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Abstract

Here, we propose a practical method for solving nonsmooth convex problems by using conjugate gradient-type methods.
The conjugate gradient method is one of the most remarkable methods to solve smooth and large-scale optimization
problems. As a result of this fact, We present a modified HS conjugate gradient method. In the case that we have a
nonsmooth convex problem, by the Moreau-Yosida regularization, we convert the nonsmooth objective function to a
smooth function and then we use our method, by making use of a nonmonotone line search, for solving a nonsmooth
convex optimization problem. We prove that our algorithm converges to an optimal solution under standard condition.
Our algorithm inherits the performance of HS conjugate gradient method.
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1 Introduction

Let f : Rn → R be a nondifferentiable convex function, consider the following unconstrained optimization problem

min
x∈Rn

f(x). (1.1)

Problem (1.1) appears in many applications such as economics [41], engineering [34, 35] including power unit commit-
ment problem [8] and continuous casting of steel [31], Image Restoration [25], data analysis [9, 48] including cluster
analysis [21, 23] and data classification problems [3, 12], machine learning [24], and optimal control [30, 33].

There are different methods that have been developed to solve problem (1.1). One of the simplest techniques for
solving problem (1.1) is the subgradient methods [37, 40, 6]. Subgradient method is exactly the same with steepest
descent when objective function f is smooth. Another popular and practical method to solve problem (1.1) is Bundle
method and its various modifications use quadratic programming subproblem to find search directions [27, 44, 45].
Recently, Karmitsa [26] proposed a diagonal Bundle method for nonsmooth sparse optimization problems. Another
class of methods for solving nonsmooth problems is Derivative free methods. Bagirov et al. [7] developed a new
derivative free method by introducing the notion of a discrete gradient.
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Smoothing technique [13, 18, 38, 39], is another practical methods to solve problem (1.1) that makes use of methods
for solving smooth problems such as quasi Newton methods, used for small and medium scale [16, 32, 49, 51], and
conjugate gradient (CG) methods, which are really suitable for solving large scale problems [1, 5, 17, 20, 36, 46, 53, 52],
or trust region methods [47, 19]. In this regard, Burke et al. [10] made a gradient sampling with the assumption
that there is an open dense subset D so that objective function is continuously differentiable on D. Another popular
smoothing technique is adopting Moreau-Yosida regularization to convert problem (1.1) into a smooth problem (see
section 2). This technique has some remarkable results in [14, 28, 29, 50]. In this paper, by using Moreau-Yosida
regularization, we represent a new CG method to solve problem (1.1). The algorithm is based on HS method to
inherit a significant property of this method, namely, preventing a sequence of tiny step from happening. Moreover,
the generated search direction in each iterate satisfies the sufficiently descent property. Also, the search direction
belongs to a trust region, hence we can prove the global convergence of the algorithm.

The rest of the paper is organized as follows. In section 2, we refer to the concept of Moreau-Yosida regularization
and its relation with problem (1.1). In Section 3, we briefly review some different classes of CG method, and a
technique to find the step length inexactly. Then, we introduce our method. We prove the global convergence of the
proposed method in Section 4. Finally, Section 5 contains some conclusions about our idea.

2 Requirements of smoothing a nonsmooth convex optimization problem

In this section, at first, some results in convex analysis developed by Moreau-Yosida regularization are required.
Suppose f : Rn → R is a convex function, maybe nondifferentiable, then F : Rn → R is the so-called Moreau-Yosida
regularization of f defined by

F (x) = min
z∈Rn

{f(z) + 1

2λ
||z − x||2}, (2.1)

where λ is a positive parameter and || · || is l2 norm. Let p(x) = argminz∈Rn θ(z) where

θ(z) = f(z) +
1

2λ
||z − x||2. (2.2)

Since θ(z) is strongly convex, so p(x) is well defined and unique. The following Proposition proves that problem
(1.1) is equivalent to following problem

min
x∈Rn

F (x). (2.3)

Proposition 2.1. [22] the following statement are equivalent

(i) x∗ minimizes f ;

(ii) f(x∗) = F (x∗)

(iii) g(x∗) = 0, where

g(x∗) = ∇F (x∗) =
x∗ − p(x∗)

λ
, (2.4)

is the gradient of F .

Remark 2.2. There are some significant properties of the Moreau-Yosida regularization function F as follows

(i) F is finite valued.

(ii) The gradient mapping g : Rn → R is globally Lipschitz continuous with the constant Lipschitz 1
λ , namely,

||g(x)− g(y)|| ≤ 1

λ
||x− y||, x, y ∈ Rn. (2.5)

(iii) x solves the problem (1.1) iff ∇F (x) = 0, that is, p(x) = x.

By the definition of p(x), F (x) can be rewritten as follows

F (x) = f(p(x)) +
1

2λ
||p(x)− x||2. (2.6)
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From (2.4) and (2.6) to compute F (x) and g(x), we need the value of p(x). Nevertheless, computing p(x), as the
minimizer of θ, is really tough or sometimes impossible to obtain. So, in practical way, we can approximate the value
of p(x), F (x) and g(x) for every x ∈ Rn. In a sense, for each x and any ε > 0 there is a vector pα(x, ε) ∈ Rn, where
pα(x, ε) ∈ Rn means the approximation of p(x), so that (by Completeness Principle)

f(pα(x, ε)) +
1

2λ
||pα(x, ε)− x||2 ≤ F (x) + ε. (2.7)

Thus, when ε is small, approximating F (x) and g(x) can be written as follows

Fα(x, ε) = f(pα(x, ε)) +
1

2λ
||pα(x, ε)− x||2, (2.8)

and

gα(x, ε) =
x− pα(x, ε)

λ
, (2.9)

respectively. There are some practical algorithms to approximate p(x) for a nonsmooth convex function [4, 15].
Fukushima and Qi [18] proved that using pα(x, ε) for approximating the value of F (x) and g(x) when ε is small
enough is possible. The following Proposition says this fact.

Proposition 2.3. [18] Suppose pα(x, ε) is a vector satisfying in (2.8), and Fα(x, ε) and gα(x, ε) are defined by (2.8)
and (2.9), respectively. Then we have

F (x) ≤ Fα(x, ε) ≤ F (x) + ε, (2.10)

||pα(x, ε)− p(x)|| ≤
√
2λε, (2.11)

||gα(x, ε)− g(x)|| ≤
√

2ε

λ
. (2.12)

Based on Moreau-Yosida regularization, many authors have represented various algorithms to solve the problem
(1.1) so far. In this regard, some methods such as CG [14, 28, 50], quasi Newton [11, 29, 42] and trust region [29, 43]
were used to solve problem (1.1).

As mentioned before, CG methods are another effective methods for solving smooth unconstrained optimization
problem especially for large scale problems due to simple computations and low storage. Recently, Li [28] represented
modified PRP method with Moreau-Yosida regularization. He used the approximation of F and g to solve the problem
(1.1). Zhang et al. [50] proposed a tree term modified PRP method by approximating F and g. Cheng [14] represented
a two term modified PRP. In the next section, we review former proposed CG methods briefly. Then, we introduce
our CG method to solve the problem (1.1).

3 Nonmonotone conjugate gradient methods to solve problem (1.1)

In the case that f is smooth, there have been many attempts to solve a smooth unconstrained optimization problem.
CG is one the most popular methods for solving the problem (1.1) especially when n is large, and has the following
form

xk+1 = xk + αkdk, (3.1)

dk =

{
−gk, if k = 0,
−gk + βkdk−1 ∀ k ≥ 1,

(3.2)

where αk is a step length, βk is a scalar. Well-known formulas for βk are the Hestense-stiefel (HS), Fletcher-Reeves
(FR), Polak-Ribiére (PR), Polak-Ribiére-Polyak and Dai-Liao (DL), and Dai-Yuan (DY) which are, respectively, given
by (see [17, 20, 53])

βHS
k =

g⊺kyk−1

d⊺k−1yk−1
, βFR

k =
||gk||2

||gk−1||2
, βPRP

k =
g⊺kyk−1

||gk−1||2
,

βDL
k =

g⊺k(yk−1 − tsk−1)

d⊺k−1yk−1
, βDY

k =
||gk||2

d⊺k−1yk−1
, (3.3)



14 Abouyee Mehrizi, Ghanbari

where yk−1 and sk−1 are defined by

yk−1 = gk − gk−1, sk−1 = xk − xk−1.

Some recent research aims at generating a search direction satisfying the descent condition g⊺kdk < 0 for all k or
the sufficient descent condition; i.e., there is a positive constant r such that

g⊺kdk ≤ −r||gk||2 ∀ k. (3.4)

Despite the fact that the original form of CG method is defined by (3.2), there exist some other forms which are
really effective to solve the problem (2.3). For instance, Zhang et al. [52] proposed a three term PR method whose
the search direction was generated as follows

dk =

{
−gk, if k = 0,

−gk + βPR
k dk−1 − θ

(1)
k yk−1, if k ≥ 1,

(3.5)

where θ
(1)
k =

g⊺
kdk−1

||gk−1||2 . In this respect, Narushima et al. [36], Al-Baal et al. [1] and Sugiki et al. [46] proposed three

term CG method. Furthermore, There is another form of CG method, Zhang et al. [53] represented a modified FR
conjugate gradient method to solve the problem (1.1) as follows:

dk =

{
−gk if k = 0,

−θ
(2)
k gk + βFR

k dk−1 if k > 0,
(3.6)

where θ
(2)
k =

d⊺
k−1yk−1

||gk−1||2 . Note the search direction (3.6) can be written by dk = θ
(2)
k (−gk + βDY

k dk−1), and thus, it can

be regarded as a scaled DY method.

Now, after this brief review, we introduce our CG method to solve (1.1), in the following subsection

3.1 New HS method for nonsmooth unconstrained convex optimization problem

Hager et. al [20] mentioned that some CG methods which have parameter βk with g⊺kyk in the numerator such
as HS and PRP methods are better than the performance of methods with ||gk||2 in the numerator of βk. On the
other hand, methods with g⊺kyk in the numerator suffer from global convergence against methods that have ||gk||2 in
the numerator. By the way, we build nonmonotone HS method to solve nondifferentiable unconstrained problem as
follows by inspiring what Zhang et al. did in [53], which has a global convergence. Suppose

dk =

{
−gα(xk, εk) if k = 0,
−θkg

α(xk, εk) + βHS
k dk−1 if k > 0,

(3.7)

where

θk = 1 +
gα(xk, εk)

⊺yk−1 × gα(xk, εk)
⊺dk−1

||gα(xk, εk)||2(d⊺k−1yk−1)
, (3.8)

here,

βHS
k =

gα(xk, εk)
⊺yk

d⊺kyk
, yk = gα(xk, εk)− gα(xk−1, εk−1).

By the definition of dk, one can proof easily that for any k ≥ 0

gα(xk, εk)
⊺dk = −||gα(xk, εk)||2. (3.9)

Consequently, vector dk is a descent direction of F at xk. After selecting a descent direction, the main step of
the algorithm is choosing an appropriate step length because of the convergence and implementation of CG methods.
Amini et al. [2] represented a modified nonmonotone strategy as follows

f(xk + αkdk) ≤ Rk + δαkg
⊺
kdk, (3.10)

where
Rk = ηkflk + (1− ηk)fk, (3.11)
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where 0 < δ < 1, 0 ≤ ηmin ≤ ηmax ≤ 1, ηk ∈ [ηmin, ηmax] and flk is defined as follows

fl(k) = max
0≤j≤mk

{fk−j}, k = 0, 1, 2, . . . , (3.12)

where m0 = 0 and 0 ≤ mk ≤ min{mk−1 + 1,M} with M ≥ 0. It is clear that condition (3.10) is exactly Armijo
condition when constant M is equal to zero, namely,

f(xk + αkdk) ≤ f(xk) + δαkg
⊺
kdk. (3.13)

We apply the condition (3.10) to find a appropriate step length. Now, the algorithm of nonmonotone HS method
is stated as follows

Algorithm 1 Nonmonotone CG Algorithm

Step 0. Given x0 ∈ Rn, 0 < ρ < 1, 0 < δ < 1
2 , s > 0, 0 ≤ ηmin ≤ η0 ≤ ηmax, M ≥ 0, λ > 0 and 0 < ϵ < 1. Let m0 = 0,

R0 = Fα(x0, ε0), d0 = −gα(x0, ε0), and k = 0.

Step 1. If ||gα(xk, εk)|| < ε, then stop.

Step 2. Compute a scalar εk+1 so that 0 < εk+1 < εk and
∑∞

k=0 εk < +∞. Also, compute the step size αk by (3.10)

based on backtracking process (αk = ρis, i ∈ {0, 1, 2, . . .}).

Step 3. Let xk+1 = xk + αkdk.

Step 4. Compute the search direction dk+1 by (3.7).

Step 5. Let k := k + 1, and go to Step 1.

To show that Algorithm 1 is well defined, we proof dk is a descent direction of f at xk in Lemma 4.2.

4 Global convergence

In order to establish the global convergence property, we make the following standard assumption for objective
function.

Assumption A

(i) The level set Ω = {x ∈ Rn| F (x) ≤ F (x0) +
∑∞

k=0 εk} is bounded.

(ii) In some neighbourhood N of Ω, the gradient of F is Lipschitz continuous, that is, there exist a constant K > 0
so that

||g(x1)− g(x2)|| ≤ K||x1 − x2|| ∀x1, x2 ∈ N. (4.1)

(iii) The sequence εk converges to zero.

(iv) F is bounded from below.

Remark 4.1. We can get from Assumption A(ii), that there is a constant γ > 0, such that

||g(x)|| ≤ γ, ∀x ∈ Ω. (4.2)

The following lemma indicates that our purposed dk belongs to trust region automatically. It is also the fundamental
part of our global convergence proof.

Lemma 4.2. Let dk be generated by (3.7), if there is constant µ > 0 so that,

(gα(x, ε)− gα(x̄, ε̄))⊺(x− x̄) ≥ µ||x− x̄|| x, x̄ ∈ Ω, (4.3)

then

||dk|| ≤ (1 + 2
K

µ
)||gα(xk, εk)|| (4.4)
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Proof . From (4.3) and αk−1dk−1 = xk − xk−1 we have d⊺k−1yk−1 ≥ µαk−1||dk−1||2. On the other hand, according to
Cauchy-Schwarz inequality and Assumption A (ii)

||dk|| ≤ |1 + gα(xk, εk)
⊺yk−1 × gα(xk, εk)

⊺dk−1

||gk||2(d⊺k−1yk−1)
|||gα(xk, εk)||+ |g

α(xk, εk)
⊺yk−1

d⊺k−1yk−1
|||dk−1||

≤ ||gα(xk, εk)||+
Kαk−1||gα(xk, εk)||2||dk−1||2

αk−1µ||gα(xk, εk)||2||dk−1||2
||gα(xk, εk)||+

Kαk−1||gα(xk, εk)||
αk−1µ||dk−1||2

||dk−1||2

= (1 + 2
K

µ
)||gα(xk, εk)||. (4.5)

□

The structure of the step length proposed by Amini et al. [2] shows, that by considering Assumption A, if (xk, εk)
is generated by Algorithm 1, we have Fα(xk, εk) ≤ Rk for each iterate of Algorithm 1. Furthermore, there exists αk

satisfying in (3.10).

Next lemma is a fundamental part of our global convergence proof.

Lemma 4.3. Let Assumption A be satisfied. If {(xk, εk)} is the sequence generated by Algorithm 1 and εk =
o(α2

k||dk||2). then, there is P > 0 so that
∀k; αk ≥ P (4.6)

Proof . Let αk be satisfied in (3.10). Suppose lim infk→∞ αk = 0. By considering α′
k = ρ−1αk, where 0 < ρ < 1 is a

constant, we have
F (xk + α′

kdk, εk)−Rk > δα′
kg

α(xk, αk)
⊺dk. (4.7)

Now, according to the structure of the step length in (3.10), F (xk, εk) ≤ Rk, and (4.7) we can write

F (xk + α′
kdk, εk)− F (xk, εk) ≥ F (xk + α′

kdk, εk)−Rk > δα′
kg

α(xk, εk)
⊺dk. (4.8)

By (2.10), (4.7) and Tylor Series, we have

δα′
kg

α(xk, εk)
⊺dk < F (xk + α′

kdk, εk+1)− F (xk, εk)

≤ F (xk + α′
kdk)− F (xk) + εk+1

= α′
kd

⊺
kg(xk) +

1

2
(α′

k)
2d⊺k∇

2F (ηk)dk + εk+1, (4.9)

where ηk is on the line segment connecting xk and xk+1. Also, according to (4.2) we have d⊺k∇2F (ηk)dk ≤ γ||dk||2.
So, we can write

δα′
kg

α(xk, εk)
⊺dk < α′

kd
⊺
kg(xk) +

γ

2
(α′

k)
2||dk||2 + εk+1. (4.10)

Now, we can rewrite (4.10) as follows

δgα(xk, εk)
⊺dk − d⊺kg(xk)

α′
k

<
γ

2
||dk||2 +

εk+1

(α′
k)

2
,

so we have

ρ−1αk = α′
k > 2

(gα(xk, εk)− g(xk))
⊺dk − (1− δ)gα(xk, εk)

⊺dk − εk+1

α′
k

γ||dk||2

≥
(1− δ)||gα(xk, εk)||2 −

√
2εk
λ ||dk|| − εk

α′
k

γ||dk||2

=
(1− δ)||gα(xk, εk)||2

γ||dk||2
−

o(αk)√
λ

− o(αk)

γ
, (4.11)

in which, the second inequality is held by (3.9), (2.12) and εk > εk+1. Hence, according to (4.4), we can result that

ρ−1αk >
(1− δ)

(1 + K
µ )2γ

−
o(αk)√

λ
− o(αk)

γ
. (4.12)
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By dividing The sides of the inequality by αk, as k → ∞, we have

ρ−1 ≥ lim
k→∞

1− δ

(1 + K
µ )2γ

× 1

αk
−

√
1

λ
− 1

γ
= +∞.

But, this is obviously wrong. So, inequality (4.6) holds. □

Theorem 4.4 (Global Convergence). Assume the conditions of Lemma 4.3 hold. Then, limk→∞ ||gk|| = 0 and
any accumulation point of {xk} is an optimal solution of problem (1.1)

Proof . At the first, we prove that
lim
k→∞

||gα(xk, εk)|| = 0. (4.13)

In order to result (4.13), we assume that there is a scalar L > 0 and N ∈ N so that

||gα(xk, εk)|| ≥ L, ∀k ≥ N. (4.14)

by considering (3.9), the right side of (3.10), and (4.6), we have

∞∑
k=1

−δαkg
α(xk, εk)

⊺dk ≥
∞∑
k=1

δP ||gα(xk, εk)||2, (4.15)

so, according to (4.14) and (4.15), we can result

∞∑
k=1

−δαkg
α(xk, εk)

⊺dk ≥
∞∑

k=N

δPL = +∞. (4.16)

On the other hand, we get by the condition of step length choice, (3.10),

−δαkg
α(xk, εk)

⊺dk ≤ Rk − Fα(xk + αkdk, εk+1)

= ηk max
0≤j≤m(k)

{Fα(xk−j , εk−j)}+ (1− ηk)F
α(xk, εk)− Fα(xk + αkdk, εk+1),

(4.17)

by considering that dk ,generated by Algorithm 1, is a descent direction, gα(xk, εk)
⊺dk = −||gα(xk, εk)||2, we have the

sequence {Fα(xk, εk)} is strongly decreasing or equivalently Fα(xk+1, εk+1) > Fα(xk, εk) for every k ∈ N. So, by the
condition of step length choice and (4.17), we have

∞∑
k=M

−δαkg
α(xk, εk)

⊺dk ≤
∞∑

k=M

Fα(xk, εk)− Fα(xk + αkdk, εk+1) + ηk

∞∑
k=M

Fα(xk−M , εk−M )− Fα(xk, εk), (4.18)

where on the right side of (4.18) there are two Telescoping series. By Assumption A we get

∞∑
k=M

−δαkg
α(xk, εk)

⊺dk < +∞. (4.19)

But this inequality is in contradiction with (4.16), by getting Q = max{M,N}. So, we conclude that

||gα(xk, εk)|| → 0 (4.20)

as k → ∞. Now, let x̄ be an accumulation point of {xk}. Hence, there is a subsequence {xkn
} so that

lim
kn→∞

xk = x̄. (4.21)

By the definition of F , we conclude g(xk) =
(xk−p(xk))

λ . Thus, according to (4.20) and (4.21), the equality

x̄ = p(x̄)

holds. Moreover, x̄ is an optimal solution of problem (1.1). □
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5 Conclusions and future works

We presented a modified HS conjugate gradient method for solving nonsmooth convex optimization by making use
of the Moreau-Yosida regularization to convert nonsmooth objective function to a smooth function. After converting,
we applied our method to solve new problem. Our method produced a descent direction in each iteration. The global
convergence was established under standard conditions. another feature of this method was using nonmonotone line
search [2] to have better implementation.
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[7] A.M. Bagirov, B. Karasözen, and M. Sezer, Discrete gradient method: Derivative-free method for nonsmooth
optimization, J. Optim. Theory Appl. 137 (2007), 317–334.
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