New Hermite-Hadamard type inequalities on fractal set

Tuba Tunç ${ }^{\text {a }}$, Hüseyin Budak ${ }^{\text {a }}$, Fuat Usta ${ }^{\text {a }}$, Mehmet Zeki Sarıkaya ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce, Turkey

(Communicated by Ali Jabbari)

Abstract

In this study, we present the new Hermite-Hadamard type inequality for functions which are h-convex on fractal set $\mathbb{R}^{\alpha}(0<\alpha \leq 1)$ of real line numbers. Then we provide the special cases of the result using different type of convex mappings.

Keywords: Hermite-Hadamard inequality; fractal set; h - convex function. 2010 MSC: Primary 26D07, 26D10; Secondary 26D15, 26A33.

1. Introduction

Let $f: I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a convex function on the interval I of real numbers and $a, b \in I$ with $a<b$. If f is a convex function then the following double inequality holds [3):

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{2} . \tag{1.1}
\end{equation*}
$$

The above inequality (1.1) which is well known in the literature as the Hermite-Hadamard inequality, is the most fundamental and interesting inequality for classical convex functions. This inequality provides a lower and an upper estimations for the integral average of any convex functions defined on a compact interval. For numerous interesting results which generalize, improve and extend the classical Hermite-Hadamard inequality see for instance [3], 10] and references therein.

[^0]
2. The preliminaries

The concepts of fractional calculus [6] and local fractional calculus (also called fractal calculus) (see, for details, [18], [19] and [20]) are becoming increasingly useful in a wide variety of problems in mathematical, physical and engineering sciences (see, for example, [21] to [24]). We need the following notations and preliminaries to define the local fractional derivative and the local fractional integral.

Recall the set \mathbb{R}^{α} of real line numbers and use the Gao-Yang-Kang's idea to describe the definition of the local fractional derivative and local fractional integral, (see [18], [19, [20) and so on. Recently, the theory of Yang's fractional sets [19 was introduced as follows:

For $0<\alpha \leq 1$, we have the following α-type set of element sets:
\mathbb{Z}^{α} : The α-type set of integer is defined as the set $\left\{0^{\alpha}, \pm 1^{\alpha}, \pm 2^{\alpha}, \ldots, \pm n^{\alpha}, \ldots\right\}$.
\mathbb{Q}^{α} : The α-type set of the rational numbers is defined as the set $\left\{m^{\alpha}=\left(\frac{p}{q}\right)^{\alpha}: p, q \in \mathbb{Z}, q \neq 0\right\}$. \mathbb{J}^{α} : The α-type set of the irrational numbers is defined as the set $\left\{m^{\alpha} \neq\left(\frac{p}{q}\right)^{\alpha}: p, q \in \mathbb{Z}, q \neq 0\right\}$.
\mathbb{R}^{α} : The α-type set of the real line numbers is defined as the set $\mathbb{R}^{\alpha}=\mathbb{Q}^{\alpha} \cup \mathbb{J}^{\alpha}$.
If a^{α}, b^{α} and c^{α} belongs the set \mathbb{R}^{α} of real line numbers, then
(1) $a^{\alpha}+b^{\alpha}$ and $a^{\alpha} b^{\alpha}$ belongs the set \mathbb{R}^{α};
(2) $a^{\alpha}+b^{\alpha}=b^{\alpha}+a^{\alpha}=(a+b)^{\alpha}=(b+a)^{\alpha}$;
(3) $a^{\alpha}+\left(b^{\alpha}+c^{\alpha}\right)=(a+b)^{\alpha}+c^{\alpha}$;
(4) $a^{\alpha} b^{\alpha}=b^{\alpha} a^{\alpha}=(a b)^{\alpha}=(b a)^{\alpha}$;
(5) $a^{\alpha}\left(b^{\alpha} c^{\alpha}\right)=\left(a^{\alpha} b^{\alpha}\right) c^{\alpha}$;
(6) $a^{\alpha}\left(b^{\alpha}+c^{\alpha}\right)=a^{\alpha} b^{\alpha}+a^{\alpha} c^{\alpha}$;
(7) $a^{\alpha}+0^{\alpha}=0^{\alpha}+a^{\alpha}=a^{\alpha}$ and $a^{\alpha} 1^{\alpha}=1^{\alpha} a^{\alpha}=a^{\alpha}$.

The definition of the local fractional derivative and local fractional integral can be given as follows:
Definition 2.1. (Yang [19]) A non-differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}^{\alpha}, x \rightarrow f(x)$ is called to be local fractional continuous at x_{0}, if for any $\varepsilon>0$, there exists $\delta>0$, such that

$$
\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon^{\alpha}
$$

holds for $\left|x-x_{0}\right|<\delta$, where $\varepsilon, \delta \in \mathbb{R}$. If $f(x)$ is local continuous on the interval (a, b), we denote $f(x) \in C_{\alpha}(a, b)$.

Definition 2.2. (Yang [19]) The local fractional derivative of $f(x)$ of order α at $x=x_{0}$ is defined by

$$
f^{(\alpha)}\left(x_{0}\right)=\left.\frac{d^{\alpha} f(x)}{d x^{\alpha}}\right|_{x=x_{0}}=\lim _{x \rightarrow x_{0}} \frac{\Delta^{\alpha}\left(f(x)-f\left(x_{0}\right)\right)}{\left(x-x_{0}\right)^{\alpha}}
$$

where $\Delta^{\alpha}\left(f(x)-f\left(x_{0}\right)\right) \cong \Gamma(1+\alpha)\left(f(x)-f\left(x_{0}\right)\right)$. If there exists $f^{(k+1) \alpha}(x)=\overbrace{D_{x}^{\alpha} \ldots D_{x}^{\alpha}}^{k+1 \text { times }} f(x)$ for any $x \in I \subseteq \mathbb{R}$, then we denoted $f \in D_{(k+1) \alpha}(I)$, where $k=0,1,2, \ldots$

Definition 2.3. (Yang [19]) Let $f(x) \in C_{\alpha}[a, b]$. Then the local fractional integral is defined by,

$$
{ }_{a} I_{b}^{\alpha} f(x)=\frac{1}{\Gamma(1+\alpha)} \int_{a}^{b} f(t)(d t)^{\alpha}=\frac{1}{\Gamma(1+\alpha)} \lim _{\Delta t \rightarrow 0} \sum_{j=0}^{N-1} f\left(t_{j}\right)\left(\Delta t_{j}\right)^{\alpha}
$$

with $\Delta t_{j}=t_{j+1}-t_{j}$ and $\Delta t=\max \left\{\Delta t_{1}, \Delta t_{2}, \ldots, \Delta t_{N-1}\right\}$, where $\left[t_{j}, t_{j+1}\right], j=0, \ldots, N-1$ and $a=t_{0}<t_{1}<\ldots<t_{N-1}<t_{N}=b$ is partition of interval $[a, b]$.

Here, it follows that ${ }_{a} I_{b}^{\alpha} f(x)=0$ if $a=b$ and ${ }_{a} I_{b}^{\alpha} f(x)=-{ }_{b} I_{a}^{\alpha} f(x)$ if $a<b$. If for any $x \in[a, b]$, there exists ${ }_{a} I_{x}^{\alpha} f(x)$, then we denoted by $f(x) \in I_{x}^{\alpha}[a, b]$.

Lemma 2.4. (Yang [19])

(i) (Local fractional integration is anti-differentiation) Suppose that $f(x)=g^{(\alpha)}(x) \in C_{\alpha}[a, b]$, then we have

$$
{ }_{a} I_{b}^{\alpha} f(x)=g(b)-g(a) .
$$

(ii) (Local fractional integration by parts) Suppose that $f(x), g(x) \in D_{\alpha}[a, b]$ and $f^{(\alpha)}(x), g^{(\alpha)}(x) \in$ $C_{\alpha}[a, b]$, then we have

$$
{ }_{a} I_{b}^{\alpha} f(x) g^{(\alpha)}(x)=\left.f(x) g(x)\right|_{a} ^{b}-{ }_{a} I_{b}^{\alpha} f^{(\alpha)}(x) g(x) .
$$

Lemma 2.5. (Yang [19])
(i) $\frac{d^{\alpha} x^{k \alpha}}{d x^{\alpha}}=\frac{\Gamma(1+k \alpha)}{\Gamma(1+(k-1) \alpha)} x^{(k-1) \alpha}$;
(ii) $\frac{1}{\Gamma(1+\alpha)} \int_{a}^{b} x^{k \alpha}(d x)^{\alpha}=\frac{\Gamma(1+k \alpha)}{\Gamma(1+(k+1) \alpha)}\left(b^{(k+1) \alpha}-a^{(k+1) \alpha}\right), k \in \mathbb{R}$.

Now, we give some definitions which are used in our results:
Definition 2.6. (Mo, Sui, Yu [7]) Let $f: I \subseteq \mathbb{R} \rightarrow \mathbb{R}^{\alpha}$. For any $x_{1}, x_{2} \in I$ and $\lambda \in[0,1]$, if the following inequality

$$
f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \leq \lambda^{\alpha} f\left(x_{1}\right)+(1-\lambda)^{\alpha} f\left(x_{2}\right)
$$

holds, then f is called a generalized convex function on I. If this inequality reversed, then f is called a generalized concave function.

Here are two basic examples of generalized convex functions:
(i) $f(x)=x^{\alpha p}, x \geq 0, p>1$;
(ii) $f(x)=E_{\alpha}\left(x^{\alpha}\right), x \in \mathbb{R}$ where $E_{\alpha}\left(x^{\alpha}\right)=\sum_{k=0}^{\infty} \frac{x^{\alpha k}}{\Gamma(1+k \alpha)}$ is the Mittag-Leffer function.

In [7], Mo et al. proved the following generalized Hermite-Hadamard inequality for generalized convex function:

Theorem 2.7. Let $f(x) \in I_{x}^{\alpha}[a, b]$ be generalized convex function on $[a, b]$ with $a<b$. Then

$$
f\left(\frac{a+b}{2}\right) \leq \frac{\Gamma(1+\alpha)}{(b-a)^{\alpha}}{ }_{a} I_{b}^{\alpha} f(x) \leq \frac{f(a)+f(b)}{2^{\alpha}} .
$$

In [17], the definition of h-convex functions on fractal sets was established by Vivas et al., as follows:

Definition 2.8. Let $h: J \rightarrow \mathbb{R}^{\alpha}$ be a non-negative function and $h \neq 0$, defined over an interval $J \subset \mathbb{R}$ and such that $(0,1) \subset J$. We say that $f: I \rightarrow \mathbb{R}^{\alpha}$ defined over an interval $I \subset \mathbb{R}$, is h - convex if f is non-negative and we have

$$
f\left(t x_{1}+(1-t) x_{2}\right) \leq h(t) f\left(x_{1}\right)+h(1-t) f\left(x_{2}\right)
$$

for all $t \in(0,1)$ and $x_{1}, x_{2} \in I$.

Example 2.9. Let $0<s<1$, $h:(0,1) \rightarrow \mathbb{R}^{\alpha}$ defined as $h(t)=t^{s \alpha}$ and $a^{\alpha}, b^{\alpha}, c^{\alpha} \in \mathbb{R}^{\alpha}$. For $x \in \mathbb{R}_{+}=[0, \infty)$, define

$$
f(x)=\left\{\begin{array}{cc}
a^{\alpha}, & x=0 \\
b^{\alpha} x^{s \alpha}+c^{\alpha}, & x>0
\end{array}\right.
$$

In [8], Mo and Sui introduced the definitions of two kinds of generalized s-convex functions on fractal sets such as follows:

Definition 2.10. (i) Let $\mathbb{R}_{+}=[0, \infty)$. A function $f: \mathbb{R}_{+} \rightarrow \mathbb{R}^{\alpha}$ is said to be generalized s-convex $(0<s<1)$ in the first sense, if

$$
f\left(\lambda_{1} u+\lambda_{2} v\right) \leq \lambda_{1}^{s \alpha} f(u)+\lambda_{2}^{s \alpha} f(v),
$$

for all $u, v \in \mathbb{R}_{+}$and all $\lambda_{1}, \lambda_{2} \geq 0$ with $\lambda_{1}^{s}+\lambda_{2}^{s}=1$. One denotes by $f \in G K_{s}^{1}$.
(ii) A function $f: \mathbb{R}_{+} \rightarrow \mathbb{R}^{\alpha}$ is said to be generalized s-convex $(0<s<1)$ in the second sense, if

$$
f\left(\lambda_{1} u+\lambda_{2} v\right) \leq \lambda_{1}^{s \alpha} f(u)+\lambda_{2}^{s \alpha} f(v)
$$

for all $u, v \in \mathbb{R}_{+}$and all $\lambda_{1}, \lambda_{2} \geq 0$ with $\lambda_{1}+\lambda_{2}=1$. One denotes by $f \in G K_{s}^{2}$.

Note that, if $s=1$ in Definition 2.10, then we have the generalized convex function.
For more information and recent developments on local fractional theory, please refer to [1], [2], [4]-9], [11]-20], [22], [23].

The main goal of this article is to establish new Hermite-Hadamard type inequalities for $h-$ convex.

3. The main results

We start with the following important theorem for our work.
Theorem 3.1. Let $h:[0,1] \rightarrow \mathbb{R}^{\alpha}$ be a non-negative function and $f: I \rightarrow \mathbb{R}^{\alpha}$ be a h-convex function such that $h\left(\frac{1}{2}\right) \neq 0^{\alpha}$ and ${ }_{0} I_{1}^{\alpha} h(t) \geq\left(\frac{1}{2}\right)^{\alpha}$, then

$$
\begin{aligned}
\frac{1}{2^{2 \alpha}\left[h\left(\frac{1}{2}\right)\right]^{2}} f\left(\frac{a+b}{2}\right) & \leq \Delta_{1} \leq \frac{\Gamma(1+\alpha)}{(b-a)^{\alpha}}{ }_{a} I_{b}^{\alpha} f(x) \\
& \leq \Delta_{2} \leq \Gamma(1+\alpha)\left[[f(a)+f(b)]\left\{h\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right)^{\alpha}\right\}\right]{ }_{0} I_{1}^{\alpha} h(t),
\end{aligned}
$$

where

$$
\Delta_{1}=\frac{1}{2^{2 \alpha} h\left(\frac{1}{2}\right)}\left[f\left(\frac{a+3 b}{4}\right)+f\left(\frac{3 a+b}{4}\right)\right]
$$

and

$$
\Delta_{2}=\Gamma(1+\alpha)\left[\frac{f(a)+f(b)}{2^{\alpha}}+f\left(\frac{a+b}{2}\right)\right]{ }_{0} I_{1}^{\alpha} h(t)
$$

Proof . Firstly, we divide interval $[a, b]$ into $\left[a, \frac{a+b}{2}\right]$ and $\left[\frac{a+b}{2}, b\right]$. Since f function is h-convex function, for $\left[a, \frac{a+b}{2}\right]$ we have

$$
\begin{aligned}
f\left(\frac{a+\frac{a+b}{2}}{2}\right) & =f\left(\frac{t a+(1-t) \frac{a+b}{2}+(1-t) a+t \frac{a+b}{2}}{2}\right) \\
& \leq h\left(\frac{1}{2}\right)\left[f\left(t a+(1-t) \frac{a+b}{2}\right)+f\left((1-t) a+t \frac{a+b}{2}\right)\right]
\end{aligned}
$$

Integrating both sides of above inequality with respect to t on $[0,1]$, we obtain

$$
\begin{equation*}
\frac{1}{2^{2 \alpha} h\left(\frac{1}{2}\right)} f\left(\frac{3 a+b}{4}\right) \leq \frac{\Gamma(1+\alpha)}{(b-a)^{\alpha}}{ }_{a} I_{\frac{a+b}{2}}^{\alpha} f(x) \tag{3.1}
\end{equation*}
$$

Similarly, for $\left[\frac{a+b}{2}, b\right]$ we have

$$
\begin{aligned}
f\left(\frac{\frac{a+b}{2}+b}{2}\right) & =f\left(\frac{t \frac{a+b}{2}+(1-t) b+(1-t) \frac{a+b}{2}+t b}{2}\right) \\
& \leq h\left(\frac{1}{2}\right)\left[f\left(t \frac{a+b}{2}+(1-t) b\right)+f\left((1-t) \frac{a+b}{2}+t b\right)\right] .
\end{aligned}
$$

Integrating both sides of above inequality with respect to t on $[0,1]$, we obtain

$$
\begin{equation*}
\frac{1}{2^{2 \alpha} h\left(\frac{1}{2}\right)} f\left(\frac{a+3 b}{4}\right) \leq \frac{\Gamma(1+\alpha)}{(b-a)^{\alpha}} \frac{a+b}{2} I_{b}^{\alpha} f(x) \tag{3.2}
\end{equation*}
$$

By adding inequalities (3.1) and (3.2), it yields

$$
\begin{aligned}
\Delta_{1} & =\frac{1}{2^{2 \alpha} h\left(\frac{1}{2}\right)}\left[f\left(\frac{a+3 b}{4}\right)+f\left(\frac{3 a+b}{4}\right)\right] \\
& \leq \frac{\Gamma(1+\alpha)}{(b-a)^{\alpha}}{ }_{a} I_{b}^{\alpha} f(x) \\
& =\frac{\Gamma(1+\alpha)}{2^{\alpha}}\left[\frac{2^{\alpha}}{(b-a)^{\alpha}}{ }_{a} I_{\frac{a+b}{2}}^{\alpha} f(x)+\frac{2^{\alpha}}{(b-a)^{\alpha}}{ }_{\frac{a+b}{2}} I_{b}^{\alpha} f(x)\right] \\
& \leq \frac{\Gamma(1+\alpha)}{2^{\alpha}}\left[\left\{f(a)+f\left(\frac{a+b}{2}\right)\right\}{ }_{0} I_{1}^{\alpha} h(t)\right]+\frac{\Gamma(1+\alpha)}{2^{\alpha}}\left[\left\{f\left(\frac{a+b}{2}\right)+f(b)\right\}{ }_{0} I_{1}^{\alpha} h(t)\right] \\
& =\frac{\Gamma(1+\alpha)}{2^{\alpha}}\left[f(a)+f(b)+2^{\alpha} f\left(\frac{a+b}{2}\right)\right]{ }_{0} I_{1}^{\alpha} h(t)=\Delta_{2} .
\end{aligned}
$$

On the other hand, since f is h-convex function and $\Gamma(1+\alpha)_{0} I_{1}^{\alpha} h(t) \geq\left(\frac{1}{2}\right)^{\alpha}$, we deduce that

$$
\begin{aligned}
\frac{1}{2^{2 \alpha}\left[h\left(\frac{1}{2}\right)\right]^{2}} f\left(\frac{a+b}{2}\right) & =\frac{1}{2^{2 \alpha}\left[h\left(\frac{1}{2}\right)\right]^{2}} f\left(\frac{1}{2} \frac{3 a+b}{4}+\frac{1}{2} \frac{a+3 b}{4}\right) \\
& \leq \frac{1}{2^{2 \alpha}\left[h\left(\frac{1}{2}\right)\right]^{2}}\left[h\left(\frac{1}{2}\right)\left\{f\left(\frac{3 a+b}{4}\right)+f\left(\frac{a+3 b}{4}\right)\right\}\right] \\
& =\frac{1}{2^{2 \alpha}\left[h\left(\frac{1}{2}\right)\right]}\left[f\left(\frac{3 a+b}{4}\right)+f\left(\frac{a+3 b}{4}\right)\right]=\Delta_{1} \\
& \leq \frac{1}{2^{2 \alpha}\left[h\left(\frac{1}{2}\right)\right]}\left[h\left(\frac{1}{2}\right)\left\{f(a)+f(b)+2^{\alpha} f\left(\frac{a+b}{2}\right)\right\}\right] \\
& =\left(\frac{1}{2}\right)^{\alpha}\left[\frac{f(a)+f(b)}{2^{\alpha}}+f\left(\frac{a+b}{2}\right)\right] \\
& \leq \Gamma(1+\alpha)\left[\frac{f(a)+f(b)}{2^{\alpha}}+f\left(\frac{a+b}{2}\right)\right]{ }_{0} I_{1}^{\alpha} h(t)=\Delta_{2} \\
& \leq \Gamma(1+\alpha)\left[\frac{f(a)+f(b)}{2^{\alpha}}+h\left(\frac{1}{2}\right)[f(a)+f(b)]\right]{ }_{{ }_{0}} I_{1}^{\alpha} h(t) \\
& =\Gamma(1+\alpha)\left[[f(a)+f(b)]\left\{h\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right)^{\alpha}\right\}\right]{ }_{{ }_{0} I_{1}^{\alpha} h(t) .}
\end{aligned}
$$

This completes the proof.
Corollary 3.2. If we choose $h(t)=t^{\alpha}$ in Theorem 3.1, we obtain

$$
\begin{aligned}
f\left(\frac{a+b}{2}\right) & \leq \Delta_{1} \leq \frac{\Gamma(1+\alpha)}{(b-a)^{\alpha}}{ }_{a} I_{b}^{\alpha} f(x) \\
& \leq \Delta_{2} \leq[f(a)+f(b)] \frac{[\Gamma(1+\alpha)]^{2}}{\Gamma(1+2 \alpha)}
\end{aligned}
$$

where

$$
\Delta_{1}=\frac{1}{2^{\alpha}}\left[f\left(\frac{a+3 b}{4}\right)+f\left(\frac{3 a+b}{4}\right)\right]
$$

and

$$
\Delta_{2}=\left[\frac{f(a)+f(b)}{2^{\alpha}}+f\left(\frac{a+b}{2}\right)\right] \frac{[\Gamma(1+\alpha)]^{2}}{\Gamma(1+2 \alpha)} .
$$

Corollary 3.3. Let $f: I \rightarrow \mathbb{R}^{\alpha}$ be a generalized s-convex function in the second sense where $s \in(0,1]$ such that $\Gamma(1+\alpha)_{0} I_{1}^{\alpha} t^{s \alpha} \geq\left(\frac{1}{2}\right)^{\alpha}$, then

$$
\begin{aligned}
2^{(2 s-2) \alpha} f\left(\frac{a+b}{2}\right) & \leq \Delta_{1} \leq \frac{\Gamma(1+\alpha)}{(b-a)^{\alpha}}{ }_{a} I_{b}^{\alpha} f(x) \\
& \leq \Delta_{2} \leq\left[[f(a)+f(b)]\left\{\left(\frac{1}{2^{s}}\right)^{\alpha}+\left(\frac{1}{2}\right)^{\alpha}\right\}\right] \frac{\Gamma(1+s \alpha) \Gamma(1+\alpha)}{\Gamma(1+(s+1) \alpha)},
\end{aligned}
$$

where

$$
\Delta_{1}=2^{(s-2) \alpha}\left[f\left(\frac{a+3 b}{4}\right)+f\left(\frac{3 a+b}{4}\right)\right]
$$

and

$$
\Delta_{2}=\left[\frac{f(a)+f(b)}{2^{\alpha}}+f\left(\frac{a+b}{2}\right)\right] \frac{\Gamma(1+s \alpha) \Gamma(1+\alpha)}{\Gamma(1+(s+1) \alpha)} .
$$

Definition 3.4. A function $f: I \rightarrow \mathbb{R}^{\alpha}$ is said to be generalized P-convex function, if f is nonnegative and for all $x, y \in I$ and $t \in[0,1]$, we have

$$
\begin{equation*}
f(t x+(1-t) y) \leq f(x)+f(y) \tag{3.3}
\end{equation*}
$$

Corollary 3.5. Let $f: I \rightarrow \mathbb{R}^{\alpha}$ be a generalized P-convex function, then

$$
\begin{aligned}
\frac{1}{2^{2 \alpha}} f\left(\frac{a+b}{2}\right) & \leq \Delta_{1} \leq \frac{\Gamma(1+\alpha)}{(b-a)^{\alpha}}{ }_{a} I_{b}^{\alpha} f(x) \\
& \leq \Delta_{2} \leq\left(\frac{3}{2}\right)^{\alpha}[f(a)+f(b)]
\end{aligned}
$$

where

$$
\Delta_{1}=\frac{1}{2^{2 \alpha}}\left[f\left(\frac{a+3 b}{4}\right)+f\left(\frac{3 a+b}{4}\right)\right]
$$

and

$$
\Delta_{2}=\left[\frac{f(a)+f(b)}{2^{\alpha}}+f\left(\frac{a+b}{2}\right)\right] .
$$

Remark 3.6. If we choose $\alpha=1$ in the above results, then we obtain the inequalities given by Noor et al. in [9].

References

[1] H. Budak, M. Z. Sarikaya and E. Set, Generalized Ostrowski type inequalities for functions whose local fractional derivatives are generalized s-convex the second sense, J. Appl. Math. Comput. Mech. 15 (2016) 11-21.
[2] G-S. Chen, Generalizations of Hölder's and some related integral inequalities on fractal space, J. Funct. Spac. Appl. Volume 2013, Article ID 198405.
[3] S. S. Dragomir and C. E. M. Pearce, Selected topics on Hermite-Hadamard inequalities and applications, RGMIA Monographs, Victoria University, 2000.
[4] S. Erden and M. Z. Sarikaya, Generalized Pompeiu type inequalities for local fractional integrals and its applications, Appl. Math. Comput. 274 (2016) 282-291.
[5] A. Kılıçman, W. Saleh, Some generalized Hermite-Hadamard type integral inequalities for generalized s-convex functions on fractal sets, Adv. Diff. Equ. 2015 (2015), 15 pages.
[6] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and applications of fractinal differential equations, North-Holland Mathematical Studies, Vol. 204, Elsevier (North-Holland) Science Publishers, Amsterdam, 2006.
[7] H. Mo, X Sui and D Yu, Generalized convex functions on fractal sets and two related inequalities, Abst. Appl. Anal. Volume 2014, Article ID 636751, 7 pages.
[8] H. Mo and X. Sui, Generalized s-convex functions on fractal sets, Abst. Appl. Anal. 2014 (2014), Article ID 254737, 8 pages.
[9] M. A. Noor, K. I. Noor and M. U. Awan, A new Hermite-Hadamard type inequality for h-convex functions, Creat. Math. Inform. 24 (2015) 191-197.
[10] J. E. Pečarić, F. Proschan and Y. L. Tong, Convex functions, partial orderings and statistical applications, Academic Press, Boston, 1992.
[11] M. Z. Sarikaya and H. Budak, On Fejer type inequalities via local fractional integrals, J. Fract. Calc. Appl. 8 (2017) 59-77.
[12] M. Z. Sarikaya, S. Erden and H. Budak, Some generalized Ostrowski type inequalities involving local fractional integrals and applications, Adv. Ineq. Appl. 2016, 2016:6.
[13] M. Z. Sarikaya, S.Erden and H. Budak, Some integral inequalities for local fractional integrals, Int. J. Anal. Appl. 14 (2017) 9-19.
[14] M. Z Sarikaya, T. Tunc and H Budak, On generalized some integral inequalities for local fractional integrals, Appl. Math. Comput. 276 (2016), 316-323.
[15] M. Z. Sarikaya and H. Budak, Generalized Ostrowski type inequalities for local fractional integrals, Proc. Amer. Math. Soc. 145 (2017) 1527-1538.
[16] F. Usta, H. Budak and M. Z. Sarikaya Yang-Laplace transform method for local fractional Volterra and Abel's integro-differential equations, ResearchGate Article, Available online at: https://www.researchgate.net/publication/316923150.
[17] M. Vivas, J. Hernandez.and N. Merentes, New Hermite-Hadamard and Jensen type inequalities for h-convex functions on fractal sets, Rev. Colom. Mat. 50 (2016) 145-164.
[18] X-J. Yang, Local fractional functional analysis and its applications, Asian Academic, Publisher, Hong Kong, 2011.
[19] X.-J. Yang, Advanced local fractional calculus and its applications, World Science Publisher, New York, London and Hong Kong, 2012.
[20] X-J. Yang, D. Baleanu and H. M. Srivastava, Local fractional integral transforms and their applications, Academic Press, Elsevier, 2015.
[21] Y.-J. Yang, D. Baleanu and X.-J. Yang, Analysis of fractal wave equations by local fractional Fourier series method, Adv. Math. Phys. 2013 (2013), Article ID 632309, 1-6.
[22] X-J. Yang, D. Baleanu and H. M. Srivastava, Local fractional similarity solution for the diffusion equation defined on Cantor sets, Appl. Math. Lett. 47 (2015) 54-60.
[23] X-J. Yang, J. A. Tenreiro Machado and J. Hristov, Nonlinear dynamics for local fractional Burgers' equation arising in fractal flow, Nonlinear Dyn. 84 (2016) 3-7.
[24] X-J. Yang, J. A. T. Machado, C. Cattani and F. Gao, On a fractal LC-electric circuit modeled by local fractional calculus, Comm. Nonlinear Sci. Num. Simul. 47 (2017) 200-206.

[^0]: *Corresponding author
 Email addresses: tubatunc03@gmail.com (Tuba Tunç), hsyn.budak@gmail.com (Hüseyin Budak), fusta1707@gmail.com (Fuat Usta), sarikayamz@gmail.com (Mehmet Zeki Sarıkaya)

