/T (s − 1). It also follows that h1(s, w) is non-zero for real 0 < w <
1/T (s−1) and that h1(−r, w) is analytic and non-zero for 0 < w < 1/T (−r−1). Hence, w0 = 1/T (s)
is a singular point of f1(s, w). Since Fk(s) = V ∗k (s)/Γ(s) it follows that all values Fk(s) have the
same sign. Hence, the radius of convergence of the series f(s, w) equals w0 = 1/T (s).

In a next step we show that f1(s, w) has no other singularities on the radius of convergence
|w| = 1/T (s). Since all terms in f1(s, w), that is,

∑r
`=0 F`(−r)w`, h1(s, w), A(−r, w), 1 − wT (−r),

and 1− wT (s) are analytic for |w| < 1/T (s) + ε, a singularity of f1(s, w) can only be induced by a
zero of A(−r, w). Suppose first that A(−r, w) has a zero w1 with |w1| < 1/T (s). Since A(−r, w) 6= 0
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for 0 < w < 1/T (−r − 1) it follows that w1 6= 1/T (−r) and w1 6= 1/(T (−r)− η). If we assume that∑r
`=0 F`(−r)w`1 6= 0, then w = w1 must be a zero of h1(s, w). We slightly decrease s to s − γ (for

some γ > 0 such that s − γ is not a positive integer) such that h1(s − γ, w1) 6= 0. Then the zero
w = w1 of A(−r, w) would induce a singularity w1 of f1(s, w) with |w1| < 1/T (s) although its radius
of convergence is 1/T (s−γ) > 1/T (s) > |w1|. This leads to a contradiction. Hence, if A(−r, w1) = 0
for some w1 with |w1| < 1/T (s), then we also have

∑r
`=0 F`(−r)w`1 = 0. Actually, it also follows

that the order of the zeroes are the same. The above considerations also show that if w = w1 is a
zero of A(−r, w) with |w1| < 1/T (−r − 1), then w1 is also a zero of

∑r
`=0 F`(−r)w`1 = 0 of the same

order. Namely, if |w1| < 1/T (−r − 1) then there exists a non-integral real number s > −r − 1 with
|w1| < 1/T (s) and we proceed as above.

This property shows that the only singularity of f1(s, w) is given by w = 1/T (s) if s > −r − 1 is
real (but not an integer). This singularity is a polar singularity of order 1. Hence, by using Cauchy’s
formula for a contour of integration on the circle |w| = eγ/T (s) and the residue theorem it follows
that [1]

[wk]f1(s, w) = f1(s)T (s)k +O
(
|T (s)e−γ|k

)
, (3.8)

where

f1(s) =
r∑
`=0

F`(−r)T (s)−`
h1(s, 1/T (s))

A(−r, 1/T (s))

(
1− T (−r)

T (s)

)
.

These estimates are uniform for s contained in a compact interval [a, b] ⊆ (−r − 1,−r) (for some
non-negative integer r) or in a compact interval [a, b] contained in the positive real line. Furthermore,
we get the same result if s is sufficiently close to the real axis. Thus, if a ≤ <(s) ≤ b and |=(s)| ≤ ε
for some sufficiently small ε > 0, then we obtain (3.8). Here we have also used the fact that f1(s) 6= 0
in this range.

Next, suppose that s is real (or sufficiently close to the real axis) and close to a negative integer
−r, say −r − γ ≤ s ≤ −r + γ (for some γ > 0). Here we use the representation

f1(s, w) =
r∑
`=0

F`(−r)w`
h1(s, w)

A(−r, w)

1− wT (−r)
1− wT (s)

=
r∑
`=0

F`(−r)wk
h1(s, w)− A(−r, w)

A(−r, w)

1− wT (−r)
1− wT (s)

+
r∑
`=0

F`(−r)wk +
r∑
`=0

F`(−r)w`+1T (s)− T (−r)
1− wT (s)

.

Now if we subtract the finite sum
∑r

`=0 F`(−r)wk , then we can safely multiply by Γ(s) (that is
singular at s = −r) and obtain

Γ(s)
∑
k>r

Fk(s)w
k =

r∑
k=0

F`(−r)wk
Γ(s)

(
h1(s, w)− A(−r, w)

)
A(−r, w)

× 1− wT (−r)
1− wT (s)

+
r∑
`=0

F`(−r)w`+1
Γ(s)

(
T (s)− T (−r)

)
1− wT (s)

.
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We again use the fact that the function
∑r

`=0 F`(−r)w`/A(−r, w) is analytic for |w| < 1/T (−r − 1)
and observe that w = 1/T (s) is a polar singularity. By applying Cauchy’s formula we obtain for
k > r (similar to the above)

Γ(s)[wk]f1(s, w) =
r∑
`=0

F`(−r)T (s)k−`
(

1− T (−r)
T (s)

)

×
Γ(s)

(
h1(s, 1/T (s))− A(−r, 1/T (s)

)
A(−r, 1/T (s)

+
r∑
`=0

F`(−r)T (s)k−`−1Γ(s)
(
T (s)− T (−r)

)
+ O(|T (s)e−γ|k).

Thus, we have actually proved (3.8) for k > r and we also observe that f1(−r) = 0.
Since |T (s+2πi`/ log(q/p))| = |T (s)| for integer `, it follows that w = 1/T (s) is a polar singularity

of f1(s, w) if |=(s) − 2πi`/ log(q/p))| < ε for some integer `. Thus, (3.8) follows also for s in this
range. Finally, if |=(s) − 2πi`/ log(q/p))| > ε for some integer `, then there exists γ > 0 such that
|T (s)| < e−2γ|T (<(s)|. Hence it follows that f1(s, w) is regular for |w| < e2γ/T (<(s)). Thus, for a
contour of integration on the circle |w| = eγ/T (<(s)) in Cauchy’s formula we obtain

[wk]f1(s, w) = O
(
T (<(s))k e−γk

)
.

It should be clear that this estimate is uniform if <(s) varies in a finite interval [a, b].
Since f2(s, w) only has a polar singularity w = 1/(T (s) − η) of order 1, thus for a contour of

integration on the circle |w| = eγ/(T (s)− η),

[wk]f2(s, w) = f2(s)T (s)k +O
(
|(T (s)− η)e−γ|k

)
,

where

f2(s) =
r∑
`=0

F`(−r)T (s)−`
h2(s, 1/T (s))

B(−r, 1/T (s))

(
1− T (−r)− η

T (s)− η

)
.

If |=(s)− 2πi`/ log(q/p))| > ε, then

[wk]f2(s, w) = O
(
T (<(s)− η)k e−γk

)
.

It is obvious that w0 = 1/T (s) is a dominant singularity of f(s, w). Thus for every real interval [a, b]
there exist k0, γ > 0 and ε > 0 such that

Fk(s) = [wk]f(s, w) = f(s)T (s)k
(
1 +O

(
e−γk

))
,

where

f(s) = f1(s) + f2(s)

=
r∑
`=0

F`(−r)w`T (s)−`
h1(s, 1/T (s))

A(−r, 1/T (s))
.
T (s)− T (−r)

T (s)

+
r∑
`=0

F`(−r)w`T (s)−`
h2(s, 1/T (s))

B(−r, 1/T (s))
.
T (s)− T (−r)
T (s)− η
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uniformly for all s with <(s) ∈ [a, b], |=(s) − 2`π log(q/p)| ≤ ε for some integer ` and k ≥ k0,
where f(s) is an analytic function that satisfies f(−r) = 0 for r = 1, 2, . . .. Furthermore, if |=(s)−
2`π log(q/p)| > ε for all integers ` then we have

Fk(s) = O
(
T (<(s))k e−γk

)
uniformly for <(s) ∈ [a, b]. �

By the above discussion, we know that Fk(s) and V ∗k (s) = Γ(s)Fk(s) behave asymptotically as
T (s)k. Thus we are in a situation similar to the analysis of the previous article [2] but here the
analytic function f(s) introduced in the above theorem is completely explicit.
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Appendix A

Proof .[Proof of Lemma 3.1] It is obvious that

n(s, w) =
∑
k≥0

k−1∑
`=0

R`(c)H̃k−`(s)w
k +

∑
k≥0

k−1∑
`=1

(
Tk−`,`(s)− Tk−`,`(c)

)
wk

+
∑
k≥0

k−2∑
j=1

k−j−1∑
`=1

(
Rj(c)Tk−`−j,`(s)−Rj(s)Tk−`−j,`(c)

)
wk

and

f(s, w)g(c, w) =
∑
k≥0

k∑
`=1

F`(s)Rk−`(c)w
k.

Thus it is enough to show that

Fk(s) = Rk(s)−
k−1∑
`=1

F`(s)Rk−`(c) +
k−1∑
`=0

R`(c)H̃k−`(s)

+
k−1∑
`=1

(
Tk−`,`(s)− Tk−`,`(c)

)
+

k−2∑
j=1

k−j−1∑
`=1

(
Rj(c)Tk−`−j,`(s)−Rj(s)Tk−`−j,`(c)

)
.

We will prove this relation by induction. Certainly, it is satisfied for k = 0. Now suppose that it
holds for some k ≥ 0. Thus

Fk+1(s) = Rk+1(s)−Rk+1(c)−
k−1∑
`=0

Rk−`(c)F`+1(s)

+
k−1∑
`=0

Rk−`(c)H̃`+1(s) +
k−1∑
`=0

R`(c)A[H̃k−`](s)−
k−1∑
`=0

R`(c)A[H̃k−`](c)

+
k−1∑
`=1

(
Tk−`+1,`(s)− Tk−`+1,`(c)

)
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−
k−1∑
`=1

R1(s)Tk−`,`(c) +
k−1∑
`=1

R1(c)Tk−`,`(c)

+
k−2∑
j=1

k−j−1∑
`=1

Rj(c)Tk−`−j+1,`(s)−
k−2∑
j=1

k−j−1∑
`=1

Rj(c)Tk−`−j+1,`(c)

−
k−2∑
j=1

k−j−1∑
`=1

Rj+1(s)Tk−`−j,`(c)

+
k−2∑
j=1

k−j−1∑
`=1

Rj+1(c)Tk−`−j,`(c) + H̃k+1(s)

= Rk+1(s)−
k∑
`=0

Rk+1−`(c)F`(s) +
k∑
`=0

R`(c)H̃k+1−`(s)

+
k−1∑
`=0

R`(c)A[H̃k−`](s)−
k−1∑
`=0

R`(c)A[H̃k−`](c)

+
k∑
`=1

(
Tk−`+1,`(s)− Tk−`+1,`(c)

)
−
(
A[H̃k](s)−A[H̃k](c)

)
−

k−1∑
`=1

R1(s)Tk−`,`(c) +
k−1∑
`=1

R1(c)Tk−`,`(c)

+
k−1∑
j=1

k−j∑
`=1

Rj(c)Tk−`−j+1,`(s)−
k−1∑
`=1

R`(c)A[H̃k−`](s)

−
k−2∑
`=1

R1(c)Tk−`,`(c) +
k−1∑
`=2

R`(c)A[H̃k−`](c)

−
k−1∑
j=1

k−j∑
`=1

Rj(s)Tk+1−`−j,`(c) +
k−1∑
`=1

R1(s)Tk−`,`(c).

Now by removing the same expressions the proof is completed. �
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