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Abstract

The ever-growing use of various vehicles for transportation, on the one hand, and the statistics of
soaring road accidents resulting from human error, on the other hand, reminds us of the necessity to
conduct more extensive research on the design, manufacturing and control of driver-less intelligent
vehicles. For the automatic control of an autonomous vehicle, we need its dynamic model, which,
due to the existing uncertainties, the un-modeled dynamics and the performed simplifications, is
impossible to determine exactly. Add to this, the external disturbances that exist on the movement
path. In this paper, two adaptive controllers have been proposed for tracking the trajectory of a
car-like robot. The first controller includes an indirect radial-basis-function neural network whose
parameters are updated online via gradient descent. The second controller is adaptively updated
online by means of fuzzy logic. The proposed controller includes a nonlinear robust section that
uses the sliding mode method and a fuzzy logic section that updates some of the nonlinear control
parameters online. The fuzzy logic system has been designed to deal with the chattering problem in
the controller of car-like robot. In both controllers, the parameters have been determined by means of
genetic algorithm. The obtained results indicate that even with the consideration of un-ideal effects
such as uncertainties and external disturbances, the proposed controller has been able to perform
successfully.
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1. Introduction

Vehicles as means of transportation are considered a necessity in today’s world. However, the
use of vehicles has resulted in detrimental outcomes, as well. Road accidents involving automotive
have taken the lives of 1.3 million individuals around the world in 2015 and about 1.4 million in
2016. According to the World Health Organization, fatal driving accidents rank as the 10th cause
of death in the world [1]. Driver error is the cause of 72% of car accidents [2]. With the rapid
advancement of artificial intelligence and car technology, autonomous vehicles are expected to take
the pressure and stress of driving off the drivers and thus improve their workload and safety. Here,
we have focused on the control system of an autonomous vehicle, and tried to present a controller
for a basic model of such a car. Many of the previous works have introduced tracking controllers
for driver-less automotive. Researchers initially designed motion controllers for these cars based
on their kinematic model [3] and then started designing tracking controllers using the dynamic
model. A simple fuzzy proportional–integral–derivative (PID) controller for the kinematic model of
a car-like robot has been presented in [4]. Some researchers have designed kinematic model-based
controllers while considering the skidding and slipping of car tires [5]. Using the virtual vehicle
method, several articles have presented controllers for car-like robots based on their dynamic models
[6]. The trajectory tracking of autonomous vehicles using the predictive control method has been
discussed in [7]. In this study, the front wheel angle has been used in the control scheme. A
path-following scheme for an autonomous four-wheeler using the combination of sliding mode and
feedback control, along with the control of yaw moment, has been presented in [8] for the direct
control of the car wheel. Numerous research works have been conducted on the lateral motion
control of autonomous vehicles at the Stanford University dynamic design lab [9]. It is always
challenging to determine the exact kinematic and dynamic models, and the uncertainties in these
models cannot be avoided. In this regard, many researchers have presented adaptive and robust
controllers for dealing with the issue of path tracking in wheeled mobile robots [10, 11]. Due to the
existence of parametric and non-parametric uncertainties in system models and also the existence
of non-holonomic constraints, the designing of output feedback controllers is a challenging task.
Besides, the separation principle cannot be easily applied in this case. Both the trajectory-tracking
and path-following problems have their own particular complexities when it comes to the kinematic
model of car-like moving robots, which happens to be non-holonomic. The uncertainties associated
with parametric modeling and unknown external disturbances constitute a significant concern in
the development of advanced controllers for uncrewed vehicles. The unknown external disturbances
may be caused by changing driving conditions. An adaptive neural controller for controlling the
movement of an autonomous vehicle has been presented in this paper. The target of this work is
to design an indirect adaptive output feedback controller by using an artificial neural network (NN)
and considering model uncertainties and external disturbances. The network used in this indirect
controller is a type of NN with radial basis functions (RBFs).
In this paper, two controllers have been designed for tracking the trajectory of a car-like robot. The
first controller includes a Proportional-Integral-Derivative (PID) controller, a kinematic controller,
and an indirect adaptive neural controller (IANC) that uses a radial-basis-function neural network
(RBFNN). In the proposed method, neural network (NN) is updated online by means of gradient
descent, and also the constant gains and the initial values of NN parameters are determined by
appropriately employing a genetic algorithm (GA) and minimizing a defined cost function. The
second controller, which is an adaptive fuzzy sliding mode nonlinear controller, is adaptively updated
online by means of fuzzy logic. The sliding nonlinear control scheme has been considered for dealing
with the existing uncertainties and external disturbances. To reduce the effect of chattering, the sign
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function gains are adaptively modified by applying fuzzy logic. In addition to using the fuzzy logic
system (FLS), the other constant parameters in the designed nonlinear controller are determined to
employ GA. This paper has been organized as follows: The dynamic model of the car-like robot has
been given in Section 2. IANC, along with its kinematic control and stability analysis, have been
presented in Section 3. The adaptive sliding mode nonlinear controller, the stability analysis, and
the FLS have been presented in Section 4. Simulation results and the conclusion have been presented
in Section 5 and Section 6, respectively.

2. The dynamic model of the car-like robot

Consider the car-like robot in Figure 1. The configuration of variables is presented as q := (xb, yb, θb, φb)
T ;

where (xb, yb) are the Cartesian coordinates of the midpoint between two rear wheels, θb is the angle
of car body relative to the x-axis, and φb is the control wheel angle. Assuming that the rear and
front tires do not skid on the ground, the system constraints are written as

A(q)q̇ =

(
− sin (θb + ϕb) cos (θb + ϕb) 0 0

− sin (θb) cos (θb) −lb 0

)
q̇ = 0 (2.1)

where lb is the distance between the axles of front and rear wheels. The kinematic model of the
car-like robot is obtained as

q̇ =

(
cos (θb) sin (θb)

tan(φb)
lb

0
0 0 0 1

)
︸ ︷︷ ︸

ST

T (
vb
ωb

)
︸ ︷︷ ︸

V

(2.2)

ωb denotes the angular velocity of the front wheels and vb is the car velocity. According to the
Lagrange method, the dynamic equation of the system is derived as (see [12]):

m 0 Ic sin (θb) 0
0 m −Ic cos (θb) 0

Ic sin (θb) −Ic cos (θb) Ib Iw
0 0 Iw Iw


︸ ︷︷ ︸

M

q̈+


0 0 −Icθ̇b cos (θb) 0

0 0 −Icθ̇b sin (θb) 0
0 0 0 0
0 0 0 0


︸ ︷︷ ︸

V

q̇ =


Tx

Ty

Tθ

Tφ


︸ ︷︷ ︸

T

+τd +AT

(
λ1

λ2

)
︸ ︷︷ ︸

Λ

(2.3)

where m := Mb+4mw, Iw := 2Iwzz , Ic := ((lb − lc)Mb + 2lbmw) and Ib := Mb(lb − lc)
2+4W 2mw+

2lb
2mw + Ibzz +4Iwzz . T is the vector of forces and moments applied to the system in the generalized

coordinates q, and it is related to the vector of moments applied to the robot as follows:
Tx

Ty

Tθ

Tφ


︸ ︷︷ ︸

T

=


cos (θb) 0
sin (θb) 0

lb cos (φb) sin (φb) 0
0 1


︸ ︷︷ ︸

B

(
τ1
τ2

)
︸ ︷︷ ︸

τ

(2.4)
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Using the pseudo-inverse method, the inverse of Eq. (2.4) is obtained as

(
τ1
τ2

)
︸ ︷︷ ︸

τ

=

(
− cos(θb)

b
− sin(θb)

b
−lb cos(φb) sin(φb)

b
0

0 0 0 1

)
︸ ︷︷ ︸

B†


Tx

Ty

Tθ

Tφ


︸ ︷︷ ︸

T

, b := l2b
(
cos4(φb)− cos2(φb)

)
− 1

(2.5)

In Eq. (2.3), Λ is the Lagrange coefficients, τd is the vector of disturbing forces, τ1 is the moment
applied to the rear wheels, is the moment applied to the control wheel, is the wheel radius, is the
wheel mass, Iwzz is the wheel moment of inertia about the z-axis passing through the wheel centroid,
Mb is the car body mass, and Ibzz is the moment of inertia of car body about the z-axis passing
through the car body’s center of mass.

Figure 1: The car-like robot along with the relevant coordinate frames.

The term STAT= 0 can be used to eliminate Λ and A from the vehicle’s dynamic equation [8].
The reduced form of the car’s equation is expressed as follows:

MxV̇ +VxV = Bxτ + τx,Mx := STMS = [mij] ,Vx := ST(MṠ+VS) = [vij],

τx := STτd,Bx := STB = [bij], i = 1, 2, j = 1, 2
(2.6)

In order to obtain the Lagrange coefficients, Eq. (2.3) and the time-derivative of Eq. (2.1) are
simultaneously solved, as follows:[

τ
Λ

]
=
[
AM−1B AM−1AT

]T( [
AM−1B AM−1AT

]
∗[

AM−1B AM−1AT
]T)−1 (

−Ȧq̇ +AM−1Vq̇
)

(2.7)

After deriving the robot’s motion equations, now it is time to design a suitable controller that
can help the car-like robot track a desired path despite the existing uncertainties. In the first step,
an indirect adaptive controller is designed for the robot. Then, by employing fuzzy sliding mode and
fuzzy logic, a controller is devised for tracking the trajectory of the car-like robot.
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3. Indirect RBF neural network controller by means of genetic algorithm

In this section, by using an RBFNN, an indirect adaptive controller is designed for tracking the
trajectory of the car-like robot. The general structure of this controller is presented in Figure 2.
A car model designed in the MapleSim has also been displayed in this figure [13]. The controller
structure includes the kinematic controller section, the PID controller section, the IANC section,
the section for determining system Jacobean, and the GA section. The reference path is considered
as qr := (xr, yr, θr, φr)

T . The goal for the controller is to bring error eq := qv−q down to zero.
First, the kinematic controller is designed. Suppose the variables of a virtual vehicle are in the form
of qv := (xv, yv, θv, φv)

T . By designing a kinematic controller based on the Lyapunov method, we
intend to eventually obtain the values of vv and ωv, which are the linear and the angular velocities
of the virtual vehicle, respectively. To this end, we implement the procedure presented in [14] for
a wheeled mobile robot. First, the generalized error in the local coordinate system is obtained as
follows [14]:

ε = (ε1, ε2, ε3),

(
ε1
ε2

)
=

(
cos(θv + φv) sin(θv + φv)
− sin(θv + φv) cos(θv + φv)

)(
ex
ey

)
, ε3 = θr + φr − (θv + φv) (3.1)

The nonholonomic constraint for the car-like robot is expressed as ẋb sin(θb) − ẏb cos(θb). By
considering this constraint, the kinematic model for error ε is obtained.

ε̇1 = ε2(θ̇v + φ̇v) + vr cos (ε3)− v, ε̇2 = −ε1(θ̇v + φ̇v) + vr sin (ε3) ,

ε̇3 = θ̇r + ωr − θ̇v − ωv =
vr
ll
sin(φr)−

v

ll
sin(φ) + ωr − ωv

(3.2)

Figure 2: The general structure of the RBFNN controller for the car-like robot.

To design our controller for system (3.2), a Lyapunov function [14] and [15] is selected as follows:

L1 =
k1
2
(ε21 + ε22) + 2

(
sin
(ε3
2

))2
(3.3)

By taking the derivative of (3.3) and performing a series of mathematical operations, (vv, ωv) are
obtained.
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ωv = k1vrε2 + k3 sin (ε3) + ωr +
vr
ll
sin(φr)−

v

ll
sin(φ), vv = vr cos (ε3) + k2ε1 (3.4)

Following the kinematic control of the vehicle, a controller is designed to get (vb, ωb) → (vv, ωv).
The main advantage of the kinematic controller is its simplicity; because it only relies on the kinematic
model. The designed controller has three constant gains with positive values. In this paper, GA has
been employed to determine these gains.The structure of the adaptive neural controller has been
considered such that its parameters are updated online in order to minimize the following cost
function:

F1 =
1

2
ETE,E = (e1, e2)

T , e1 := vb − vv, e2 := ωb − ωv (3.5)

The network used in this scheme is a type of artificial NN with RBFs. In this paper, the NN
undergoes a data-to-data form of training, and this process enables the control of the vehicle [16].
In the considered network, h = (h1, h2, ..., hN2)

T denotes the vector of radial functions in the hidden
layer [16]; and it is defined as:

hj = exp

(
−∥x− cj∥

2b2j

2
)
, j = 1, ..., N2 (3.6)

where x = (x1, x2, ..., xN1)
T is the RBFNN’s input vector, cj = (c1j, c2j, ..., cN3)

T are the centers of
Gaussian functions, bj, j = 1, ..., N2 are the widths of Gaussian functions, w = [wij], i = 1, ..., N2, j =

1, ..., N3 are the weights of RBFNN’s output layer, and y = wTh = (y1, ..., yN3)
T is the RBFNN’s

output vector. The descending gradient method is employed to train the NN online. By using the
descending gradient approach, the RBFNN updating laws are obtained as

∆wjk (t) = −η
∂F1

∂wjk

= ηαkhj,∆bj (t) = −η
∂F1

∂bj
= η(wα)jhjb

−3
j ∥x− cj∥2, α = sign(J)E

∆cij (t) = −η
∂F1

∂cij
= η(wα)jhj(xi − cij)b

−2
j , i = 1, ..., N1, j = 1, ..., N2, k = 1, ..., N3

wjk (t+∆t) = wjk (t) + ∆wjk (t)

bj (t+∆t) = bj (t) + ∆bj (t)

cij (t+∆t) = cij (t) + ∆cij (t)

(3.7)

where 0 < η < 1 is the updating rate of the NN parameters. J = ∂q/∂τ is the system’s Jacobean,
which is expressed as the sensitivity of system output to input [16]. The system’s Jacobean is
obtained from the reduced equations of the system, as follows [17].

V̇ = M−1
x Bxτ −M−1

x VxV → V =

∫ t

0

M−1
x Bxτdt

′ −
∫ t

0

M−1
x VxV dt′ →

∂V

∂τ
=

∫ t

0

M−1
x Bxdt

′ =

[ ∂vb
∂τ1

∂vb
∂τ2

∂ωb

∂τ1

∂ωb

∂τ2

]
,J =

∫
S
∂V

∂τ
dt′

(3.8)

Only the sign of Jacobean sign(J) has been used in the equation for updating the NN parameters.
The kinematic controller has a gain of K = (k1, k3, k4), and the coefficients of the PID controller are:
Kp = diag([kp1, kp2]), Ki = diag([ki1, ki2]) and Kd = diag([kd1, kd2]). The NN also has parameters

such as w, c, b = (b1, ..., bN3)
T and η, whose values should be selected properly
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GA can be an appropriate method for determining the values of the mentioned gains. GA can
also be used for path programming in mobile robots [19]. In this paper, GA is employed to obtain
the abovementioned constant values as well as the initial values of NN parameters. For this purpose,
first, a cost function is defined as

F2 =
1

N
β1

∑
ETE+

1

N
β2

∑
(qr − q)T (qr − q) +

1

N

∑
(β3 |τ1|+ β4 |τ2|), N :=

FT

∆t (3.9)

In the above equation, β = (β1, β2, β3, β4) are the weights considered for each term of the cost
function, is the simulation time, and is the sampling time step. The steps taken for the implemen-
tation of GA are as follows: Step 1: Generating and evaluating random populations. In this paper,
every generated population is evaluated immediately; and by “evaluation”, we mean the calculation
of cost function (Eq. (3.9)) for each part of the population. Step 2: Selecting the parents and cross-
ing them over to produce the offspring population. Step 3: Selecting the members of the offspring
population and creating the mutated population. Step 4: Combining the original population with
their offspring and the mutated population and establishing a new original population. The newly
created population will form the current generation. Step 5: If the algorithm termination conditions
are not met, go back to Step 2. Step 6: End of algorithm. Several conditions can be considered as
the algorithm termination conditions: 1) Reaching an acceptable predefined limit for solution (e.g.,
the tracking error falling below a specified value). 2) Elapse of a specific time duration or reaching
a definite number of iterations; if the time spent for executing the iterations is greater than a spec-
ified duration or the number of algorithm iterations is higher than a set value, stop executing the
algorithm. 3) Elapse of a specific time duration or reaching a definite number of iterations without
observing a significant improvement in the results.

In this paper, the second condition has been used for terminating the algorithm. The procedures
for combining the three mentioned populations (Step 4) are as follows: if Npop is the number of
initial population members, after producing three main populations, the offspring and the mutations
of these three populations are considered together and are arranged (in ascending order) according to
the cost function (Eq. (3.9)). Then, Npop members are selected from the beginning of this arranged
population and considered as the current generation. In this paper, the parents for producing the
offspring are selected randomly.

4. Fuzzy nonlinear adaptive sliding mode controller

In this section, by employing the sliding mode and fuzzy logic techniques, a fuzzy sliding mode
nonlinear controller will be designed. The structure of this controller, which has been displayed in
Fig. 3, includes the sliding mode controller (SMC) section, the FLS and the GA section.

The controller error and the sliding mode manifolds are defined as

eq := qr−q = (ex, ey, eθ, eφ)
T = (xr − x, yr − y, θr − θ, φr − φ)T (4.1)

SM := Ceq + ėq (4.2)

whereC := diag(c1, c2, c3, c4) represents a definite positive diagonal matrix and SM := (s1, s2, s3, s4)
T

are the sliding mode manifolds. The SMC for the car-like robot has been designed as

T = M (q̈r +Cėq +KSM + ηsign(SM))−ATΛ+Vq̇ (4.3)
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Figure 3: The structure of the fuzzy adaptive nonlinear controller designed for the car-like robot.

The time derivatives of sliding mode manifolds ṠM have been given in Eq. (4.4), and the reaching
rule has been presented in Eq. (4.5).

ṠM = Cėq + ëq = Cėq + q̈r − q̈ = Cėq + q̈r −M−1
(
T+ τd +ATΛ−Vq̇

)
(4.4)

ṠM = −ηsign(SM)−KSM (4.5)

η := diag(η1, η2, η3, η4) and K := diag(k1, k2, k3, k4) in Eqs. (4.3) and (4.5) represent definite
positive diagonal matrices.

4.1. Stability analysis

To confirm the stability of the system and to ensure that error converges to zero, the Lyapunov
function is considered as follows:

L2 =
1

2
ST
MSM (4.6)

By taking the derivative of Eq. (4.6) and substituting Eqs. (4.3)-(4.5) in it, we will have

L̇ = ST
MṠM = ST

M

(
Cėq + q̈r −M−1

(
T+ τd +ATΛ−Vq̇

))
= ST

M

(
−KSM − ηsign(SM)−M−1τd

)
(4.7)

By assuming ∥M−1τd∥ ≤ Γ1 and ∥η∥ = Γ1 + ∥η1∥ (where Γ1 has a positive value), Eq. (4.7)
turns into Eq. (4.8).

L̇ = ST
M

(
−KSM − ηsign(SM)−M−1τd

)
≤

−∥K∥ ∥SM∥2 − (Γ1 + ∥η1∥) ∥SM∥ − ST
MM−1τd ≤ −∥K∥ ∥SM∥2 − ∥η1∥ ∥SM∥

(4.8)

L̇ is written as Eq. (4.8), and both sides of the equation are integrated.

L̇ = −∥K∥ ∥SM∥2 − ∥η1∥ ∥SM∥ (4.9)
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∫ t

0

L̇dt′ =

∫ t

0

(
−∥K∥ ∥SM∥2 − ∥η1∥ ∥SM∥

)
dt′ → L(0)− L(t) =

∫ t

0

(
−∥K∥ ∥SM∥2 − ∥η1∥ ∥SM∥

)
dt′

→L(0) = L(t) +

∫ t

0

(
∥K∥ ∥SM∥2 + ∥η1∥ ∥SM∥

)
dt′ →≥

∫ t

0

(
∥K∥ ∥SM∥2 + ∥η1∥ ∥SM∥

)
dt′

(4.10)

lim
t→∞

(∫ t

0

(
∥K∥ ∥SM∥2 + ∥η1∥ ∥SM∥

)
dt′
)

≤ L(0) < ∞ (4.11)

According to Barbalat’s Lemma [18], when t → ∞, then ∥K∥ ∥SM∥2 + ∥η1∥ ∥SM∥ → 0; i.e.
lim
t→∞

SM = 0; in other words, the surface of sliding mode SM is asymptotically stable. Thus, the

closed-loop errors converge to zero, and the stability of the closed-loop system is verified. In practice,
for the prevention of chattering and for reducing the run time of the program (making the controller
faster), function tanh (σisi) is used instead of function sign(si); in this way, a uniformly ultimately
bounded stability is guaranteed.

4.2. Designing the fuzzy system

The fuzzy method utilized to reduce the fluctuations. In a SMC, the intensity of fluctuations
depends on the gain of the sign function [20]; so by utilize the fuzzy system (FS) adaptively, the con-
trol gain of the sign function is tuned according to the sliding surface (SS) and, thus, the amount of
chattering is reduced [16]. Sliding occurs when siṡi < 0, i = 1, ..., 4; if this condition is satisfied, when
system states reach the SS, they will be on the SS[20]. If system states are to reach the SS, the selec-
tion of η := diag(η1, η2, η3, η4) should eliminate the effects of uncertainties. There are two rules that
ensure the establishment of sliding condition [20]. Rule 1: if siṡi > 0, ηi should be increased. Rule 2:
if siṡi < 0 then ηi should be decreased. From the two stated rules, the relationship between siṡi and
η̇i, i = 1, ..., 4 can be expressed as a FS. siṡi and η̇i have been respectively chosen as the input and the
output of the FLS. For generating the gain of the sign function, the designed FS comprises 5 fuzzy
rules as Rj

f : IF siṡi is Fj Then ∆ηi is Gj, (j = 1, ..., 5); where F̃ = {NB,NM,ZO, PM,PB} de-

notes the fuzzy set related to the input and G̃ = {NB,NM,ZO, PM,PB} is the fuzzy set related
to the output. In fuzzy sets F̃ and G̃, “NB” denotes “negative big”, “NM” represents “negative
medium”, “ZO” indicates zero, “PM” means “positive medium” and “PB” is “positive big”.

The output of the FS shows the changes of sign function gain; therefore, by integrating the FS
output, the estimated gain for the sign function is obtained according to Eq. (4.12) [20].

η̂i = gi

∫ t

0

η̇idt
′ (4.12)

where, gi, i = 1, ..., 4 have constant values. By employing the FS presented, control gain η̂i, i =
1, ..., 4 varies adaptively and in a programmed way by means of fuzzy rules, and according to the
changes of the SS and its time derivative. Hence, the adaptive, fuzzy, integrated, sliding mode control
can be expressed as

T = M (q̈r +Cėq +KSM + η̂sign(SM))−ATΛ+Vq̇ (4.13)

where η̂ := diag(η̂1, η̂2, η̂3, η̂4) indicates the time-variant switching control gain. For the inputs
of fuzzy systems to fall between -1 and 1, gains of fi, i = 1, ..., 4 are considered at the inputs. Like
the IANC, GA is used here to determine the constant parameter values (K, C, gi and fi) for the
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nonlinear fuzzy sliding mode adaptive controller. The selected cost function is Eq. (3.9), and the
work procedure is similar to that explained in Section 3 for the IANC. After designing the controller,
the simulation results will be presented in the next section.

5. Results

The following parameters and values have been used in the simulation: Mb = 2117 kg, mw =
28 kg, Iwzz = 0.78 kg.m2, ll = 2.787 m, lc = 1.487 m, Ibzz = 1925 kg.m2, W = 0.7775 m, β =
(β1, β2, β3, β4) = (1, 1, 0.1, 0.1), K = (40.71, 33.3, 67.78, 49.44), C = (5.13, 85.59, 84.21, 74.84), ∆t =
0.01 s and rw = 0.4 m. The inputs of RBFNN are: x = (q, qr, q̇, q̇r)

T , and there are 10 neurons in
the middle layer. The upper and lower bounds considered for control signal saturation are as follows:
max(τ1) = 25,min(τ1) = −25,max(τ2) = 200,min(τ2) = −200.

Figure 4: The trajectory of the car-like robot achieved by simulation under ideal conditions and by the IANC.

To evaluate the effects of disturbance and uncertainty, an external disturbance in the form of τd =
(γ1 sin(µ1t) exp (−b1 |t− t1|) , γ2 sin(µ2t) exp (−b2 |t− t2|))Tand with numerical values of (b1, b2, t1, t2,
γ1, γ2, µ1, µ2) = (0.01, 0.03, 50s, 120s, 100,40,0.3,0.5) is applied to the system. The mean square error
(MSE) is defined as

MSE :=
1

FT

∑
(qr − q)T (qr − q) (5.1)

The results obtained for the IANC have been presented in Figures 4 through 8. The simulation
time is ST = 600s. Figure 4 illustrates the car trajectory on a 2-D plane along with the reference
path. According to this figure, the designed controller has been able to successfully control the car
in following the given reference path. In this figure, a comparison has been made between the results
of the controller designed in this paper and the results of a PID controller (whose coefficients have
been determined by means of GA). Figure 4 demonstrates the superiority of the controller designed
in this paper over the PID controller based on GA. Figure 5 shows the trajectory of the car-like robot
obtained by incorporating the effects of uncertainty and external disturbance.
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Figure 5: The trajectory of the car-like robot achieved by using the IANC and by considering the effects of uncertainty,
external disturbance and control signal saturation.

To examine the robustness of the designed controller against control signal saturation, the effect
of the saturation of control signals has also been considered in this simulation. Figures 5 and 6 reveal
that the designed controller has been robust against the applied disturbance and has performed suc-
cessfully. To explore the effect of car mass fluctuation on the performance of the designed controller,
the mass of the vehicle has been increased by 20% at time t = 220s and reduced by 30% at time t
= 400s.

Figure 6: The diagrams of car angle and error norm versus time obtained by considering the effects of uncertainty,
external disturbance and control signal saturation.

The graph of error norm versus time has been illustrated in Figure 6. In the presence of exter-
nal disturbance, the designed adaptive neural controller successfully adapts itself online to the new
conditions. This can be verified by the reduction of error norm and, consequently, the MSE values
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shown in the simulation results of Figures 4, 5 and 6.

Figure 7: The trajectory of the car-like robot achieved by using the nonlinear fuzzy adaptive SMC and by considering
the effects of uncertainty, external disturbance and control signal saturation.

The results obtained from the nonlinear fuzzy adaptive SMC for the car-like robot have been
presented in Figure 7 and 8. In Figure 7, which shows the trajectory of the car-like robot achieved
by considering the effects of uncertainty and external disturbance, the robustness of the designed
controller against these disturbing factors has been well demonstrated. In addition to disturbance,
the effect of uncertainty has been incorporated by changing the robot body mass (increasing the
body mass by 30%at time t = 60s and reducing it by 20% at time t = 130s). Figure 7 and 8 indicate
that the designed nonlinear fuzzy adaptive SMC has been quite effective in dealing with the external
disturbances.

Figure 8: The diagrams of vehicle angle and error norm versus time obtained by considering the effects of uncertainty,
external disturbance and control signal saturation and by using the nonlinear fuzzy adaptive SMC for the car-like
robot.

The graph of error norm versus time has been illustrated in Figure 8. When exposed to external
disturbances, the designed nonlinear fuzzy adaptive SMC is able to adapt itself online to the existing
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conditions quite successfully. This can be confirmed by the reduction of error norm and MSE values
shown in the simulation results of Figures 7 and 8. Besides the satisfactory performance of the
nonlinear fuzzy adaptive SMC (according to Figures 7 and 8), by comparing Figure 6 (the IANC)
with Figure 8 (the nonlinear fuzzy adaptive SMC), it can be realized that in the presence of external
disturbances and with the fluctuations of car-like robot mass, the nonlinear fuzzy adaptive SMC
performs better than the IANC. As Figures 7 and 8 indicate, despite the presence of disturbance and
uncertainty, the car-like robot has succeeded in tracking the considered path.

6. Conclusion

The necessity of using intelligent and autonomous vehicles and also the difficulty of determining
the exact model of a car-like robot as well as the existence of unknown external disturbances prompted
us to employ the adaptive method to deal with these problematic factors related to the automatic
control of such vehicles. In this paper, two adaptive methods were devised for the control of a car-like
robot. The first approach is based on the neural network (NN) with radial basis functions, which
acts as an indirect adaptive neural controller (IANC). The second approach is a nonlinear adaptive
fuzzy sliding mode control technique. First, a simple model was presented for the car-like robot.
Then a controller was designed for the trajectory tracking control of the robot. The first controller
comprises a kinematic controller with constant gains; which has been designed by defining a Lyapunov
function for it. This controller also includes an IANC whose parameters are updated online. The
constant parameters of the controller and also the initial values of the NN used in this controller
were determined by means of genetic algorithm (GA). The nonlinear fuzzy adaptive sliding mode
controller (SMC) comprises a sliding mode section, whose stability has been evaluated by defining
a Lyapunov function. It also includes a fuzzy section which has been designed, for the purpose
of reducing the effect of chattering, by adaptively tuning the sign function gains. The constant
control parameters of this controller were also determined by means of GA. Finally, simulations
were performed by considering factors such as external disturbance and model uncertainty. In the
Results section, the Proportional-Integral-Derivative controller based on GA was compared with the
designed IANC; which showed the superiority of the latter to the former. In addition, the IANC
(the first controller) was compared with the nonlinear fuzzy adaptive SMC (the second controller).
The findings indicated the better performance of the nonlinear fuzzy adaptive SMC. The simulation
results at the end of this work have been presented by considering the effects of model uncertainty
and external disturbance. These results reveal that the designed methods (both the first and the
second controllers) can effectively deal with disturbing factors and successfully control a car-like
robot in autonomously tracking a desired path.
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