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Abstract

Nowadays, in a competitive and dynamic environment of businesses, organizations need to moni-
tor, analyze and improve business processes with the use of Business Process Management Systems
(BPMSs). Management, prediction and time control of events in BPMS is one of the major chal-
lenges of this area of research that has attracted lots of researchers. In this paper, we present a
4-phase pipeline approach to the problem of synchronizing each pair of dependent process instances
to arrive at the corresponding pair of tasks simultaneous or near-simultaneous. In the first phase,
the process model is mined from the event log and enriched by the probabilistic distributions of
time information. In the second phase, the hidden processing dependency between the each pair of
dependent process instances is formally defined and is mined from the event log. In the third phase,
a process state prediction algorithm is presented to predict the future route of process instance and
then predict the remaining time of the process instance to a given point in a predicted route of the
business process. In the fourth phase, an iterative synchronization algorithm is presented based on
the presented process state prediction algorithm to make each pair of dependent process instances
arrive at the corresponding pair of tasks simultaneous or near-simultaneous. Experimental results
on a real-life event log of BPI challenge 2012 show that the proposed method leads to 39% reduction
in cycle time for dependent process instances.
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1. Introduction

In many companies and organizations, information systems are facing the problem of handling
enormous amount of data. Therefore, BPMS provides a framework to better manage the business
processes [1-3]. BPMS tends to manage business processes more intelligently. While the older
tools of workflow management systems (WFMS) provide development, execution and management
of business processes, BPMS additionally provides the possibility to manage the interaction between
processes and provides more compatibility for process models with reality [3, 4].
Handling task dependencies is one of major issues that affect the cycle time of business processes.
In manufacturing environments, cycle time refers to the time duration between customer request
and product delivery to the customer. Cycle time reduction in business processes such as manufac-
turing processes is an important optimization that can be achieved in the business process with an
appropriate scheduling and planning [5-8].
In this paper, a subset of task dependencies is considered that state-of-the-art process mining algo-
rithms are unable to discover. In this kind of dependency, a business process instance waits in a task
for the other corresponding business process instance to reach to the dependent task. In this paper,
a prediction-based method is proposed which orchestrates and synchronizes each pair of dependent
process instances to arrive at the corresponding pair of tasks simultaneous or near-simultaneous. The
proposed approach uses an iterative method to constantly synchronize the process instances at each
node each process instance takes a step ahead.
This main contributions of this paper are as follows:

• Defining and discovering the inter-task dependencies from event logs by statistical analysis.

• Prediction of remaining time of business process instances to a specified target point in business
process model.

• Dynamic synchronization of each pair of dependent process instances to arrive at the corre-
sponding pair of tasks simultaneous or near-simultaneous.

The remainder of this paper is organized in 5 other sections. The related researches and papers in
the task dependency domain are discussed in section 2 categorized based on their objective. Section
3 starts by prerequisite definitions in the domain and continued by clarifying task dependencies
extraction from event logs. The proposed method is presented in detail in section 4, focusing on
leveraging the tasks dependencies in the core of the proposed algorithm. The experiments and
discussion are presented in section 5. Conclusions of the paper are made in the last section.

2. Related Works

The description of dependencies has been a focus in different research areas. Next to services
[9] and activities, dependencies between classes or software modules [10], features (mostly in area
of product line management) [11], and requirements [12] are captured and evaluated for different
purposes such as dependency based service composition or optimizing the design of large software
systems. The approaches for representing dependencies vary. In [10], the authors present the idea
to use a Dependency Structure Matrix (DSM) to model dependencies where dependencies between
entities are represented by a mark in a matrix. The automatically generated matrix is used to
optimize product development processes. It highlights e.g. cyclic dependencies between entities,
which thereupon can be removed. However, a DSM is not suitable to create a DM. It does not support
the explicit modeling of dependency features such as symmetric and asymmetric dependencies. Also,



Real-time Prediction and Synchronization of Business Process ... 10 (2019) No. 1, 217-228 219

within a DSM one entity cannot have more than one dependency to exactly one other entity, since
only one value for each entry of the matrix can be specified.
Wu et al. use the DAG Synchronization Constraint Language (DSCL) to model different types of de-
pendencies [13]. Data and control dependencies are expressed by synchronization constraints such as
happenBefore or happenTogether. However, due to the nature of expressing dependencies as synchro-
nization constraints, this limits its applicability to certain use cases. For the handling of dependencies
between services and their SLAs (first use case) this is not sufficient. In DSCL those can only be
expressed in terms of the constraint happenTogether. Thus the modeling of those types is hindered
and not intuitive. A common approach to capturing dependencies are dependency graphs, where
nodes represent the entities which are dependent on each other and edges represent the dependencies
between these entities. One example is the work by Zhou et al. [9], who developed an approach
for the automatic discovery of dependencies based on semantic web service and business process
descriptions. They use a dependency graph to capture control and data dependencies and create a
minimal dependency graph presenting all dependencies. Dependency type information and specific
properties of the dependency are missing. This DM is limited and does not allow the specification
of typed dependencies or properties such as bi-directional, inverse, and disjoint dependencies.
Most of the early process modeling languages has an imperative style and uses control constructs
or workflow patterns to specify the skeleton of a process [14]. Until very recently, the necessity of
providing a declarative flow language for service scheduling has caught up its pace. [15] proposed
an approach of using temporal logic to specify the synchronization constraints between different
components. Temporal logic provides a richer syntax for describing and monitoring synchronization
dependencies. But its non-determinism makes it impractical for generating a message-exchanging
synchronization protocol for synchronization enforcement.
Another related area of research is rule-based service composition [16, 17]. Rules are defined to decide
role assignment in process execution, message exchange, and flow constraints etc. Most business rules
could be recast to dependencies defined in our framework and used as input for service scheduling
engine. For example, the structure related rules in [16] could be recast either as control dependencies
or data dependencies. These early work focused more on rule classification and process modeling. By
comparison, our work identified those dependencies crucial to service scheduling and studied their
interaction affect. Therefore, our approach can server as a rule-based scheduling engine and plug
into their systems.
A traditional approach to handling dependencies implicitly uses extended transaction models [18,
19] that introduce new data manipulation semantics more sophisticated than serializability. Typical
methods to implementing extended transaction models, e.g. Reflective Transaction Framework [20],
extend algorithms used in database management systems such as concurrency control. In contrast,
our research results address the synchronization needs of programs, workflows, and data manipula-
tions in a uniform way.

3. Formal Definition of Process Model

To formally express the proposed method, it is essential to present an analytical model for the
function of business processes and associated characteristics and parameters. An analytical model
of processes is presented as tuple p= 〈ϕ, T, F,R, U, µ, δ〉 as the following:

1. (a) ϕ is the arrival rate of incoming requests.
(b) set T is the set of given tasks in the business process.
(c) set F ⊆ T × T is a set of directed connections between tasks which represents the work

flow of the given set of tasks of business process.
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(d) set R contains all the human resources in organization by which the given tasks are done.
(e) U ⊆ T ×R defines the responsible resource for each task. As an example, 〈r,t〉∈U shows

resource r in process p is responsible for task t.
(f) µ : U → R+is a function, which maps each item 〈t, r〉 ∈ U onto the execution time of

task t which is performed by resource r.
(g) δ:U×T→ R+ is a mapping from U×T to positive real numbers. Value δ( 〈t, r, t′〉 ) shows

average dependent time.
(h) D:U→F (µ, σ) is a mapping from set U to positive real numbers. Values µ, σ are param-

eters of probability distribution associated to processing time t and resource r abbreviated
as Fr,t(µ, σ).

(i) Q : R → T ∗ is a function which associates a queue of work items to each resource in
terms of sequences.

4. THE PROPOSED METHOD

In this section, a four-phase pipeline approach is proposed to the problem of synchronizing each
pair of dependent process instances to arrive at the corresponding pair of tasks simultaneous or
near-simultaneous. In the first phase, the process model is mined from the event log and enriched
by the probabilistic distributions of time information. In the second phase, the hidden processing
dependency between the each pair of dependent process instances is formally defined and is mined
from the event log. In the third phase, a process state prediction algorithm is presented to predict
the future route of process instance and then predict the remaining time of the process instance
to a given point in a predicted route of the business process. In the fourth phase, an iterative
synchronization algorithm is presented based on the presented process state prediction algorithm to
make each pair of dependent process instances arrive at the corresponding pair of tasks simultaneous
or near-simultaneous.

4.1. First Phase: Process Discovery

In this phase, the business process model is mined from the event log and enriched by the
probabilistic distributions of time information. In the literature, algorithms such as alpha algorithm
[21], heuristics miner [22], and genetic miner [23] are applied to automatically discover the business
process lied in the event log. In this paper, alpha algorithm is chosen for discovering the business
process from the event log. Since some modifications to alpha algorithm are further applied, the
notations and the procedure of alpha algorithm are presented below. Suppose W is a workflow event
log on T. ∝(W ) is defined as follows:

1. TW= {t∈T | ∃σ ε W t∈ σ }

2. TI= {t∈T | ∃σ ε W t=first(σ) }
3. TO= {t∈T | ∃σ ε W t=last(σ) }

4. XW= { (A,B)|A⊆ TW ∧A 6= ∅ ∧B⊆TW∧B 6= ∅ ∧
∀a∈A∀b∈Ba→W b ∧ ∀a1,a2 ∈Aa1#Wa2 ∧ ∀b1,b2 ∈ B b1#W b2 }

5. YW= {(A, B) ∈X | ∀(A′ , B′) ∈ XA⊆A
′ ∧B⊆B′

=⇒ (A, B) = (A
′
, B′)}

In alpha algorithm, the relations between tasks are specified by four notations comprising > , →
, # , ‖. Suppose a and b are two tasks and X ∈ (T − {a, b})+ is the trace of tasks omitting tasks
a and b. The relations between tasks in alpha algorithm is defined as follows:
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Figure 1: A process model enriched with probabilistic time information

1. a>b if task a is observed exactly before task b in some traces. In other words, string XabX is
a substring of some traces.

2. a→b if a>b and b≯a. In other words, string XabX is observed in the event log but string
XbaX is not observed in any trace of the event log.

3. a # b if a≯b and b≯a. In other words, string XabX or XbaX is not observered in any trace of
the event log.

4. a‖b if a>b and b>a. In other words, both strings XabX and XbaX are observered.

After mining the process model from the event log using the above procedure, the process model
is then enriched by the time information. Time information associated to each task is also present
in the event log. Processing time of each task varies by factors such as the associated resource,
the congestion of work items, the daytime of processing task and so on. Time information related
to each task includes the activation time of a work item, waiting time of a work item in a queue,
starting time of processing work item by associated resource, and ending time of processing work
item by associated resource. The best can be done is to use all the prior knowledge and historical
observations to create a probabilistic model for estimating the events in question.

4.2. Second Phase: Hidden Processing Dependency

It is common for process discovery algorithms to discover execution dependency between the tasks
from event logs. Dependencies are categorized into two categories of local and non-local dependencies,
but not all dependencies are discovered by common discovery algorithms such as alpha algorithm. In
this paper, a special subset of non-local dependencies are considered in which processing a process
instance in a task depends on processing another process instance in another corresponding task.
In other words, a process instance waits for the dependent process instance to be processed. The
increase in waiting time leads to increase in cycle time of all process instances. It is assumed that
in synchronization, the two process instances could be instantiated from one business process or two
different business processes. The hidden processing dependency is formally defined with an example
as follows: Consider event log L as follows:

L = {<A, E, B, F, G, C, D, H>70,
< A, B, E, F, G, C, D, H>80,
<A, E, F, B, G, C, D, H>70,
<A, E, B, F, C, G, D, H>40,
< A, B, E, F, C, D, G, H>80}
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Figure 2: Hidden processing dependency shown by dotted connector

By investigating event log L, it is concluded that task B is always observed before task G, but
task B is not always observed exactly before task G. In Fig. 8, tasks B and G are positioned in
parallel route with a set of other tasks which are processed with any order in between the two tasks.
The specific order for tasks B and G may imply to an implicit rule of temporal dependence by which
notations of alpha algorithm are unable to describe. A new notation is defined for the scenario as
follows:

a ::>b if task a is always observed before task b in all traces of a given case and the
processing order is not discovered directly or indirectly in the process model, the relation
is considered a non-local dependency and is defined between tasks of one business process.
If the relation c::>d does not hold for task c and d, the notation c::≯d is used.

By investigating the definition above in the event log related to process in Fig. Below, the relation
B ::>G is established. In event log L, task B is always observed before task G and the order is not
defined directly or indirectly in the process model. Therefore, hidden processing dependency between
tasks B and G is defined. By the definition above, the relation A::≯H does not hold, because task
A is indirectly placed before task H in the process model.

The definition presented for relation ::> is also applicable for two different business process
scenario. If a case in a business process does have a corresponding case in another business process
and there is a hidden processing dependency between them, the relation ::> could be defined between
two tasks of two business processes of the event log. The hidden processing dependency could also be
generalized to multi business process scenario. To better understand the inter-process dependency,
consider the case when the owner of process instance instantiated from the first business process is
the same as the owner of process instance instantiated from the second business process and the
cases are corresponding to each other. It is important to discover the link of dependency between
the two tasks from two different business processes.

In another process model depicted in the figure below, the processed token in task A is split
into two tokens in tasks B and F. By mining event log using the proposed discovery technique, it is
understood that processing task I depends on processing task C. In other words, a token in task I
does not start in route FGHI until the corresponding token in task C finishes. Task D also depends
on task H and a token in task D of route BCDE does not start processing until the corresponding
token in task H of route FGHI ends.

4.3. Third Phase: Remaining Time Prediction

The route prediction of process instances requires investigating each branch ahead of the process
model which would solve the ambiguity of multi-route problem. To this end, process instances are
categorized in the place of each branching and then each process instance is assigned to a route.
Support Vector Machines (SVMs) technique is used to classify the process instances in order to
predict their future route. A SVM classifier is leveraged where tasks are faced with a route branching.
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Figure 3: Hidden processing dependency between two different business processes
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Figure 4: Hidden processing dependency in parallel route

Therefore, the required number of SVM classifiers in a process is equal to number of the tasks which
are followed by route branching. The exact procedure in process instance classification is actually
partial sequence classification associated to each process instance. SVM classifier predicts one of the
next tasks of process instances may face after the branching (in fact, partial sequences) based on
the data attached to it. After applying classification on all possible route branching to the end of
the process model, the future route for the process instance is made. In the training phase of SVM
classifier, the partial trace and the data associated to each completed process instance are given as
input to the classifier and then the classifier outputs the predicted next task for the process instance.

The route of each process instance is specified by the partial trace in the event log. Since classifier
is trained based on data carried by process instance, therefore, partial trace of each process instance
with the last version of data attached The classifier outputs the next predicted task.

By this stage of the algorithm, the route of process instance is predicted. Since the process model
is enriched by time information mined from event log, the predicted route is a linear enriched route
of process model as it is observed in Figure 5.
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Figure 5: A sample result of a predicted enriched linear route
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RoutePredictionAlgorithm :

Path PathPredictionAlgorithm(ProcesModel P :<>, Case case, Activity AC){
partialTrace ← < AC >

while (AC ! = P.END){
if ((AC , Anext) ∈ L) and (Anext ∈ A)){
partialTrace.push (Anext)

AC ← Anext

}elseif ( (AC , Cnext) ∈ L) and (Cnext ∈ C)){
SVMClassifier ← ∂ (Cnext)

Anext ← SVMClassifier (case, AC)

partialTrace.push (Anext)

AC ← Anext

}

4.4. Fourth Phase: Iterative Synchronization Algorithm

To resolve the issue of waiting time increase and cycle time increase in each pair of process
instances with hidden processing dependency, a synchronization algorithm is presented based on
the presented process state prediction algorithm to make each pair of dependent process instances
arrive at the corresponding pair of tasks simultaneous or near-simultaneous. Therefore, the aim of
synchronization algorithm is to minimize the difference time between reaching each pair of dependent
tasks. To this end, the synchronization algorithm requires iteratively re-estimating the remaining
time to the synchronization target points for each of the two process instances. The synchronization
algorithm is iteratively done at each step wherein the process instance takes a step forward in the
process model. The approach is to minimize the difference between the time predictions of the two
process instances to a pair of corresponding tasks called as “Synchronization delay”. Minimization
of synchronization delay includes rearranging the work items in the work list in order to prioritize
the posterior work item in the work list so that the work item is set a number of work items earlier.

The new position of posterior work item in the work list is computed fairly. If there exist more
than one work list ahead to the synchronization point for the work item, it would definitely not fair
to compensate the whole synchronization delay in the first single work list, the delay is distributed
fairly between the work lists ahead. The remaining time is comprised of processing times of tasks to
the synchronization point and waiting times in the work lists to the synchronization point. First, the
sum of processing tasks ahead is subtracted from predicted remaining time of posterior work item;
then, the result is divided to sum of waiting times of all tasks ahead (notice waiting time of each
task is computed by multiplication of processing time of the task by the number of work items); The
result of division represents the fair ratio. By multiplying the fair ratio by waiting time of each work
list, the position for posterior work item in the work list is obtained.

FairRatio =
PredictedRemainingT ime−

∑
for all tasks ahead ProcessT ime∑

for all tasks ahead (ProcessT ime×Num(workitems))

PosteriorNewPosition = Round(FairRatio × (ProcessT ime×Num (workitems)))

Since the synchronization algorithm is an iterative algorithm, the above procedure for the new
position of the posterior work item is iterated in every task ahead.
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Figure 6: Cycle time of business processes of BPI challenge 2012 event log.

5. Experimental Results

In Figure 6, cycle time of 4720 business processes of BPI challenge 2012 real-life event log is
plotted. As it can be observed, the progress of business process cycle times is not smooth in ascending
and descending curves and it experiences hard noise and “outlier” like oscillations. On the other
hand, a special kind of dependency between business processes is introduced and discovered which
leads to cycle time increase in corresponding business processes. By synchronization of business
processes, it would result in a more normalized and balanced plot, but it should be noted that not
all hard noises in cycle time plot is related to dependent business processes.

In the Figure 7, the ratio of waiting time of dependent business processes to overall cycle time
of all business processes for different arrival rates is computed in normal condition without taking
dependent business processes into account. The normal base resource allocation is compared with
the proposed approach of normalization of cycle times by synchronization of dependent business
processes with two different implementations; In one implementation, the corresponding business
processes are considered as the 1st ranked priority in each work list and in the other implementation,
the corresponding business processes are randomly ranked from 1st to 3rd in each work lists. The
two implementation strategy by different priority rankings is originated from the fact that priority
of synchronization procedure could not be set as 1st in any condition and higher priorities exist.
The figure is plotted for different inter-arrival rates of 3 to 15. As it is observed, as inter-arrival
rate decreases, the waiting time of dependent business processes increases. This is due to the fact
that anomalies and congestions emerge by decreasing inter-arrival rate and consequently increasing
number of business processes.

Since the synchronization procedure is an action for which earliness is of important factor, the
number of tasks between starting point of synchronization procedure to the synchronization target
point -which is called synchronization path- effects on the synchronization delay result. In Figure
8, the mean absolute error between the predefined target arrived time and actual arrived time is
computed for the corresponding dependent business processes in the event log for different lengths of
synchronization path. As it is observed, when two tasks are in the synchronization path, the MAE
error is high because it is too late to synchronize the waiting time of dependent business processes.
As the synchronization path increases to 5 tasks, the minimum MAE error is achieved and the best
result is obtained. Finally, as the synchronization path increases to 7 tasks, the minimum-delay
synchronization is again hard to achieve because the synchronization is a prediction-based procedure
and the underlying conditions change over long time.

In Figure 9, the effect of the synchronization on the overall cycle time is computed for different
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Figure 7: The ratio of waiting time of dependent business processes to overall cycle time for all business processes for
different arrival rates  
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Figure 8: Prediction accuracy (measured in terms of mean absolute error[MAE]) across different lengths of synchro-
nization path

inter-arrival rates. The two implementations for hard priority strategy and soft priority strategy are
both evaluated against the overall cycle time and it is shown that hard priority strategy outperforms
soft priority strategy in higher inter-arrival rates.
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Figure 9: The cycle time reduction percentage rate of the proposed approach for two different priorities
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6. Conclusion

In this paper, a new kind of dependency between business processes is discovered and defined
for which synchronization procedure is necessary. By Applying the synchronization procedure, not
only cycle time reduction is achieved but also cycle time of business processes are normalized. The
dependency is defined as a condition in which a process instance waits for the corresponding process
instance to trigger at the corresponding task. Synchronization Procedure is a 4-phase approach and
in the first phase, the process model is mined from the event log and enriched by the probabilistic
distributions of time information. In the second phase, the hidden processing dependency between
the each pair of dependent process instances is formally defined and is mined from the event log. In
the third phase, a process state prediction algorithm is presented to predict the future route of process
instance and then predict the remaining time of the process instance to a given point in a predicted
route of the business process. In the fourth phase, an iterative synchronization algorithm is presented
base on the presented process state prediction algorithm to make each pair of dependent process
instances arrive at the corresponding pair of tasks simultaneous or near-simultaneous. Experimental
results on a real-life event log of BPI challenge 2012 show that the proposed method leads to 4.3%
reduction in overall cycle time and 39% reduction in cycle time, specifically for dependent process
instances.

.
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