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Abstract

In this study, we present the new Hermite-Hadamard type inequality for functions which are h-convex
on fractal set Rα (0 < α ≤ 1) of real line numbers. Then we provide the special cases of the result
using different type of convex mappings.
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1. Introduction

Let f : I ⊆ R → R be a convex function on the interval I of real numbers and a, b ∈ I with a < b.
If f is a convex function then the following double inequality holds [3]:

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f (a) + f (b)

2
. (1.1)

The above inequality (1.1) which is well known in the literature as the Hermite–Hadamard in-
equality, is the most fundamental and interesting inequality for classical convex functions. This
inequality provides a lower and an upper estimations for the integral average of any convex functions
defined on a compact interval. For numerous interesting results which generalize, improve and extend
the classical Hermite-Hadamard inequality see for instance [3], [10] and references therein.
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2. The preliminaries

The concepts of fractional calculus [6] and local fractional calculus (also called fractal calculus)
(see, for details, [18], [19] and [20]) are becoming increasingly useful in a wide variety of problems
in mathematical, physical and engineering sciences (see, for example, [21] to [24]). We need the
following notations and preliminaries to define the local fractional derivative and the local fractional
integral.

Recall the set Rα of real line numbers and use the Gao-Yang-Kang’s idea to describe the definition
of the local fractional derivative and local fractional integral, (see [18], [19], [20]) and so on. Recently,
the theory of Yang’s fractional sets [19] was introduced as follows:

For 0 < α ≤ 1, we have the following α-type set of element sets:

Zα : The α-type set of integer is defined as the set {0α,±1α,±2α, ...,±nα, ...} .

Qα : The α-type set of the rational numbers is defined as the set {mα =
(

p
q

)α
: p, q ∈ Z, q ̸= 0}.

Jα : The α-type set of the irrational numbers is defined as the set {mα ̸=
(

p
q

)α
: p, q ∈ Z, q ̸= 0}.

Rα : The α-type set of the real line numbers is defined as the set Rα = Qα ∪ Jα.

If aα, bα and cα belongs the set Rα of real line numbers, then

(1) aα + bα and aαbα belongs the set Rα;
(2) aα + bα = bα + aα = (a+ b)α = (b+ a)α ;
(3) aα + (bα + cα) = (a+ b)α + cα;
(4) aαbα = bαaα = (ab)α = (ba)α ;
(5) aα (bαcα) = (aαbα) cα;
(6) aα (bα + cα) = aαbα + aαcα;
(7) aα + 0α = 0α + aα = aα and aα1α = 1αaα = aα.

The definition of the local fractional derivative and local fractional integral can be given as follows:

Definition 2.1. (Yang [19]) A non-differentiable function f : R → Rα, x → f(x) is called to be
local fractional continuous at x0, if for any ε > 0, there exists δ > 0, such that

|f(x)− f(x0)| < εα

holds for |x− x0| < δ, where ε, δ ∈ R. If f(x) is local continuous on the interval (a, b) , we denote
f(x) ∈ Cα(a, b).

Definition 2.2. (Yang [19]) The local fractional derivative of f(x) of order α at x = x0 is defined
by

f (α)(x0) =
dαf(x)

dxα

∣∣∣∣
x=x0

= lim
x→x0

∆α (f(x)− f(x0))

(x− x0)
α ,

where ∆α (f(x)− f(x0)) =̃Γ(1 + α) (f(x)− f(x0)) . If there exists f (k+1)α(x) =

k+1 times︷ ︸︸ ︷
Dα

x ...D
α
xf(x) for any

x ∈ I ⊆ R, then we denoted f ∈ D(k+1)α(I), where k = 0, 1, 2, ...
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Definition 2.3. (Yang [19]) Let f(x) ∈ Cα [a, b] . Then the local fractional integral is defined by,

aI
α
b f(x) =

1

Γ(1 + α)

b∫
a

f(t)(dt)α =
1

Γ(1 + α)
lim
∆t→0

N−1∑
j=0

f(tj)(∆tj)
α,

with ∆tj = tj+1 − tj and ∆t = max {∆t1,∆t2, ...,∆tN−1} , where [tj, tj+1] , j = 0, ..., N − 1 and
a = t0 < t1 < ... < tN−1 < tN = b is partition of interval [a, b] .

Here, it follows that aI
α
b f(x) = 0 if a = b and aI

α
b f(x) = −bI

α
a f(x) if a < b. If for any x ∈ [a, b] ,

there exists aI
α
x f(x), then we denoted by f(x) ∈ Iαx [a, b] .

Lemma 2.4. (Yang [19])

(i) (Local fractional integration is anti-differentiation) Suppose that f(x) = g(α)(x) ∈ Cα [a, b] ,
then we have

aI
α
b f(x) = g(b)− g(a).

(ii) (Local fractional integration by parts) Suppose that f(x), g(x) ∈ Dα [a, b] and f (α)(x), g(α)(x) ∈
Cα [a, b] , then we have

aI
α
b f(x)g

(α)(x) = f(x)g(x)|ba −a I
α
b f

(α)(x)g(x).

Lemma 2.5. (Yang [19])

(i)
dαxkα

dxα
=

Γ(1 + kα)

Γ(1 + (k − 1)α)
x(k−1)α;

(ii)
1

Γ(1 + α)

b∫
a

xkα(dx)α =
Γ(1 + kα)

Γ(1 + (k + 1)α)

(
b(k+1)α − a(k+1)α

)
, k ∈ R.

Now, we give some definitions which are used in our results:

Definition 2.6. (Mo, Sui, Yu [7]) Let f : I ⊆ R → Rα. For any x1, x2 ∈ I and λ ∈ [0, 1] , if the
following inequality

f(λx1 + (1− λ)x2) ≤ λαf(x1) + (1− λ)αf(x2)

holds, then f is called a generalized convex function on I. If this inequality reversed, then f is called
a generalized concave function.

Here are two basic examples of generalized convex functions:

(i)f(x) = xαp, x ≥ 0, p > 1;

(ii)f(x) = Eα(x
α), x ∈ R where Eα(x

α) =
∞∑
k=0

xαk

Γ(1+kα)
is the Mittag-Leffer function.

In [7], Mo et al. proved the following generalized Hermite-Hadamard inequality for generalized
convex function:

Theorem 2.7. Let f(x) ∈ Iαx [a, b] be generalized convex function on [a, b] with a < b. Then

f

(
a+ b

2

)
≤ Γ (1 + α)

(b− a)α
aI

α
b f(x) ≤

f(a) + f(b)

2α
.



New Hermite-Hadamard type inequalities12 (2021) No. 1, 782-789 785

In [17], the definition of h−convex functions on fractal sets was established by Vivas et al., as
follows:

Definition 2.8. Let h : J → Rα be a non-negative function and h ̸= 0, defined over an interval
J ⊂ R and such that (0, 1) ⊂ J. We say that f : I → Rα defined over an interval I ⊂ R, is h− convex
if f is non-negative and we have

f(tx1 + (1− t)x2) ≤ h(t)f(x1) + h(1− t)f(x2)

for all t ∈ (0, 1) and x1, x2 ∈ I.

Example 2.9. Let 0 < s < 1, h : (0, 1) → Rα defined as h(t) = tsα and aα, bα, cα ∈ Rα. For
x ∈ R+ = [0,∞), define

f(x) =

{
aα, x = 0

bαxsα + cα, x > 0

In [8], Mo and Sui introduced the definitions of two kinds of generalized s−convex functions on
fractal sets such as follows:

Definition 2.10. (i) Let R+ = [0,∞). A function f : R+ → Rα is said to be generalized s-convex
(0 < s < 1) in the first sense, if

f(λ1u+ λ2v) ≤ λsα
1 f(u) + λsα

2 f(v),

for all u, v ∈ R+ and all λ1, λ2 ≥ 0 with λs
1 + λs

2 = 1. One denotes by f ∈ GK1
s .

(ii) A function f : R+ → Rα is said to be generalized s-convex (0 < s < 1) in the second sense, if

f(λ1u+ λ2v) ≤ λsα
1 f(u) + λsα

2 f(v),

for all u, v ∈ R+ and all λ1, λ2 ≥ 0 with λ1 + λ2 = 1. One denotes by f ∈ GK2
s .

Note that, if s = 1 in Definition 2.10, then we have the generalized convex function.
For more information and recent developments on local fractional theory, please refer to [1],[2],

[4]-[9], [11]-[20], [22], [23].
The main goal of this article is to establish new Hermite-Hadamard type inequalities for h−convex.

3. The main results

We start with the following important theorem for our work.

Theorem 3.1. Let h : [0, 1] → Rα be a non-negative function and f : I → Rα be a h-convex function
such that h

(
1
2

)
̸= 0α and 0I

α
1 h(t) ≥

(
1
2

)α
, then

1

22α
[
h
(
1
2

)]2f (a+ b

2

)
≤ ∆1 ≤

Γ(1 + α)

(b− a)α
aI

α
b f(x)

≤ ∆2 ≤ Γ(1 + α)

[
[f (a) + f(b)]

{
h

(
1

2

)
+

(
1

2

)α}]
0I

α
1 h(t),
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where

∆1 =
1

22αh
(
1
2

) [f (a+ 3b

4

)
+ f

(
3a+ b

4

)]
and

∆2 = Γ(1 + α)

[
f(a) + f (b)

2α
+ f

(
a+ b

2

)]
0I

α
1 h(t).

Proof . Firstly, we divide interval [a, b] into
[
a, a+b

2

]
and

[
a+b
2
, b
]
. Since f function is h-convex

function, for
[
a, a+b

2

]
we have

f

(
a+ a+b

2

2

)
= f

(
ta+ (1− t)a+b

2
+ (1− t)a+ ta+b

2

2

)

≤ h

(
1

2

)[
f

(
ta+ (1− t)

a+ b

2

)
+ f

(
(1− t)a+ t

a+ b

2

)]
.

Integrating both sides of above inequality with respect to t on [0, 1], we obtain

1

22αh
(
1
2

)f (3a+ b

4

)
≤ Γ(1 + α)

(b− a)α
aI

α
a+b
2

f(x). (3.1)

Similarly, for
[
a+b
2
, b
]
we have

f

(
a+b
2

+ b

2

)
= f

(
ta+b

2
+ (1− t)b+ (1− t)a+b

2
+ tb

2

)

≤ h

(
1

2

)[
f

(
t
a+ b

2
+ (1− t)b

)
+ f

(
(1− t)

a+ b

2
+ tb

)]
.

Integrating both sides of above inequality with respect to t on [0, 1], we obtain

1

22αh
(
1
2

)f (a+ 3b

4

)
≤ Γ(1 + α)

(b− a)α
a+b
2
Iαb f(x). (3.2)

By adding inequalities (3.1) and (3.2), it yields

∆1 =
1

22αh
(
1
2

) [f (a+ 3b

4

)
+ f

(
3a+ b

4

)]
≤ Γ(1 + α)

(b− a)α
aI

α
b f(x)

=
Γ(1 + α)

2α

[
2α

(b− a)α
aI

α
a+b
2

f(x) +
2α

(b− a)α
a+b
2
Iαb f(x)

]
≤ Γ(1 + α)

2α

[{
f(a) + f

(
a+ b

2

)}
0I

α
1 h(t)

]
+

Γ(1 + α)

2α

[{
f

(
a+ b

2

)
+ f(b)

}
0I

α
1 h(t)

]
=

Γ(1 + α)

2α

[
f(a) + f(b) + 2αf

(
a+ b

2

)]
0I

α
1 h(t) = ∆2.
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On the other hand, since f is h-convex function and Γ(1 + α)0I
α
1 h(t) ≥

(
1
2

)α
, we deduce that

1

22α
[
h
(
1
2

)]2f (a+ b

2

)
=

1

22α
[
h
(
1
2

)]2f (1

2

3a+ b

4
+

1

2

a+ 3b

4

)

≤ 1

22α
[
h
(
1
2

)]2 [h(1

2

){
f

(
3a+ b

4

)
+ f

(
a+ 3b

4

)}]

=
1

22α
[
h
(
1
2

)] [f (3a+ b

4

)
+ f

(
a+ 3b

4

)]
= ∆1

≤ 1

22α
[
h
(
1
2

)] [h(1

2

){
f(a) + f (b) + 2αf

(
a+ b

2

)}]

=

(
1

2

)α [
f(a) + f (b)

2α
+ f

(
a+ b

2

)]
≤ Γ(1 + α)

[
f(a) + f (b)

2α
+ f

(
a+ b

2

)]
0I

α
1 h(t) = ∆2

≤ Γ(1 + α)

[
f(a) + f (b)

2α
+ h

(
1

2

)
[f (a) + f(b)]

]
0I

α
1 h(t)

= Γ(1 + α)

[
[f (a) + f(b)]

{
h

(
1

2

)
+

(
1

2

)α}]
0I

α
1 h(t).

This completes the proof. □

Corollary 3.2. If we choose h(t) = tα in Theorem 3.1, we obtain

f

(
a+ b

2

)
≤ ∆1 ≤

Γ(1 + α)

(b− a)α
aI

α
b f(x)

≤ ∆2 ≤ [f (a) + f(b)]
[Γ(1 + α)]2

Γ(1 + 2α)
,

where

∆1 =
1

2α

[
f

(
a+ 3b

4

)
+ f

(
3a+ b

4

)]
and

∆2 =

[
f(a) + f (b)

2α
+ f

(
a+ b

2

)]
[Γ(1 + α)]2

Γ(1 + 2α)
.

Corollary 3.3. Let f : I → Rα be a generalized s-convex function in the second sense where s ∈ (0, 1]
such that Γ(1 + α)0I

α
1 t

sα ≥
(
1
2

)α
, then

2(2s−2)αf

(
a+ b

2

)
≤ ∆1 ≤

Γ(1 + α)

(b− a)α
aI

α
b f(x)

≤ ∆2 ≤
[
[f (a) + f(b)]

{(
1

2s

)α

+

(
1

2

)α}]
Γ(1 + sα)Γ(1 + α)

Γ(1 + (s+ 1)α)
,
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where

∆1 = 2(s−2)α

[
f

(
a+ 3b

4

)
+ f

(
3a+ b

4

)]
and

∆2 =

[
f(a) + f (b)

2α
+ f

(
a+ b

2

)]
Γ(1 + sα)Γ(1 + α)

Γ(1 + (s+ 1)α)
.

Definition 3.4. A function f : I → Rα is said to be generalized P -convex function, if f is non-
negative and for all x, y ∈ I and t ∈ [0, 1], we have

f(tx+ (1− t)y) ≤ f(x) + f(y). (3.3)

Corollary 3.5. Let f : I → Rα be a generalized P -convex function, then

1

22α
f

(
a+ b

2

)
≤ ∆1 ≤

Γ(1 + α)

(b− a)α
aI

α
b f(x)

≤ ∆2 ≤
(
3

2

)α

[f (a) + f(b)] ,

where

∆1 =
1

22α

[
f

(
a+ 3b

4

)
+ f

(
3a+ b

4

)]
and

∆2 =

[
f(a) + f (b)

2α
+ f

(
a+ b

2

)]
.

Remark 3.6. If we choose α = 1 in the above results, then we obtain the inequalities given by Noor
et al. in [9].
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[2] G-S. Chen, Generalizations of Hölder’s and some related integral inequalities on fractal space, J. Funct. Spac.
Appl. Volume 2013, Article ID 198405.

[3] S. S. Dragomir and C. E. M. Pearce, Selected topics on Hermite-Hadamard inequalities and applications, RGMIA
Monographs, Victoria University, 2000.

[4] S. Erden and M. Z. Sarikaya, Generalized Pompeiu type inequalities for local fractional integrals and its applica-
tions, Appl. Math. Comput. 274 (2016) 282–291.
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