Jensen’s inequality for GG-convex functions

G. Zabandan

Department of Mathematics, Faculty of Mathematical Sciences and Computer, Kharazmi University, Tehran, Iran

(Communicated by Madjid Eshaghi Gordji)

Abstract

In this paper, we obtain Jensen’s inequality for GG-convex functions. Also, we get inequalities alike to Hermite-Hadamard inequality for GG-convex functions. Some examples are given.

Keywords: Jensen’s inequality, GG-convex, Integral inequality.

1. Introduction

Let μ be a positive measure on X such that $\mu(X) = 1$. If f is a real-valued function in $L^1(\mu)$, $a < f(x) < b$ for all $x \in X$ and φ is convex on (a, b), then

$$\varphi \left(\int_X f \, d\mu \right) \leq \int_X (\varphi . f) \, d\mu$$

(1.1)

The inequality (1.1) is known as Jensen’s inequality [4], [7].

Definition 1.1. A function $\varphi : (a, b) \rightarrow (0, \infty)$, where $0 < a < b \leq \infty$, is called GG-convex or multiplicatively-convex (according to the geometric mean) if the inequality

$$\varphi(x^\lambda y^{1-\lambda}) \leq \varphi(x)^\lambda \varphi(y)^{1-\lambda}$$

(1.2)

holds, where $a < x < b$, $a < y < b$, and $0 \leq \lambda \leq 1$.

In this paper, first we prove Jensen’s inequality for GG-convex functions. Then as a result of Jensen’s inequality, we prove the geometric mean of positive numbers is not greater than the mean power of the same numbers of order $\alpha > 0$, that is

$$\sqrt[n]{a_1a_2\cdots a_n} \leq \left(\frac{a_1^\alpha a_2^\alpha \cdots a_n^\alpha}{n} \right)^{\frac{1}{\alpha}}$$

($\alpha > 0$, $a_1, a_2, \cdots a_n > 0$).

By GG-convexity of Gamma function on $[1, \infty]$, we obtain several interesting inequalities. Finally, we prove alike to Hermit-Hadamard inequality for GG-convex functions.

*Corresponding author

Email address: zabandan@khu.ac.ir (G. Zabandan)

Received: December 2017 Revised: November 2018
2. Main results

First we need the following theorem.

Theorem 2.1. A function \(\varphi \) is GG-convex on \((a, b)\) if for \(0 < a < s < t < u < b\) the following inequality holds

\[
\frac{\ln \varphi(t) - \ln \varphi(s)}{\ln t - \ln s} \leq \frac{\ln \varphi(u) - \ln \varphi(t)}{\ln u - \ln t} \tag{2.1}
\]

Proof. Let \(\varphi \) be GG-convex and \(\lambda = \frac{\ln u - \ln t}{\ln u - \ln s} \), then \(t = s^{\lambda} u^{1-\lambda} \). Hence

\[
\varphi(t) \leq [\varphi(s)]^\lambda \ln u - \ln s [\varphi(u)]^{1-\lambda} \ln u - \ln s
\]

It follows that

\[
\frac{\ln \varphi(t)}{\ln u - \ln s} \leq \frac{\ln \varphi(s)}{\ln u - \ln s} + \frac{\ln t - \ln s}{\ln u - \ln s} \ln \varphi(t) \leq \frac{\ln u - \ln t}{\ln u - \ln s} \ln \varphi(s) + \frac{\ln t - \ln s}{\ln u - \ln s} \ln \varphi(u)
\]

\[
\frac{\ln u - \ln t}{\ln u - \ln s} (\ln \varphi(t) - \ln \varphi(s)) \leq \frac{\ln t - \ln s}{\ln u - \ln s} (\ln \varphi(u) - \ln \varphi(t))
\]

since \(s < t < u \), we obtain

\[
\frac{\ln \varphi(t) - \ln \varphi(s)}{\ln t - \ln s} \leq \frac{\ln \varphi(u) - \ln \varphi(t)}{\ln u - \ln t}
\]

Conversely let the inequality (2.1) holds, and \(\lambda \in [0, 1] \), \(a < x < y < b \), then \(x^{\lambda} y^{1-\lambda} \leq y \). By inequality (2.1) we have

\[
\frac{\ln \varphi(x^{\lambda} y^{1-\lambda}) - \ln \varphi(x)}{\ln x^{\lambda} y^{1-\lambda} - \ln x} \leq \frac{\ln \varphi(y) - \ln \varphi(x^{\lambda} y^{1-\lambda})}{\ln y - \ln x^{\lambda} y^{1-\lambda}}
\]

\[
\frac{\ln \varphi(x^{\lambda} y^{1-\lambda}) - \ln \varphi(x)}{(1-\lambda)(\ln y - \ln x)} \leq \frac{\ln \varphi(y) - \ln \varphi(x^{\lambda} y^{1-\lambda})}{\lambda(\ln y - \ln x)}
\]

\[
\ln \varphi(x^{\lambda} y^{1-\lambda}) \leq (1-\lambda) \ln \varphi(y) + \lambda \ln \varphi(x)
\]

\[
\varphi(x^{\lambda} y^{1-\lambda}) \leq \varphi(x)^{\lambda} \varphi(1-\lambda)(y)
\]

Thus \(\varphi \) is GG-convex. \(\square \)

By similar way to the convex functions we can prove that if \(\varphi \) is GG-convex on \((a, b)\), then \(\varphi \) is continuous on \((a, b)\).

Theorem 2.2. Let \(\mu \) be a positive measure on a \(\sigma \)-algebra \(\mathfrak{m} \) in a set \(X \), so that \(\mu(X) = 1 \). If \(f \) is a real function in \(L^1(\mu) \), \(0 < a < f(x) < b \) for all \(x \in X \), and if \(\varphi \) is GG-convex on \((a, b)\), then

\[
\varphi \left(e \int_X \ln f d\mu \right) \leq e \int_X \ln(\varphi \circ f) d\mu \tag{2.2}
\]
Proof. Put $t = e^\int_X \ln f \, d\mu$. Then $a < t < b$. If M is the supremum of quotients on the left side of (2.1), where $a < s < t$, then for any $u \in (t, b)$ we have

$$M \leq \frac{\ln \varphi(u) - \ln \varphi(t)}{\ln u - \ln t}.$$

It follows that

$$\frac{\ln \varphi(t) - \ln \varphi(s)}{\ln t - \ln s} \leq M \quad (a < s < b)$$

so

$$\ln \varphi(s) \geq \ln \varphi(t) + M (\ln s - \ln t).$$

Hence, for any $x \in X$, we have

$$\ln \varphi(f(x)) \geq \ln \varphi(t) + M (\ln f(x) - \ln t)$$

since φ is continuous, $\varphi \circ f$ is measureable, and since $f \in L^1(\mu)$, by cancavity of $\psi(x) = \ln x$ and Jensen inequality (1.1) $\ln f \in L^1(\mu)$. By integrating both sides with respect to measure μ we obtain

$$\int_X \ln(\varphi \circ f) \, d\mu \geq \ln \varphi(t) + M \left(\int_X \ln f \, d\mu - \ln t \right) \quad (\mu(X) = 1)$$

Now set $t = e^{\int_X \ln f \, d\mu}$, it follows that

$$\int_X \ln(\varphi \circ f) \, d\mu \geq \ln \varphi \left(e^{\int_X \ln f \, d\mu} \right) + M \left(\int_X \ln f \, d\mu - \ln e^{\int_X \ln f \, d\mu} \right)$$

so

$$\ln \varphi \left(e^{\int_X \ln f \, d\mu} \right) \leq \int_X \ln(\varphi \circ f) \, d\mu$$

or

$$\varphi \left(e^{\int_X \ln f \, d\mu} \right) \leq e^{\int_X \ln(\varphi \circ f) \, d\mu}.$$

□

In [6], the author proved the following assertion.
Here we prove it in another way and a result of theorem 2.2.

Corollary 2.3. Let $f : [a, b] \rightarrow (0, \infty) \ (b > a > 0)$ be a continuous function and $\varphi : J \rightarrow (0, \infty)$ be a GG-convex function defined on an interval J which includes the image of f. Then

$$\varphi \left(\frac{1}{e \ln b - \ln a} \left(\int_a^b \frac{\ln f(x)}{x} \, dx \right) \right) \leq \frac{1}{e \ln b - \ln a} \int_a^b \frac{\ln \varphi(f(x))}{x} \, dx \quad (2.3)$$

Proof. In theorem 2.2, put $X = [a, b]$ and $d\mu = \frac{dx}{x}$. □

In the following theorem we prove a version for the inverse of corollary 2.3.
Theorem 2.4. Let \(\varphi : (0, \infty) \to (0, \infty) \) be a function such that the inequality (2.3) holds, for every positive real bounded measurable function \(f \). Then \(\varphi \) is GG-convex.

Proof. Let \(\lambda \in [0,1] \) and \(c,d \in (0,\infty) \). Define

\[
 f(x) = \begin{cases}
 c & a \leq x < b^{\lambda}a^{1-\lambda} \\
 d & b^{\lambda}a^{1-\lambda} \leq x \leq b
\end{cases}
\]

we have

\[
 \frac{1}{\ln b - \ln a} \int_a^b \ln f(x) \frac{dx}{x} = \frac{1}{\ln b - \ln a} \left[\int_a^{b^{\lambda}a^{1-\lambda}} (\ln c) \frac{dx}{x} + \int_{b^{\lambda}a^{1-\lambda}}^b (\ln d) \frac{dx}{x} \right]
\]

\[
 = \lambda \ln c + (1-\lambda) \ln d
\]

so

\[
 \varphi \left(\frac{1}{e \ln b - \ln a} \int_a^b \ln f(x) \frac{dx}{x} \right) = \varphi(e^{\lambda \ln c + (1-\lambda) \ln d}) = \varphi(c^{\lambda}d^{1-\lambda}) \quad (*)
\]

on the other hand we have

\[
 \frac{1}{\ln b - \ln a} \int_a^b \ln \varphi(f(x)) \frac{dx}{x} = \frac{1}{\ln b - \ln a} \left[\int_a^{b^{\lambda}a^{1-\lambda}} \ln \varphi(c) \frac{dx}{x} + \int_{b^{\lambda}a^{1-\lambda}}^b \ln \varphi(d) \frac{dx}{x} \right]
\]

\[
 = \lambda \ln \varphi(c) + (1-\lambda) \ln \varphi(d)
\]

Hence

\[
 e^{\frac{1}{e \ln b - \ln a} \int_a^b \ln \varphi(f(x)) \frac{dx}{x}} = e^{\lambda \ln \varphi(c) + (1-\lambda) \ln \varphi(d)} = \varphi(c^{\lambda}d^{1-\lambda}) \quad (**)
\]

Now the (*) and (**) and (2.3) show that \(\varphi \) is GG-convex. □

Example 2.5. (1) Let \(X = \{x_1, x_2, \ldots, x_n\} \), \(\mu(\{x_i\}) = \frac{1}{n} \) and \(f(x_i) = a_i > 0 \). Then (2.2) becomes

\[
 \varphi \left(\frac{1}{e^n} (\ln a_1 + \ln a_2 + \cdots + \ln a_n) \right) \leq \frac{1}{e^n} (\ln \varphi(a_1) + \ln \varphi(a_2) + \cdots + \ln \varphi(a_n))
\]

Hence

\[
 \varphi \left(\sqrt[n]{a_1a_2\cdots a_n} \right) \leq \sqrt[n]{\varphi(a_1)\varphi(a_2)\cdots \varphi(a_n)} \quad (2.4)
\]

Now we investigate this inequality for \(\varphi(x) = e^{x^\alpha} \) and \(\varphi(x) = \Gamma(x) \)

(i) \(\varphi(x) = e^{x^\alpha} \) (\(\alpha > 0 \)) is GG-convex on \((0,\infty)\) (see [1]). The inequality (2.4) implies that

\[
 e^{(\sqrt[n]{a_1a_2\cdots a_n})^\alpha} \leq \sqrt[n]{e^{a_1^\alpha}e^{a_2^\alpha}\cdots e^{a_n^\alpha}} = \left(e^{a_1^\alpha + a_2^\alpha + \cdots + a_n^\alpha} \right)^{\frac{1}{n}}
\]

\[
 \implies \sqrt[n]{a_1a_2\cdots a_n} \leq \left(\frac{a_1^\alpha + a_2^\alpha + \cdots + a_n^\alpha}{n} \right)^{\frac{1}{\alpha}} \quad (\alpha > 0)
\]
(ii) \(\varphi(x) = \Gamma(x) \) is GG-convex on \([1, \infty)\). The inequality (2.4) follows that

\[
\Gamma \left(\sqrt[n]{\prod_{i=1}^{n} a_i} \right) \leq \sqrt[n]{\prod_{i=1}^{n} \Gamma(a_i)}
\]

put \(a_k = x + \frac{k}{m}, \ k = 0, 1, 2, \ldots, m - 1 \) \((x \geq 1) \). Then

\[
\Gamma \left(\sqrt[m]{\prod_{k=0}^{m-1} \left(x + \frac{k}{m} \right)} \right) \leq \sqrt[m]{\prod_{k=0}^{m-1} \Gamma(x + \frac{k}{m})}
\]

By Gauss multiplication formula \(\prod_{k=0}^{m-1} \Gamma(x + \frac{k}{m}) = (2\pi)^{\frac{m-1}{2}} \frac{1}{m^{1/2-m} \Gamma(mx)} [8] \) we obtain

\[
\Gamma \left(\sqrt[m]{x(x + \frac{1}{m}) \ldots \left(x + \frac{m-1}{m} \right)} \right) \leq (2\pi)^{\frac{m-1}{2m}} \frac{1}{m^{2m-1} \sqrt{m-1}!}
\]

Especially for \(x = 1 \) we have

\[
\Gamma \left(\sqrt[m]{\frac{(2m-1)!}{(m!)^m}} \right) \leq (2\pi)^{\frac{m-1}{2m}} \frac{1}{m^{2m-1} \sqrt{m-1}!}
\]

(2) \(\Gamma(x) \) is GG-convex on \([1, \infty)\). Hence (2.3) becomes

\[
\Gamma \left(e^{\frac{1}{\ln b - \ln a} \int_{a}^{b} \ln f(t) \frac{dt}{t}} \right) \leq e^{\frac{1}{\ln b - \ln a} \int_{a}^{b} \ln \Gamma(f(t)) \frac{dt}{t}}
\]

Especially for \(f(t) = \ln t \ (e \leq a < t < b) \) we have

\[
\Gamma \left(e^{\frac{1}{\ln b - \ln a} \int_{a}^{b} \ln(\ln t) \frac{dt}{t}} \right) \leq e^{\frac{1}{\ln b - \ln a} \int_{a}^{b} \ln \Gamma(\ln t) \frac{dt}{t}}
\]

By change of variable \(\ln t = x, \frac{dt}{t} = dx \),

\[
\Gamma \left(e^{\frac{1}{\ln b - \ln a} \int_{\ln a}^{\ln b} \ln x dx} \right) \leq e^{\frac{1}{\ln b - \ln a} \int_{\ln a}^{\ln b} \ln \Gamma(x) dx}
\]

Now put \(a = e^p \) and \(b = e^{p+1} \) \((p \geq 1) \)

\[
\Gamma \left(e^{\int_{p}^{p+1} \ln x dx} \right) \leq e^{\int_{p}^{p+1} \ln \Gamma(x) dx}
\]
By easy calculations we see that
\[
\int_p^{p+1} \ln x \, dx = \ln \left(\frac{(p+1)^{p+1}}{p^p} \right) - 1 \quad \text{and} \quad \int_p^{p+1} \ln \Gamma(x) \, dx = -p + p \ln p + \ln \sqrt{2\pi}
\]
so
\[
\Gamma \left(\ln \left(\frac{(p+1)^{p+1}}{p^p} \right) - 1 \right) \leq -p + p \ln p + \ln \sqrt{2\pi}
\]
or
\[
\Gamma \left(\frac{(p+1)^{p+1}}{ep^p} \right) \leq \sqrt{2\pi}p^p e^{-p}
\]

In the following theorem we obtain inequalities alike to Hermite-Hadamard inequality for GG-convex functions.

\textbf{Theorem 2.6.} Let \(f : [a, b] \rightarrow (0, \infty) \) be a GG-convex function \((b > a > 0)\). Then the following inequalities hold:

\[
f(\sqrt{ab}) \leq e^{\frac{\ln b - \ln a}{2}} \int_a^b f(x) \left(\frac{\ln f(x)}{x} \right) dx \leq \frac{1}{\ln b - \ln a} \int_a^b \sqrt{f(x) f(abx)} \, dx \leq \sqrt{f(a) f(b)} \tag{2.5}
\]

\textbf{Proof.} Since \(f \) is GG-convex, the corollary 2.3 implies that

\[
\frac{1}{e^{\ln b - \ln a}} \int_a^b \frac{\ln f(x)}{x} \, dx \geq f \left(\frac{1}{e^{\ln b - \ln a}} \int_a^b \frac{\ln x}{x} \, dx \right)
\]

\[
= f \left(e^{2(\ln b - \ln a)(\ln^2 b - \ln^2 a)} \right) = f(\sqrt{ab})
\]

For the proof of middle part, since \(\varphi(f) = \ln t \) is concave, by Jensen’s inequality (1.1) we get

\[
\ln \left(\frac{1}{\ln b - \ln a} \int_a^b \sqrt{f(x) f(abx)} \, dx \right) \geq \frac{1}{\ln b - \ln a} \int_a^b \left[\frac{1}{2} \ln f(x) + \frac{1}{2} \ln f(abx) \right] \, dx
\]

\[
= \frac{1}{\ln b - \ln a} \int_a^b \ln f(x) \, dx
\]

Because by change of variable, \(\frac{ab}{x} = t, \, dx = -\frac{ab}{t^2} \, dt \) we see that

\[
\int_a^b \ln f\left(\frac{ab}{x} \right) \, dx = \int_a^b \ln f(t) \, dt
\]

so

\[
\frac{1}{e^{\ln b - \ln a}} \int_a^b \frac{\ln f(x)}{x} \, dx \leq \frac{1}{\ln b - \ln a} \int_a^b \sqrt{f(x) f(abx)} \, dx
\]
For the proof of right side of (2.5), by change of variable $x = a^{1-t}b^t = a(b/a)^t$, $dx = a \ln a b/((b/a)^t)dt$ and GG-convexity of f we obtain

$$\frac{1}{\ln b - \ln a} \int_a^b \sqrt{f(x)f\left(\frac{ab}{x}\right)} \frac{dx}{x} = \frac{1}{\ln b - \ln a} \int_0^1 \sqrt{f(a^{1-t}b^t)f(a^t b^{1-t})} \frac{a \ln b/((b/a)^t)}{a((b/a)^t)} dt$$

$$= \int_0^1 \sqrt{f(a^{1-t}b^t)f(a^t b^{1-t})} dt$$

$$\leq \int_0^1 \sqrt{f^{1-t}(a)f(t)(b)f(t)(a)f^{1-t}(b)} dt = \sqrt{f(a)f(b)}.$$

□

References