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Abstract

In this paper, a vector version of the intermediate value theorem is established. The main theorem
of this article can be considered as an improvement of the main results have been appeared in [On
fixed point theorems for monotone increasing vector valued mappings via scalarizing, Positivity, 19
(2) (2015) 333-340] with containing the uniqueness, convergent of each iteration to the fixed point,
relaxation of the relatively compactness and the continuity on the map with replacing topological
interior of the cone by the algebraic interior. Moreover, by applying Ascoli-Arzela’s theorem an
example in order to show that the main theorem of the paper [An intermediate value theorem for
monotone operators in ordered Banach spaces, Fixed point theory and applications, 2012 (1) (2012)
1-4] may fail, is established.
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1. Introduction and preliminaries

As we know that the intermediate value theorem in real analysis ( especially in calculus) is one of the
most important and applicable theorem and one can apply to prove fixed points of a real mapping.
We recall that if f : [a, b] → R is continuous mapping with f(a) < a and b < f(b) then there exists
c ∈ [a, b] such that f(c) = c. Now a natural question will arise as that how can extend this fact when
the real R replaced by a Banach space and the interval [a, b] of the real line by ordered interval of
X. The aim of this note is to answer to the question. It is worth noting that the result of this paper
can be viewed as an improvement of the main theorem given in [4].
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The rest of this section deals with some definitions and basic results which we need in the next
section.

Definition 1.1. ([3, 6]) Let X be a real vector space with its zero vector θ and P ⊆ X. P is called

(a) Cone if it is closed under nonnegative scalar multiplication, i.e., tx ∈ P for all x ∈ P and
t ≥ 0.

(b) Convex if tx+ (1− t)y ∈ P, ∀(x, y, t) ∈ P × P × [0, 1].

(c) Pointed if P ∩ −P = {θ}.

Let X be a real vector space and P be a convex pointed cone of it. P induces an ordering on X
as follows, x, y ∈ X,

x �P y ⇔ y − x ∈ P.

It is easy to verify that the ordering �P is a partial ordering; that is reflexive, antisymmetric and
transitive. Also if X is a topological vector space and P is a convex pointed cone of X with nonempty
interior ( that is intP 6= ∅ ) then we can define an ordering on X using the interior of P as follows,
x, y ∈ X,

x�intP y ⇔ y − x ∈ intP.

Remark that the ordering induced by intP is not necessarily a partial ordering on X. If the cone
P is known, for simplicity, we replace �P and �intP by � and �, respectively.

Definition 1.2. ([6]) Assume that X is a real ordered vector space by a convex cone P . The cone
P is said to be minihedral if sup{x, y} (sup means the least upper bound) exists for each x, y in X
and is said to be strongly minihedral if supD exists for each nonempty bounded subset D ⊆ X.

Definition 1.3. ([1, 2]) A convex cone P of a normed space is called normal if and only if there
exists a constant k ≥ 1 such that, for all x, y ∈ X,

θ � x � y ⇒ ‖x‖ ≤ k‖y‖.

Definition 1.4. ([3, 4]) The mapping T : X → Y acting in partially ordered real vector linear
spaces X and Y is called increasing if x � y implies T (x) � T (y).

Note that if we take X = Y = R then Definition 1.4 collapses to the usual definition of an
increasing mapping.

Definition 1.5. ([2, 4]) Let X and Y be two topological spaces. The mapping T : X → Y is called
compact, if the closure of its range; that is T (X), is a compact subset of Y, where T (X) = ∪x∈XT (x).

We note that T is compact when T is a continuous mapping and X is compact. But there
are many discontinuous mappings with non-compact domain which satisfy in Definition 1.5. For
example, T (x) = 0, where x is a rational number and otherwise T (x) = 1 .

Theorem 1.6. ([9]). Suppose thatX is Banach space, P is a normal and convex cone, and u0, v0 ∈ X
with u0 < v0 ( that is, u0 � v0 with u0 6= v0). Let A : [u0, v0]→ X be an increasing mapping and let
h0 = v0 − u0. If one of the following assumptions holds:
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(i) A is a convex mapping (that is A(λx + (1 − λ)y) � λA(x) + (1 − λ)A(y)) Au0 � u0 and
Av0 � v0 − εh0 for some ε ∈ (0, 1);

(ii) A is a concave mapping Au0 ≥ u0 + εh0, Av0 ≤ v0, for some ε ∈ (0, 1),

then A has a unique fixed point x∗ in [u0, v0]. Moreover, for any x0 ∈ [u0, v0], the iterative sequence
{xn} given by xn = Axn for n = 1, 2, . . . converges to x∗ and satisfying ‖xn − x∗‖ ≤ M(1 − ε)n, for
all n = 1, 2, . . . and a positive constant M independent of x0.

In 2012, Kostrykin and Oleynik [4] presented the following theorem which is an extension of
Lemma 2.1 of [5] that plays a key role in [5]. Moreover, it can be considered as an important
existence result of the unstable bumps in neural, Integral equations and operator theory (see, for
instance, [5]).

Theorem 1.7. ([4]). Let X be a real Banach space with an ordered cone K satisfying:

(a) K has a nonempty interior,

(b) K is normal and minihedral.

Assume that there are two points in X, u− � u+ and an increasing, compact, and continuous
operator T : [u−;u+] −→ X. If u− is a strong supersolution of T and u+ is a strong subsolution,
that is,

Tu− � u− and u+ � Tu+,

then T has a fixed point u∗ ∈ [u−, u+], where [u−, u+] denotes

{z ∈ C([u−, u+]) :| u− ≤ z ≤ u+}.

We denote the set of all continuous mappings from [a, b] into R ( the real line) by C([a, b]). It is a
well known fact that (C([a, b]), d) is a complete metric space, where d(f, g) = supt∈[a,b] |f(t)− g(t)|.

Definition 1.8. Let Ω be a nonempty subset of C([a, b]). The set Ω is called:

• Pointwise bounded if for each x ∈ [a, b] there exists nonnegative real number mx such that

f(x) ≤ mx, ∀f ∈ Ω.

• Equicontinuous if for each ε > 0 there exists δ > 0 such that, for each t, s ∈ [a, b] with
|t− s| < δ, we have

|f(t)− f(s)| < ε, ∀f ∈ Ω.

The following theorem plays a key role in the next section.

Theorem 1.9. (Arzela-Ascoli)([8]). A subset of C([a, b]) is compact if and only if it is pointwise
bounded and equicontinuous.
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2. Main results

In this section we first show, by providing an example, that the result of Theorem 1.7 may fail. Hence
there are some gaps in it. Then we will try to present the correct version of Theorem 1.7 by relaxing
some assumptions of it and extending it in a general space (topological vector space) by using a new
proof.

The following example indicates that the result of Theorem 1.7 is not true.

Example 2.1. Let X = C([0, 1]) and K = {u ∈ X;u(t) ≥ 0, ∀t ∈ [0, 1]}. Define T : [u−, u+]→ X:

(Tu)(x) = 2u(0) +

∫ x

0

u(t)dt− 2

3
, ∀(u, x) ∈ [u−, u+]× [0, 1].

Let u− = 0, u+ = 1, Then u− << u+ and T (0) = −1 << 0 , 1 << T (1). It is easy to check that K
satisfies conditions (a) and (b) of Theorem 1.7. It follows from the inequality

|(Tu)(x)− (Tu)(y)| = |
∫ y

x

u(t)dt| ≤ |y − x|, ∀(x, y, u) ∈ [0, 1]× [0, 1]× T [u0, u+],

that the set T [u−, u+] is equicontinuous and pointwise bounded. Consequently, the set T [u−, u+]
as a subset of X fulfils all assumptions of Theorem 1.9 and hence it is relatively compact. So T is
compact. It is straightforward to verify that T is continuous and increasing. Consequently T satisfies
all the assumptions of Theorem 1.6 while it does not have any fixed point in [u−, u+], because if u is
a fixed point of T then

2u(0) +

∫ x

0

u(t)dt− 2

3
= u(x) ∀x ∈ [0, 1].

Hence

u(x) =
2

3
ex, ∀x ∈ [0, 1]

is a unique fixed point of T which

u 6∈ [u− = 0, u+ = 1] = {v ∈ C([0, 1]) : 0 ≤ v(x) ≤ 1, ∀x ∈ [0, 1]}.

Definition 2.2. Let S be a nonempty subset of a real linear space X. The set

cor(S) = {x̄ ∈ S : ∀x ∈ X ∃λ > 0 with (x̄+ tx) ∈ S ∀t ∈ [0, λ]},

is called the algebraic interior of S.

Remark 2.3. Let P be a convex cone in a linear space X with a nonempty algebraic interior. Then

(a) cor(P ) ∪ {0X} is a convex cone ( see, Lemma 1.12 of [3])

(b) cor(cor(S)) = cor(S), ( see, Lemma 1.9 of [3]).

Note that if X is a topological vector space and S is a nonempty subset of X then the topological
interior of S; that is intS, is a subset the algebraic interior of S. Moreover, there are some examples
which show the inclusion may be strict. For instance, let

X = C00 = {x = (x(n)) : the set {n ∈ N ;x(n) 6= 0} is finite }



On intermediate value theorem in ordered Banach spaces . . . 7 (2016) No. 1, 295-300 299

and ||x|| = maxn∈N x(n), for all x = (x(n)) ∈ C00. It is easy to check that (C00, ||.||) is a normed
space. Put

P = {x = (x(n)) ∈ C00 : x(n) ≤ 1

n
, (∀n)}.

One can verify that intC = ∅ while (α, 0, 0, . . .) ∈ cor(C), where 0 < α < 1.
Hence the example shows that the algebraic interior is a suitable replacement of the topological

interior for the case where it is empty. Further, we can relax the topological structure when we use
of the algebraic interior.

The next result is a correct version of Theorem 1.7 by relaxing minihedrality on the cone and
replacing the topological interior of the cone by the algebraic interior. Moreover, in this case the
uniqueness of the fixed point has been ensured.

Theorem 2.4. Let X be a real Banach space and let P be a normal cone with nonempty algebraic
interior ( i.e., cor(P ) 6= ∅). Assume that K = cor(P )

⋃
{θX}, there are two points in X, u− ≺corP u+,

and an increasing convex mapping T : [u−, u+] → X. If Tu+ �K u+ and u− �K Tu−, then T has
a unique fixed point x∗ ∈ [u−, u+]. Moreover each iteration Axn = xn−1 for all n = 1, 2, 3, . . . with
x0 ∈ [u−, u+] converges to x∗.

Proof . By Remark 2.3 (a), the set K is a convex cone and by the assumption u− ≺corP u+, we get
h0 = u+ − u− ∈ cor(P ). Hence by Remark 2.3 (b) we have

u+ − Tu+ ∈ cor(P ) = cor(cor(P ).

So there exists a positive number λ such that

u+ − Tu+ + ε(u+ − u−) ∈ cor(P ), ∀ε ∈ [0, λ].

Therefore, we can choose ε ∈ (0, 1) such that

Tu+ �K u+ − ε(u+ − u−).

This means that Tu+ �K u+− εh0. Consequently, it follows from part (i) of Theorem 1.6 that T has
a unique fixed point x∗ and each iteration xn = Txn−1 with arbitrary x0 ∈ [u−, u+] converges to x∗.
This completes the proof. �

It worth noting that in Theorem 1.7 minihedrality of the cone is essential. While it has been
relaxed in Theorem 2.4. There are many cones which are not minihedral. In the following, for
instance, one of them is presented. Hence we cannot apply Theorem 1.7 in this case.

Example 2.5. Assume that

X = C1([−1, 1]) = {f : [−1, 1]→ R, f is continuously differentiable}

with
‖f‖ = ‖f‖∞ + ‖f ′‖∞

and P = {f ∈ X : f(x) ≥ 0,∀x ∈ [−1, 1]}. It is easy to check that X is a Banach space and P is a
convex cone but not minihedral, because sup{x,−x} 6∈ X. Hence we cannot apply Theorem 1.7 for
X.
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Conclusion

The main theorem, that is, Theorem 1.7, of [4] may fall down is shown by Example 2.1. A correct
version of Theorem 1.7, by relaxing some assumptions and a new proof, is presented. Some examples
in order to support the results of the article are provided. Finally, It is worth noting that Theorem
2.4 is another version of Theorem 3.5 and Theorem 3.12 of [7] by relaxing relatively compactness
of the range T, having nonempty interior of the cone, and continuity of T. Moreover, advantage of
Theorem 2.4 to Theorem 2.1 and Theorems 3.5, 3.12 of [7] is containing iteration method; that is
each iteration convergent to the unique fixed point which is important in numerical analysis. Finally,
by applying part (ii) of Theorem 1.6 and suitable modification in Theorem 2.4 we can establish a
similar result as Theorem 2.4 when the mapping T is concave.
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