
Int. J. Nonlinear Anal. Appl. 11 (2020) No. 2, 85-102
ISSN: 2008-6822 (electronic)
http://dx.doi.org/10.22075/ijnaa.2020.4384

An Intelligent Model to Predict the Development
Time and Budget of Software Projects

Amid Khatibi Bardsiri*

Department of Computer Engineering, Bardsir Branch, Islamic Azad University, Bardsir, Iran.

(Communicated by Madjid Eshaghi Gordji)

Abstract

Today, software projects are a major part of information and business technology. Estimating the
cost and delivery time of a project is one of the most important aspects of its development process.
The results of this estimate are directly related to the failure or success of the whole project. Project
anomalies, high diversity, intangibility, and poor standards are obstacles that have hampered various
current forecasting models. In this regard, the aim of this paper is to provide an intelligent hybrid
model that is able to weigh the project features properly. The main idea of the proposed model
is based on mathematical methods, soft computing and using previous estimation methods. After
the complete introduction of the new model, its efficiency is evaluated using Desharnais and ISBSG
databases. The results indicate higher accuracy and greater flexibility of the proposed model. Im-
provement rate shows in the various metrics such as MdMRE, Pred(0.25) and MMRE separately,
but the average improvement rate is 31%.

Keywords: Intelligent model, Analogy based estimation, Differential evolution algorithm, Budget
and time estimation.
2010 MSC: 68T05,97R40,68T35,68N30

1. Introduction

Estimating the costs of a software project is one of the most important tasks in software projects
management. The main reason for estimating such costs is that it is not possible to make accurate
plans, monitor and control a project [1]. Unfortunately, the process of estimation cannot be trusted
in software projects. None of the estimation models can estimate the costs of a software project

∗Corresponding Author: Amid Khatibi Bardsiri
Email address: a.khatibi@srbiau.ac.ir (Amid Khatibi Bardsiri*)

Received: September 2019 Revised: January 2020

http://dx.doi.org/10.22075/ijnaa.2020.4384

86 Amid Khatibi Bardsiri

accurately. The estimation of human efforts in software projects is greatly influenced by irrelevant
factors and misleading information. In addition, software developers are willing to improve the
proposed estimates even after receiving feedback on them. One of the ways of effort estimation is to
use automated estimators. In fact, an effort estimation model can be used as decision-making support
tools which make it possible to investigate the effects of the features of a project and a team on the
increase in costs. For the past three decades, researchers have been very willing to use various software
applications for effort estimation models in order to overcome the variety of software development
processes [2, 3]. Although improving the accuracy of different estimation models requires too much
time and cost, effort estimation applications cannot be expected to operate highly accurately. It
is because of uncertainty in software development projects and factors such as dynamic features,
software innate complexities as well as the problems resulting from the lack of standardization and
insufficient information on the software [4].

Software effort estimation models are meant to estimate the efforts required to develop a software
application in the best way. However, the conducted effort process is not reliable because it depends
on the values of features which are unclear in the first steps of the project. Nevertheless, this process
is to be carried out because a huge investment is made to develop a software application. Studies
show that the implementations of software projects are very unlikely to succeed, and only 30-35%
of all the software projects have been completed in the determined time and budget [5]. One of
the most important reasons for the failure of software projects is wrong estimation and inaccuracy.
Such problems come from overestimation or insufficient effort, both of which have negative effects
on the process of a software project. The use of various effort estimation models is on the rise,
and software teams employ a variety of methods to estimate effort in their projects. It is important
to present a realistic effort estimation without sufficient information on the area and domain of
the system as well as the environmental and culture conditions of the software development team
and technical complexities. The current effort estimation methods introduce the relative errors
as the most important goal and try to reduce it as much as possible. Due to the uncertainty and
complicated and nonlinear characteristics of software projects, the concentration of estimation model
on this criterion cannot simply provide the groundwork for high and reliable accuracies. Furthermore,
single-objective optimization-based estimation models are not able to manage projects. The results
of such estimators are significantly different in one database from another one. Therefore, it is not
possible to generalize the accuracy of the current effort estimator in various software projects because
of high complexities [6, 7].

2. Related works

Estimation of software effort plays a crucial role in project development process, because it af-
fects their project quality, turnaround time, and development risk [8]. In reality, late or early release
impacts both the progress of a software product and the diversion of money. Unique computer
project properties have made it tougher than it should seem [9]. Like other ventures, the software
project is subjective, variable, dynamic and heterogeneous items that cannot be reliably measured,
except with the assistance of a specific dataset. Different models and approaches have been sug-
gested to approximate the effort, which can usually be divided into 2 classifications: non-algorithmic
and algorithmic. For calculating the production effort, algorithmic techniques such as COCOMO
(Constructive Expense MOdel), MLR (Multiple regression), ROR (Robust regression) use statistical
models and variables [10]. By comparison, non-algorithmic methods like Expert Judgment (JE),
RBF (Radial Basis Function) CBR (Case Based Reasoning), employ historical data analysis to es-
timate. Soft computation methods, expert analysis, and CBR have recently been widely used for

An Intelligent Model to Predict the Development ... 11 (2020) No. 2, 85-102 87

effort calculation in science [10, 11, 12]. For e.g., some of the items used appear in the following
partial list:

- Different weighting models for software project features [11, 13, 14].
- ABE (Analogy Based Estimation) system which Shepperd implemented in 1997 [15].
- Boehm introduced the COCOMO and COCOMO II models [16, 17].
- Usage of a Bayesian network to predict software projects effort [18].
- Neural networks are used to estimate project delivery time and cost [19].
- Use of various data mining techniques to improve estimate accuracy [12].
The list is difficult to complete and there are several instances for each scenario. In 1963 expert

judgement was adopted and uses the consensus of experts as a new process [20]. One effective
approach is the Shepperd Analogy approach which was implemented in 1997 [21]. These models
have provided the most implementations and enhancements in separate articles. Though, due to
its clarity, being simple, high consistency and because it assumes no inference, ABE method has
been often used and maybe it can be considered the most common estimation model [22]. Figure 1
demonstrates a number of enhancements and changes in different models to maximize the precision
of the predictions.

3

Figure 1. Various softwire development effort prediction methods

 As seen in Figure 1, ABE has had the greatest enhancements as a simple and common tool and

has been coupled with numerous methods such as Fuzzy theory (Shivakumar 2016), ACO (Ant

Colony Optimization), and ICA (Imperialist Competitive Algorithm) (Keung and Kitchenham

2007). While both of these approaches have resulted in some changes, but high cost, high difficulty

and, most significantly, its limited implementation has diminished performance. The remainder of

this paper is structured as follows: the ABE method, its essential components and the principles used

in the proposed approach are presented in Part 3. Part 4 reveals Differential Evolution algorithm.

Sections 5 and 6 are dedicated to developing the new model and its effects, respectively. Part 7

incorporates related development risks. Lastly, Section 8 contains future works and key findings.

3. Analogy Based Estimation
This model is generally chosen for its usability, efficiency, versatility and general researchers'

experience with it. Many models or other approaches will however be used in this paper's proposed

model and this is one of the benefits of the suggested approach. The ABE paradigm was

implemented as an alternative to the algorithmic methods by Schofield and Shepperd in 1997

(Shepperd and Schofield 1997). ABE identifies the connections of one project to other related

projects by using the Similarity function and the final solution is sought using the Solution function

after the discovery of other specific project, including the equivalences and parameters seen in

KNN's parameter (Shepperd and Schofield 1997, Song and Shepperd 2011, Wu, Li et al. 2013). ABE

is commonly used in recent studies due to its usability and reasonable approximation precision. The

next steps are usually taken by this method:

- Historical data collection from prior services to create the database

- Weighting and collecting comparative mechanism functionality of a project

- Use similarity function to pick the resources closest to the test project

- Final step for the solution function to search.

Effort Estimation Models

COCOMO Data Mining ABE AI Regression Expert

Judgment

+ +

ABE_Fuzzy

ABE_PSO

ABE_ANN

ABE_Cluster

ABE_OLS

ABE_Rough Set

OLS

ROR

COCOMO II

MLR

CART

Delphi

Figure 1: Various softwire development effort prediction methods

As seen in Figure 1, ABE has had the greatest enhancements as a simple and common tool and has
been coupled with numerous methods such as Fuzzy theory [23], ACO (Ant Colony Optimization),
and ICA (Imperialist Competitive Algorithm) [24]. While both of these approaches have resulted in
some changes, but high cost, high difficulty and, most significantly, its limited implementation has
diminished performance. The remainder of this paper is structured as follows: the ABE method,
its essential components and the principles used in the proposed approach are presented in Part 3.
Part 4 reveals Differential Evolution algorithm. Sections 5 and 6 are dedicated to developing the new
model and its effects, respectively. Part 7 incorporates related development risks. Lastly, Section 8
contains future works and key findings.

88 Amid Khatibi Bardsiri

3. Analogy Based Estimation

This model is generally chosen for its usability, efficiency, versatility and general researchers’
experience with it. Many models or other approaches will however be used in this paper’s proposed
model and this is one of the benefits of the suggested approach. The ABE paradigm was implemented
as an alternative to the algorithmic methods by Schofield and Shepperd in 1997 [15]. ABE identifies
the connections of one project to other related projects by using the Similarity function and the final
solution is sought using the Solution function after the discovery of other specific project, including
the equivalences and parameters seen in KNN’s parameter [11, 15, 25]. ABE is commonly used in
recent studies due to its usability and reasonable approximation precision. The next steps are usually
taken by this method:

- Historical data collection from prior services to create the database
- Weighting and collecting comparative mechanism functionality of a project
- Use similarity function to pick the resources closest to the test project
- Final step for the solution function to search.

3.1. Similarity Function

ABE utilizes a similarity algorithm that measures the characteristics of different digital projects
and considers their correlation. There are two popular functions, Manhatan and Euclidean. Equation
3.1 indicates the Euclidean similarity function [26].

Sim (s, s′) = 1

[
√∑n

i=1 wiDis(fi,fi′)+δ]

δ = 0.0001
(3.1)

Dis (fi, f
′
i) =

 (fi − f ′
i)

2 if fi and f ′
i are numerical or ordinal

0 if fi and f ′
i are nominal and fi = f ′

i

1 if fi and f ′
i are nominal and fi 6= f ′

i

Where s and s′ are the two projects contrasted and wi is the weight of the project feature. The

weight will range from 0 to 1, even fi and f ′
i show the i-th feature of s and s′ projects, and n is the

total features count. The worth of δ never causes the devisor to be zero. Although, other functions
such as Minkowski similarity [27], maximum distance [28], and rank mean [29] are also accessible
but were used less compared to the two functions provided. Equation 3.2 indicates to the Manhatan
function [30].

Sim (s, s′) = 1

[
∑n

i=1 wi Dis(fi,f ′i)+δ]
δ = 0.0001

(3.2)

Dis (fi, f
′
i) =

|fi − f ′

i | if fi and f ′
i are numerical or ordinal

0 if fi and f ′
i are nominal and fi = f ′

i

1 if fi and f ′
i are nominal and fi 6= f ′

i

3.2. Solution Function

The solution method is used to measure the final value of the developing project. The common
solution functions are median [31], inverse weighted distance, mean and closest [24]. Median calcu-
lates the average value of project efforts with the expectation of n>2 and reverse calculate the cost
value based on Equation 3.3. Mean function takes into account the average value of costs derived
from n equivalent projects [32].

An Intelligent Model to Predict the Development ... 11 (2020) No. 2, 85-102 89

Cp =
K∑
k=1

Sim (s, sk)∑K
i=1 sim (s, si)

CSk
(3.3)

Where s is a new project, sk is the related project, Csk is the sk project effort and K is the number
of most related projects in general. Eventually, Sim(s, sk) represents the degree of resemblance
between the projects. For previous experiments several solution functions were used, several of
which used only one solution function [15], while the others used multiple functions [33].

3.3. K Nearest Neighbor

KNN indicates the number of projects to be used in the process of comparison via ABE. Seeking
the right value for K has been one of the big problems for researchers in recent years, since variations
in the K value have a significant impact on the precision of the prediction. The best value for K,
too, differs from one database to the next. Some experiments indicated that the value of K is fixed
[31, 34] and others found it to be a dynamic value with a given range [35, 36]. Some experiments
have also been published on the adaptive search approaches to determine the best values for K [32,
37, 38]. The visual structure of the ABE system is shown in Figure 2.

5

3.3 K Nearest Neighbor

KNN indicates the number of projects to be used in the process of comparison via ABE. Seeking

the right value for K has been one of the big problems for researchers in recent years, since variations

in the K value have a significant impact on the precision of the prediction. The best value for K, too,

differs from one database to the next. Some experiments indicated that the value of K is fixed (Huang

and Chiu 2006, Li and Ruhe 2006)and others found it to be a dynamic value with a given range

(Auer and Biffl 2004, Auer, Trendowicz et al. 2006). Some experiments have also been published

on the adaptive search approaches to determine the best values for K (Walkerden and Jeffery 1999,

Angelis and Stamelos 2000, Leung 2002). The visual structure of the ABE system is shown in Figure

2.

Figure 2. ABE diagram

4. Differential evolution
Differential evolution algorithm is an accurate, scalable, and simple-to-use method for

mathematical optimization. DE is an optimizer based on the population that generates real encrypted

vectors that depict the solutions to the problem (Khatibi Bardsiri 2016). The DE begins by an original

population of real vectors. The variables are configured both arbitrarily with maybe real values,

hence they are distributed uniformly across the question space. DE produces new vectors during

optimizing, which are disruptions of current population vectors. The code disturbs variables with the

weighted distance of two randomly population vectors and applies to a third selected vector to

generate the trial vector. The test vector interacts with the same index of the present population. If

the trial produced a better option than the vector of the current population it takes its place in the

dataset. Two parameters parameterise the DE algorithm. Crossover probability (C∈[0, 1]) defines

the number of bits that are passed to the trial vector from its competitor and the scale factor (F∈(0,

1)) determines the frequency at which the population increases (Hu, Xiong et al. 2014, Mohanty,

Panda et al. 2014). Figure 3 displays the DE algorithm pseudocode. The theory of differential

evolution is to get a new vector by applying the weighted difference vector of any two individuals to

another (Storn and Price 1997).

Historical

Services

Similarity Function

Solution Function

New service

being estimated

Features

distance

Distance

weighting

Similarity

Level Closest

Mean

Median

Inverse

Estimated Effort

Figure 2: ABE diagram

4. Differential evolution

Differential evolution algorithm is an accurate, scalable, and simple-to-use method for mathe-
matical optimization. DE is an optimizer based on the population that generates real encrypted
vectors that depict the solutions to the problem [39]. The DE begins by an original population of
real vectors. The variables are configured both arbitrarily with maybe real values, hence they are
distributed uniformly across the question space. DE produces new vectors during optimizing, which
are disruptions of current population vectors. The code disturbs variables with the weighted distance
of two randomly population vectors and applies to a third selected vector to generate the trial vector.

90 Amid Khatibi Bardsiri

The test vector interacts with the same index of the present population. If the trial produced a better
option than the vector of the current population it takes its place in the dataset. Two parameters
parameterise the DE algorithm. Crossover probability (C∈[0, 1]) defines the number of bits that
are passed to the trial vector from its competitor and the scale factor (F∈(0, 1)) determines the fre-
quency at which the population increases [40, 41]. Figure 3 displays the DE algorithm pseudocode.
The theory of differential evolution is to get a new vector by applying the weighted difference vector
of any two individuals to another [42].

6

Figure 3. A summary of differential Evolution

5. The Proposed Model
Given the variety of software projects and also the various features of software systems,

comparison-based models such as ABE cannot perform well despite high simplicity and flexibility.

Determining the degree of similarity that occurs between two services, irrespective of the

significance of each element, can adversely affect the credibility of the analogies. The evaluation

process requires more focus when compared to other projects due to the unpredictable and

complicated nature of the software services. Extensive attribute evaluation may enhance the

efficiency of the ABE approach before comparison with a service. As mentioned earlier, the

comparison stage in the ABE approach is performed via the similarity function. Hence, the proposed

method focuses optimizing similarity function efficiency. Different methods have been presented

for the appropriate weighting of the available features in software projects to improve the

performance of ABE. In this study, the DE algorithm was used as a tool to weight the features

appropriately. Flexibility and adaptability are two valuable specifications of DE that enable it to

overcome the complexity and vagueness of software project features. DE algorithm gives weight to

propose similar function. The proposed model includes two steps: the training step in which

appropriate weights are distributed and allocated to the features; the testing step in which the

proposed model is evaluated. Since it is very complicated to compare the features of two software

projects, the proposed method can improve the performance of ABE. The performance criteria

introduced in this paper can be used to evaluate the proposed model.

5.1 Performance criteria

In many studies several distinct performance standards have been presented. Four Specific

performance metrics are used in this study. The aim of using these parameters is to determine the

accuracy of model estimations. For example, absolute residual (AR) illustrates the difference

according to Equation 9 between real and expected values (Shepperd and Schofield 1997).

 𝐴𝑅𝑖 = |𝑋𝑖 − 𝑋�̂�| (4)

In this equation, 𝑋𝑖 and �̂�𝑖 are the actual and the predicted values of the ith instance, respectively.

MRE (Magnitude of Relative Error) is an accepted, important, and extensively used performance

criterion in effort estimation. As shown in Equation 5, MRE is the error rate between the actual

Figure 3: A summary of differential Evolution

5. The Proposed Model

Given the variety of software projects and also the various features of software systems, comparison-
based models such as ABE cannot perform well despite high simplicity and flexibility. Determining
the degree of similarity that occurs between two services, irrespective of the significance of each
element, can adversely affect the credibility of the analogies. The evaluation process requires more
focus when compared to other projects due to the unpredictable and complicated nature of the
software services. Extensive attribute evaluation may enhance the efficiency of the ABE approach
before comparison with a service. As mentioned earlier, the comparison stage in the ABE approach
is performed via the similarity function. Hence, the proposed method focuses optimizing similar-
ity function efficiency. Different methods have been presented for the appropriate weighting of the
available features in software projects to improve the performance of ABE. In this study, the DE
algorithm was used as a tool to weight the features appropriately. Flexibility and adaptability are
two valuable specifications of DE that enable it to overcome the complexity and vagueness of soft-
ware project features. DE algorithm gives weight to propose similar function. The proposed model
includes two steps: the training step in which appropriate weights are distributed and allocated to
the features; the testing step in which the proposed model is evaluated. Since it is very complicated
to compare the features of two software projects, the proposed method can improve the performance
of ABE. The performance criteria introduced in this paper can be used to evaluate the proposed
model.

An Intelligent Model to Predict the Development ... 11 (2020) No. 2, 85-102 91

5.1. Performance criteria

In many studies several distinct performance standards have been presented. Four Specific per-
formance metrics are used in this study. The aim of using these parameters is to determine the
accuracy of model estimations. For example, absolute residual (AR) illustrates the difference accord-
ing to Equation 5.1 between real and expected values [15].

ARi =
∣∣∣Xi − X̂i

∣∣∣ (5.1)

In this equation, Xi and X̂i are the actual and the predicted values of the ith instance, respectively.
MRE (Magnitude of Relative Error) is an accepted, important, and extensively used performance
criterion in effort estimation. As shown in Equation 5.2, MRE is the error rate between the actual
required effort and the estimated one. Lower MRE values indicate better model performance [43].

MRE =

∣∣∣Xi − X̂i

∣∣∣
Xi

(5.2)

Two other important criteria that are obtained from the overall mean and median of errors
are presented in Equations 5.3 and 5.4, respectively. Here also, lower values signify better model
performance. The difference between the two parameters MMRE (Mean Magnitude of Relative Error)
and MdMRE (Median Magnitude of Relative Error) is that the median is less sensitive to large values
and to outliers. The PRED(0.25) parameter, which is the percentage of successful predictions that
fall within 25% of the actual values, is a usual substitute for MMRE and is expressed in Equation
5.5. For example, PRED(0.25) = 0.5 means that half of the estimates have a 25% distance from the
actual values.

MMRE =

∑N
i=iMRE

N
(5.3)

MdMRE = Median(MREs) (5.4)

PRED(0.25) =
100

N

N∑
i=1

{
1 if MREi ≤ 25

100

0 otherwise
(5.5)

5.2. Training Step in the Proposed Model

First, the projects were randomly divided into three classes, one of which is test, and the other
two are training sets. The training projects are used to train the proposed model, whereas testing
projects are used to evaluate the efficiency of the proposed model. In other words, training projects
are employed to obtain the most appropriate weight and parameters. The testing projects are meant
for the evaluation of the training step. The process of implementing the training step can be seen in
Figure 4.

In addition, a number of weights are allocated to the features of the project with the DE algorithm.
These weights are used in the similarity function through Equations 3.1 and 3.2. The number of
weights will be equal to the number of features, and they are used to determine the importance of
each feature. In the next step, the project (or similar projects) will be sent to the solution function.
In this step, DE presents three recommendations as the solution functions, and MRE is calculated.
This process is iterated until all the training projects are estimated. In other words, there will be
MREs as many as the training projects. If there are no other projects, the next step will be to
calculated PRED and MMRE. Therefore, the differences in the values of MMRE and PRED will be
regarded as the fitness value in the proposed method.

92 Amid Khatibi Bardsiri

5.3. Testing Step in the Proposed Model

Testing services assess the accuracy of the proposed method. In this step, the proposed similarity
function is regarded as the inputs of the similarity function to determine the efficiency of the proposed
method in training services. In addition, the optimized weights, obtained from the training step, will
be sent to this function. According to Figure 5, a service is first selected from checking services and
sent to the similarity function in the same way as the training step.

Then the cost required for the service is predicated. After that, MRE is calculated. This process is
iterated until the testing projects are not finished. Finally, PRED and MMRE are estimated. These
parameters indicate the accuracy of the proposed model. Figure 5 shows the steps of conducting the
testing step.

8

Figure 4. The flowchart of training step in the proposed model

Figure 5. The flowchart of testing step in the proposed method

A

B

E

Yes No

Historical

Projects

Train Base Test

Similarity Function

Solution Function

DE algorithm

MMRE & PRED(0.25)

Terminate?
Proposed

weights

Figure 4: The flowchart of training step in the proposed model

5.4. Datasets description

The numerical data is needed for the evaluation of the prediction methods. This is why past
studies used separate databases. In the preceding study, an analysis of various databases investigated
the properties and reliability of each database [44]. To analyze the estimation methods, two actual
databases were used. Regretfully, most existing databases are fairly small, with many anomalies
included. The key benefit of artificial sets of data is they can pick and improve their size. In
addition, the user can change the modes and functionality of the database.

An Intelligent Model to Predict the Development ... 11 (2020) No. 2, 85-102 93

8

Figure 4. The flowchart of training step in the proposed model

Figure 5. The flowchart of testing step in the proposed method

A

B

E

Yes No

Historical

Projects

Train Base Test

Similarity Function

Solution Function

DE algorithm

MMRE & PRED(0.25)

Terminate?
Proposed

weights

Figure 5: The flowchart of testing step in the proposed method

5.4.1. ISBSG dataset

The data in the International Software Benchmarking Standards Group (ISBSG) repository [45],
which contains 5052 software projects completed in the past, was used in this research. This repos-
itory, which includes 109 features for each project, has collected its information from 24 different
countries. The data contains a varied spectrum of programs, architectures, platforms, program-
ming languages, and development tools and methods. Following the filters mentioned below, an
appropriate subset of ISBSG dataset was selected for this research.

1. Among the different data in the repository, only the ”a” and ”b” quality rates were used that,
according to the ISBSG report, there is no doubt about their correctness.

2. The normalized amount of effort was used for comparing and studying projects (in the case of
incomplete projects).

3. Projects without fields that were selected for this research were omitted in order to have
complete information.

4. Normalized ratios higher than 1.2 were not used (the ISBSG itself has suggested this for achiev-
ing greater accuracy).

5. A web development environment was considered that could encompass the concept of software
services and the provision of web-based services.

6. The ”ifpug” measurement method (the count approach) was used for all of the projects.

In the end, by following the above-mentioned filters, 66 software projects were obtained and the
research was continued on them. Test data must be used to derive the efficiencies of the various

94 Amid Khatibi Bardsiri

estimation models. Among all the present features, six important ones [Input count (Inpcont),
Output count (Outcont), Enquiry count (EnqCont), File count (FileCont), Interface Count (IntCont)
and Adjusted function point (AFP)] were selected that influenced the development effort [Normalized
effort in hours (NorEffort)]. The statistical data obtained from this dataset is presented in Table 1.

Table 1: Description of ISBSG dataset

9

5.4 Datasets description

The numerical data is needed for the evaluation of the prediction methods. This is why past

studies used separate databases. In the preceding study, an analysis of various databases investigated

the properties and reliability of each database (Mair, Shepperd et al. 2005). To analyze the estimation

methods, two actual databases were used. Regretfully, most existing databases are fairly small, with

many anomalies included. The key benefit of artificial sets of data is they can pick and improve their

size. In addition, the user can change the modes and functionality of the database.

5.4.1 ISBSG dataset

The data in the International Software Benchmarking Standards Group (ISBSG) repository

(ISBSG 2011), which contains 5052 software projects completed in the past, was used in this

research. This repository, which includes 109 features for each project, has collected its information

from 24 different countries. The data contains a varied spectrum of programs, architectures,

platforms, programming languages, and development tools and methods. Following the filters

mentioned below, an appropriate subset of ISBSG dataset was selected for this research.

i. Among the different data in the repository, only the “a” and “b” quality rates were used that,

according to the ISBSG report, there is no doubt about their correctness.

ii. The normalized amount of effort was used for comparing and studying projects (in the case

of incomplete projects).

iii. Projects without fields that were selected for this research were omitted in order to have

complete information.

iv. Normalized ratios higher than 1.2 were not used (the ISBSG itself has suggested this for

achieving greater accuracy).

v. A web development environment was considered that could encompass the concept of

software services and the provision of web-based services.

vi. The “ifpug” measurement method (the count approach) was used for all of the projects.

In the end, by following the above-mentioned filters, 66 software projects were obtained and the

research was continued on them. Test data must be used to derive the efficiencies of the various

estimation models. Among all the present features, six important ones [Input count (Inpcont), Output

count (Outcont), Enquiry count (EnqCont), File count (FileCont), Interface Count (IntCont) and

Adjusted function point (AFP)] were selected that influenced the development effort [Normalized

effort in hours (NorEffort)]. The statistical data obtained from this dataset is presented in Table 1.

Table 1. Description of ISBSG dataset

Variable Minimum Maximum Mean Median Std

InpCont 3 1185 169 95 199

OutCont 10 698 143 67 165

EnqCont 3 653 150 116 137

FileCont 7 384 129 108 97

IntCont 5 497 76 43 95

AFP 107 2245 672 507 534

NorEffort 562 60826 6860 4899 8406

5.4.2. Dasharnais dataset

Dasharnais is one of the most common datasets in the field of software effort estimation [46].
Although this dataset is relatively old, it has been widely employed in many of recent research
studies [36, 47, 48]. In this dataset, there are 81 projects related to a Canadian software company,
out of which four projects include missing values and the remaining 77 projects are considered in the
evaluation process. Each project is described by nine attributes. One of the attributes (language) is
categorical and the remaining ones are numerical. Table 2 provides the statistical information about
this dataset.

Table 2: Descriptive statistics for Desharnais dataset

10

5.4.2 Dasharnais dataset

Dasharnais is one of the most common datasets in the field of software effort estimation

(Desharnais 1989). Although this dataset is relatively old, it has been widely employed in many of

recent research studies (Auer, Trendowicz et al. 2006, Li, Xie et al. 2009, Jodpimai, Sophatsathit et

al. 2010). In this dataset, there are 81 projects related to a Canadian software company, out of which

four projects include missing values and the remaining 77 projects are considered in the evaluation

process. Each project is described by nine attributes. One of the attributes (language) is categorical

and the remaining ones are numerical. Table 2 provides the statistical information about this dataset.

Table 2. Descriptive statistics for Desharnais dataset

Variable Minimum Maximum Mean Median Std

TeamExp 0 4 2.30 2 1.33

ManagerExp 0 7 2.65 3 1.52

Length 1 36 11.30 10 6.79

Transactions 9 886 177.47 134 146.08

Entities 7 387 120.55 96 86.11

AdjustFactor 5 52 27.45 28 10.53

PointsAdjust 73 1127 298.01 247 182.26

Language 1 3 1.56 1 0.72

Effort (h) 546 23940 4833 3542 4188

6. Experimental results
This paper was meant to use the results of different estimation methods to compare the proposed

model with other common models and obtain its accuracy. Some of these common models are ROR

(robust regression), LSE (linear size adjustment), MLR (multiple linear regression), RBF (Radial

basis function), SWR (stepwise regression), LMS (leas median of squares regression), ABE

(analogy-based estimation) and ANN (artificial neural network). Three algorithms were separately

used to evaluate the performance of the proposed model. Considering their performances, these three

algorithms are very similar to each other; however, they have their own characteristics. Table 3

shows the adjustment of parameters in each algorithm.

Table3. The initiation of parameters

Parameters Algorithms

Crossover Rate=0.1

F Constant=2

Schema=DE/Best/1

DE

C1= C2=2 , W=1 PSO

Cr=0.7 , Mr=0.1 GA

Population size = 50, Number of iteration = 100, Fitness function =(MMRE + MdMRE)-PRED (0.25)

6.1 ISBSG Dataset

The effort estimations of different models on ISBSG dataset indicate that this dataset can be

useful for the evaluation of the proposed model. The results of the proposed model show that it did

perform well on ISBSG dataset. The results were relatively good. Figure 6 indicates these

observations.

6. Experimental results

This paper was meant to use the results of different estimation methods to compare the proposed
model with other common models and obtain its accuracy. Some of these common models are ROR
(robust regression), LSE (linear size adjustment), MLR (multiple linear regression), RBF (Radial
basis function), SWR (stepwise regression), LMS (leas median of squares regression), ABE (analogy-
based estimation) and ANN (artificial neural network). Three algorithms were separately used
to evaluate the performance of the proposed model. Considering their performances, these three
algorithms are very similar to each other; however, they have their own characteristics. Table 3
shows the adjustment of parameters in each algorithm.

An Intelligent Model to Predict the Development ... 11 (2020) No. 2, 85-102 95

Table 3: The initiation of parameters

10

5.4.2 Dasharnais dataset

Dasharnais is one of the most common datasets in the field of software effort estimation

(Desharnais 1989). Although this dataset is relatively old, it has been widely employed in many of

recent research studies (Auer, Trendowicz et al. 2006, Li, Xie et al. 2009, Jodpimai, Sophatsathit et

al. 2010). In this dataset, there are 81 projects related to a Canadian software company, out of which

four projects include missing values and the remaining 77 projects are considered in the evaluation

process. Each project is described by nine attributes. One of the attributes (language) is categorical

and the remaining ones are numerical. Table 2 provides the statistical information about this dataset.

Table 2. Descriptive statistics for Desharnais dataset

Variable Minimum Maximum Mean Median Std

TeamExp 0 4 2.30 2 1.33

ManagerExp 0 7 2.65 3 1.52

Length 1 36 11.30 10 6.79

Transactions 9 886 177.47 134 146.08

Entities 7 387 120.55 96 86.11

AdjustFactor 5 52 27.45 28 10.53

PointsAdjust 73 1127 298.01 247 182.26

Language 1 3 1.56 1 0.72

Effort (h) 546 23940 4833 3542 4188

6. Experimental results
This paper was meant to use the results of different estimation methods to compare the proposed

model with other common models and obtain its accuracy. Some of these common models are ROR

(robust regression), LSE (linear size adjustment), MLR (multiple linear regression), RBF (Radial

basis function), SWR (stepwise regression), LMS (leas median of squares regression), ABE

(analogy-based estimation) and ANN (artificial neural network). Three algorithms were separately

used to evaluate the performance of the proposed model. Considering their performances, these three

algorithms are very similar to each other; however, they have their own characteristics. Table 3

shows the adjustment of parameters in each algorithm.

Table3. The initiation of parameters

Parameters Algorithms

Crossover Rate=0.1

F Constant=2

Schema=DE/Best/1

DE

C1= C2=2 , W=1 PSO

Cr=0.7 , Mr=0.1 GA

Population size = 50, Number of iteration = 100, Fitness function =(MMRE + MdMRE)-PRED (0.25)

6.1 ISBSG Dataset

The effort estimations of different models on ISBSG dataset indicate that this dataset can be

useful for the evaluation of the proposed model. The results of the proposed model show that it did

perform well on ISBSG dataset. The results were relatively good. Figure 6 indicates these

observations.

6.1. ISBSG Dataset

The effort estimations of different models on ISBSG dataset indicate that this dataset can be
useful for the evaluation of the proposed model. The results of the proposed model show that it
did perform well on ISBSG dataset. The results were relatively good. Figure 6 indicates these
observations.

11

Figure 6. The results of different models on ISBSG dataset

The smallest value of MMRE was 0.51 coming from proposed model, and its worst value was

0.93 resulting from SWR. Considering this parameter in the proposed hybrid model, ANN was

ranked the second, and RBF was ranked the third. Moreover, the lowest value of MdMRE was 0.32

coming from proposed method, and its worst value was 0.6 resulting from RBF. Regarding this

parameter, ROR was ranked the second. Considering the last column, PRED of the best value was

0.69 coming from proposed, and the worst value was 0.34 coming from MLR. Therefore, proposed

was ranked the first.

The results of the proposed model were significantly improved on this dataset mainly because

of appropriate weighting and the accurate selection of solution and similarity functions. ISBSG

dataset is a relatively standard dataset, a fact which has improved the accuracy of the proposed

model.

As performance indicators are quantitative and generic, there is a need for an objective statistical

method to provide specifics of how measurement errors are spread. Boxplot is a kind of chart which

can clearly show the mean, spread, and set of values. In comparison, the Boxplot figure

corresponding to MRE of different methods is seen in Figure 7. This graph illustrates how faults are

spread through different prediction systems. As seen in Figure 7, the proposed method's inter-

quartile interval is smaller than other ones, and from this the smallest mean is derived.

Moreover, the number of outliers in proposed method is the smallest among the models. Next to

the proposed model, the SWR method yielded the best and the RBF the worst answers.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ROR MLR SWR ANN RBF ABE LSE Proposed

MMRE Pred(0.25) MdMRE

Figure 6: The results of different models on ISBSG dataset

The smallest value of MMRE was 0.51 coming from proposed model, and its worst value was 0.93
resulting from SWR. Considering this parameter in the proposed hybrid model, ANN was ranked
the second, and RBF was ranked the third. Moreover, the lowest value of MdMRE was 0.32 coming
from proposed method, and its worst value was 0.6 resulting from RBF. Regarding this parameter,
ROR was ranked the second. Considering the last column, PRED of the best value was 0.69 coming
from proposed, and the worst value was 0.34 coming from MLR. Therefore, proposed was ranked the
first.

The results of the proposed model were significantly improved on this dataset mainly because of
appropriate weighting and the accurate selection of solution and similarity functions. ISBSG dataset
is a relatively standard dataset, a fact which has improved the accuracy of the proposed model.

96 Amid Khatibi Bardsiri

As performance indicators are quantitative and generic, there is a need for an objective statistical
method to provide specifics of how measurement errors are spread. Boxplot is a kind of chart which
can clearly show the mean, spread, and set of values. In comparison, the Boxplot figure corresponding
to MRE of different methods is seen in Figure 7. This graph illustrates how faults are spread through
different prediction systems. As seen in Figure 7, the proposed method’s inter-quartile interval is
smaller than other ones, and from this the smallest mean is derived.

Moreover, the number of outliers in proposed method is the smallest among the models. Next to
the proposed model, the SWR method yielded the best and the RBF the worst answers.

12

Figure 7. Dispersion of MRE in different methods in ISBSG dataset

6.2 Desharnais Dataset

This database includes 77 projects developed with the third-generation language. It also includes

8 numerical features which may influence the effort of project. The best value of MMRE was 0.37

resulting from proposed model, and the worst value was 0.64 coming from MLR. The best value of

MdMRE was 0.31 coming from proposed method. ABE was ranked the second with 0.39; however,

its worst value was 0.55 coming from LSE. The best value of PRED was 0.81 resulting from

proposed model. ANN was ranked the second with 0.72, and its worst value was 0.32 coming from

ROR. The results indicated that the proposed model performed very well on Desharnais dataset, and

its accuracy was appropriate. Figure 8 indicates the results.

Figure 8. The results of different model on Desharnais dataset

As shown in Figure 9, the proposed model values had the least MdMRE, BMMRE, and MMRE

relative to the other approaches and, moreover, provided the maximum PRED(0.25). The two

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ROR MLR SWR ANN RBF ABE LSE Proposed

MMRE Pred(0.25) MdMRE

0

0.5

1

1.5

2

2.5

3

3.5

4

M
L

R

S
W

R

C
A

R
T

A
N

N

R
B

F

A
B

E

A
B

E
M

M

A
B

E
_

G
A

A
B

E
_

P
S

O

A
B

E
_

D
E

R
O

R

P
ro

p
o

s
e

d

Figure 7: Dispersion of MRE in different methods in ISBSG dataset

6.2. Desharnais Dataset

This database includes 77 projects developed with the third-generation language. It also includes
8 numerical features which may influence the effort of project. The best value of MMRE was 0.37
resulting from proposed model, and the worst value was 0.64 coming from MLR. The best value of
MdMRE was 0.31 coming from proposed method. ABE was ranked the second with 0.39; however, its
worst value was 0.55 coming from LSE. The best value of PRED was 0.81 resulting from proposed
model. ANN was ranked the second with 0.72, and its worst value was 0.32 coming from ROR.
The results indicated that the proposed model performed very well on Desharnais dataset, and its
accuracy was appropriate. Figure 8 indicates the results.

As shown in Figure 9, the proposed model values had the least MdMRE, BMMRE, and MMRE
relative to the other approaches and, moreover, provided the maximum PRED(0.25). The two Grey
and SWR approaches did the poorest. Given this dataset’s low heterogeneity and its structure,
all the measurements reported here are fairly acceptable, and there’s very little variation between
the methods. The Boxplot diagram in Figure 9 illustrates how the MRE values for the different
methods of cost estimation is dispersed. Here also, the least median and inter-quartile belonged

An Intelligent Model to Predict the Development ... 11 (2020) No. 2, 85-102 97

12

Figure 7. Dispersion of MRE in different methods in ISBSG dataset

6.2 Desharnais Dataset

This database includes 77 projects developed with the third-generation language. It also includes

8 numerical features which may influence the effort of project. The best value of MMRE was 0.37

resulting from proposed model, and the worst value was 0.64 coming from MLR. The best value of

MdMRE was 0.31 coming from proposed method. ABE was ranked the second with 0.39; however,

its worst value was 0.55 coming from LSE. The best value of PRED was 0.81 resulting from

proposed model. ANN was ranked the second with 0.72, and its worst value was 0.32 coming from

ROR. The results indicated that the proposed model performed very well on Desharnais dataset, and

its accuracy was appropriate. Figure 8 indicates the results.

Figure 8. The results of different model on Desharnais dataset

As shown in Figure 9, the proposed model values had the least MdMRE, BMMRE, and MMRE

relative to the other approaches and, moreover, provided the maximum PRED(0.25). The two

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ROR MLR SWR ANN RBF ABE LSE Proposed

MMRE Pred(0.25) MdMRE

0

0.5

1

1.5

2

2.5

3

3.5

4

M
L

R

S
W

R

C
A

R
T

A
N

N

R
B

F

A
B

E

A
B

E
M

M

A
B

E
_

G
A

A
B

E
_

P
S

O

A
B

E
_

D
E

R
O

R

P
ro

p
o

s
e

d

Figure 8: The results of different model on Desharnais dataset

to the proposed model and, next to it, MLR and ANN had suitable error distribution and small
medians. Considering the larger number of projects in this dataset, a greater number of outliers can
be seen in the Boxplot diagram. This figure shows how various models estimate and indicates their
efficiencies well.

12

Figure 7. Dispersion of MRE in different methods in ISBSG dataset

6.2 Desharnais Dataset

This database includes 77 projects developed with the third-generation language. It also includes

8 numerical features which may influence the effort of project. The best value of MMRE was 0.37

resulting from proposed model, and the worst value was 0.64 coming from MLR. The best value of

MdMRE was 0.31 coming from proposed method. ABE was ranked the second with 0.39; however,

its worst value was 0.55 coming from LSE. The best value of PRED was 0.81 resulting from

proposed model. ANN was ranked the second with 0.72, and its worst value was 0.32 coming from

ROR. The results indicated that the proposed model performed very well on Desharnais dataset, and

its accuracy was appropriate. Figure 8 indicates the results.

Figure 8. The results of different model on Desharnais dataset

As shown in Figure 9, the proposed model values had the least MdMRE, BMMRE, and MMRE

relative to the other approaches and, moreover, provided the maximum PRED(0.25). The two

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ROR MLR SWR ANN RBF ABE LSE Proposed

MMRE Pred(0.25) MdMRE

0

0.5

1

1.5

2

2.5

3

3.5

4

M
L

R

S
W

R

C
A

R
T

A
N

N

R
B

F

A
B

E

A
B

E
M

M

A
B

E
_

G
A

A
B

E
_

P
S

O

A
B

E
_

D
E

R
O

R

P
ro

p
o

s
e

d

Figure 9: Dispersion of MRE in different methods in Desharnais dataset

98 Amid Khatibi Bardsiri

7. Threats to the validity

Any scientific study or analytical research will encounter certain external and internal challenges.
In reality, for their outcomes to be accurate and functional, methods must be properly understood
and exploited. Any of the external and internal risks are discussed in this part. The problem of its
correct and precise measurement is one of the key challenges to the credibility of an effort assessment
method. For example, it is a really dangerous idea to use a portion of the training data to check
the model as the output that is achieved would not be true. Another bad policy is to find a specific
number of projects for evaluating the system, when the best thing to do is to use approaches such as
fold cross or leaving one out. In this method each service has both the learning roles and the test;
and, for this reason, these methodological methods have been used very often in previous studies.

Another challenge is the application of evaluation criteria: they must be consciously considered
without selective filtering. In this paper we used four of the most common metrics, since estimating
accuracy was our intention. Since these parameters are commonly used, their use helps us to con-
veniently compare the outcomes produced with those of other experiments and, in fact, helps us to
use mathematical models such as the Box diagram to help us see the uncertainty and distribution
of the responses. The next element is the model construction process, including how variables can
be modified and weighted in dynamic systems. For example, what kind of solution and similarity
works, and what importance to use for KNN. Configuration and modification of variables are de-
fined in detail in this article. There would be numerous changes to different structures, and thus
different responses. The most noticeable potential challenges in future experiments will be the way
the theoretical method is implemented and applied in the actual world. For the proposed method,
all drawbacks and threats should be considered so that adequate outcomes can be achieved. For
eg, the proposed method is not based on any single database, and will fully adjust to specific data
and project styles. In comparison, it has no clear approach for sorting and filtering attributes and
essential instances in a database.

8. Discussion

This study introduced an intelligent method for improving of degree the precision of budget
prediction. ABE approach had been paired with the differential evolution algorithm in the proposed
system. In the first step, the DE determines suitable weights to be used in the similarity of the
ABE model, and then those numbers can be used in the testing phase to analyze new services. DE
proposed the most appropriate similarity and solution functions as well as the most optimized weights
and selected the number of the closest neighbors in ABE to improve the effort estimation accuracy.
Authors compared the findings with the best prediction models of the few years particulary RBF
and mixed CBR. Since then, deferential evolution has been used to adjust the discrepancy between
a current service and its analogies with regard to all service properties. The basic concept of using
DE is to maximize the weight factor of each element gap using one fitness function and LSE method
in an effort to change closest analogies based on scale analysis, it shows strong results compared to
ABE however this approach was validated over very small databases.

Proposed model showed a better performance than existing methods Moreover, the mean mag-
nitude of relative error and percentage of error prediction were used to determine the accuracy of
the proposed model. Two datasets were used to evaluate the results of the proposed model. The
proposed model could produce appropriate results in any of the three performance parameters. The
results of the proposed model were significantly improved on Desharnais dataset mainly because of
appropriate weighting and the accurate selection of solution and similarity functions. Desharnais
dataset is a relatively standard dataset, a fact which has improved the accuracy of the proposed

An Intelligent Model to Predict the Development ... 11 (2020) No. 2, 85-102 99

model. The results indicate that the proposed model performed very well on this Dataset, and it
was appropriately accurate. This model’s popularity is for the close connection between effort and
size, and the availability of a suitable size property. The proposed method has a high versatility and
durability, as it needs no preconditions and expectations to build and use it.

The proposed model can be useful in improving the performance of effort estimation methods.
According to our research, key findings are as below list:

1. ABE method has not good performance if it uses alone. So, it should be combined with an
evolutionary algorithm such as PSO, GA or DE.

2. Authors study and simulate eleven different method to estimate software project effort. The
proposed method can perform better than others.

3. Authors use two different datasets to achieve good validation. This case doesn’t see in the
previous researches.

4. The authors combine ABE method with evolutionary algorithm as a new idea. Results achieved
indicate that the latest approach introduced is better than all previous studies. For instance,
suppose decision trees, regression methods, analogy-based methods and soft computing algo-
rithms.

5. Improvement rate shows in the various figures separately. But the average rate is 31%. This
value indicates more precision and correctness in estimation process.

6. Finally, our comparison is the strongest review for other researchers. They can use these
promise results to improve their works and companies.

9. Conclusion

The successful management of a project plays an effective role in the productivity of an orga-
nization. Effort estimation, required to create an information system, is one of the major concerns
of project management. Analogy based estimation method is one of the most successful techniques
to software effort estimating project. ABE is used as the main benchmark here for the reason of
simplicity of implementation, are clear and clarity of functioning for the user. ABE method alone
has a low precision that this defect can be overcome by creating a hybrid model.

In the ABE approach, the efficiency of the comparative procedure was increased by applying the
most fitting weights to service attributes. Two databases were used to assess the quality of the pro-
posed method, and MdMRE, Pred(0.25) and MMRE performance indicators were calculated using a
cross-validation methodology. The results obtained were compared with popular prediction methods
which revealed the supremacy in two databases of the proposed method. It can be inferred that the
synthesis of ABE and differential evolution algorithm leads to a high-performance approach in terms
of estimating the software development cost, based on the findings obtained from two datasets. This
method is a reliable, scalable, and efficient prediction framework, ideal for use in different software
services styles. Combine the Analogy based estimation method and metaheuristics such as GA and
DE algorithm to achieve new model and suitable performance respect to the obtained results, the
performance of the proposed method is acceptable.

References

[1] Prokopova, Z., et al. (2019). Analysis of the Software Project Estimation Process: A Case Study.
Computer Science On-line Conference, Springer.
[2] Sehra, S. K., et al. (2017). ”Research patterns and trends in software effort estimation.” Infor-
mation and Software Technology 91: 1-21.

100 Amid Khatibi Bardsiri

[3] Sharma, P. and J. Singh (2017). Systematic literature review on software effort estimation using
machine learning approaches. 2017 International Conference on Next Generation Computing and
Information Systems
[4] Bardsiri, A. K., Seyyed Mohsen Hashemi, and Mohammadreza Razzazi (2016). ”GVSEE: A
Global Village Service Effort Estimator to Estimate Software Services Development Effort.” Applied
Artificial Intelligence 30(5): 396-428.(ICNGCIS), IEEE.
[5] Menzies, T., et al. (2017). ”Negative results for software effort estimation.” Empirical Software
Engineering 22(5): 2658-2683.
[6] Ceke, D. and B. Milasinovic (2015). ”Early effort estimation in web application development.”
Journal of Systems and Software 103: 219-237.
[7] Huijgens, H., et al. (2017). Effort and Cost in Software Engineering: A Comparison of Two
Industrial Data Sets. Proceedings of the 21st International Conference on Evaluation and Assessment
in Software Engineering, ACM.
[8] Goyal, S. and P. K. Bhatia (2019). A Non-Linear Technique for Effective Software Effort Estima-
tion using Multi-Layer Perceptrons. 2019 International Conference on Machine Learning, Big Data,
Cloud and Parallel Computing (COMITCon), IEEE.
[9] Sangwan, O. P. (2017). Software effort estimation using machine learning techniques. 7th Inter-
national Conference on Cloud Computing, Data Science & Engineering-Confluence, IEEE.
[10] Sigweni, B. and M. Shepperd (2014). Feature weighting techniques for CBR in software ef-
fort estimation studies: a review and empirical evaluation. Proceedings of the 10th International
Conference on Predictive Models in Software Engineering, ACM.
[11] Wu, D., et al. (2013). ”Linear combination of multiple case-based reasoning with optimized
weight for software effort estimation.” The Journal of Supercomputing 64(3): 898-918.
[12] Benala, T. R., et al. (2014). Software Effort Estimation Using Data Mining Techniques. ICT
and Critical Infrastructure: Proceedings of the 48th Annual Convention of Computer Society of
India-Vol I, Springer.
[13] Wen, J., et al. (2009). Improve analogy-based software effort estimation using principal compo-
nents analysis and correlation weighting. Proceeding of the 16th Asia-Pacific Software Engineering
Conference, Penang, Malaysia, IEEE.
[14] Li, Y.-F., et al. (2009). ”A study of project selection and feature weighting for analogy based
software cost estimation.” Journal of Systems and Software 82(2): 241-252.
[15] Shepperd, M. and C. Schofield (1997). ”Estimating software project effort using analogies.”
IEEE Transactions on Software Engineering, 23(11): 736-743.
[16] Boehm, B., et al. (2000). ”Software development cost estimation approaches-A survey.” Annals
of software engineering 10(4): 177-205.
[17] Boehm, B. W. (1981). Software engineering economics, Prentice-hall Englewood Cliffs (NJ).
[18] Aggarwal, K., et al. (2005). ”Bayesian regularization in a neural network model to estimate
lines of code using function points.” Journal of Computer Sciences 1(4): 505-509.
[19] Nassif, A. B., Mohammad Azzeh, Luiz Fernando Capretz, and Danny Ho (2016). ”Neural
network models for software development effort estimation: a comparative study.” Neural Computing
and Applications 27(8): 2369-2381.
[20] Jorgensen, M. (2005). ”Practical guidelines for expert-judgment-based software effort estima-
tion.” IEEE Software, 22(3): 57-63.
[21] Shepperd, M. and C. Schofield (1997). ”Estimating Software Project Effort Using Analogies.”
IEEE Transactions on Software Engineering, 23(11): 736-743.
[22] Bardsiri, A. K. and S. M. Hashemi (2014). ”Software Effort Estimation: A Survey of Well-known
Approaches.” International Journal of Computer Science Engineering (IJCSE) 3(1): 46-50.

An Intelligent Model to Predict the Development ... 11 (2020) No. 2, 85-102 101

[23] Shivakumar, N., N. Balaji, and K. Ananthakumar (2016). ”A Neuro Fuzzy Algorithm to Com-
pute Software Effort Estimation.” Global Journal of Computer Science and Technology 16(1).
[24] Keung, J. W. and B. Kitchenham (2007). Optimising project feature weights for analogy-
based software cost estimation using the mantel correlation. 14th Asia-Pacific Software Engineering
Conference, APSEC 2007. , IEEE.
[25] Song, Q. and M. Shepperd (2011). ”Predicting software project effort: A grey relational analysis
based method.” Expert Systems with Applications 38(6): 7302-7316.
[26] Amazal, F.-A., et al. (2014). An Analogy-Based Approach to Estimation of Software Devel-
opment Effort Using Categorical Data. Joint Conference of the International Workshop on Soft-
ware Measurement and the International Conference on Software Process and Product Measurement
(IWSM-MENSURA), Krakow, Czech Republic, IEEE.
[27] Idri, A., et al. (2015). ”Analogy-based software development effort estimation: A systematic
mapping and review.” Information and Software Technology 58(Article in press): 206-230.
[28] Malathi, S. and S. Sridhar (2012b). ”Performance evaluation of software effort estimation using
fuzzy analogy based on Complexity.” International Journal of Computer Applications 40(3): 32-37.
[29] Kocaguneli, E., et al. (2012a). ”Exploiting the essential assumptions of analogy-based effort
estimation.” IEEE Transactions on Software Engineering, 38(2): 425-438.
[30] Azzeh, M., et al. (2011). ”Analogy-based software effort estimation using Fuzzy numbers.”
Journal of Systems and Software 84(2): 270-284.
[31] Li, J. and G. Ruhe (2006). A comparative study of attribute weighting heuristics for effort
estimation by analogy. Proceedings of the 2006 ACM/IEEE international symposium on Empirical
software engineering, Rio de Janeiro, Brazil, ACM.
[32] Leung, H. K. (2002). ”Estimating maintenance effort by analogy.” Empirical Software Engineer-
ing 7(2): 157-175.
[33] Chiu, N.-H. and S.-J. Huang (2007). ”The adjusted analogy-based software effort estimation
based on similarity distances.” Journal of Systems and Software 80(4): 628-640.
[34] Huang, S.-J. and N.-H. Chiu (2006). ”Optimization of analogy weights by genetic algorithm for
software effort estimation.” Information and Software Technology 48(11): 1034-1045.
[35] Auer, M. and S. Biffl (2004). Increasing the accuracy and reliability of analogy-based cost
estimation with extensive project feature dimension weighting. Proceedings of the International
Symposium on Empirical Software Engineering, IEEE Computer Society, Washington DC, USA.
[36] Firouziana, Iman, Morteza Zahedia, and Hamid Hassanpoura. ”Real-time Prediction and Syn-
chronization of Business Process Instances using Data and Control Perspective.” Int. J. Nonlinear
Anal. Appl 10, no. 1 (2019): 217-228.
[37] Walkerden, F. and R. Jeffery (1999). ”An empirical study of analogy-based software effort
estimation.” Empirical Software Engineering 4(2): 135-158.
[38] Angelis, L. and I. Stamelos (2000). ”A simulation tool for efficient analogy based cost estimation.”
Empirical Software Engineering 5(1): 35-68.
[39] Khatibi Bardsiri, A., and Seyyed Mohsen Hashemi (2016). ”A differential evolution-based model
to estimate the software services development effort.” Evolution and Process 28(1): 57-77.
[40] Hu, Z., et al. (2014). ”A convergent differential evolution algorithm with hidden adaptation
selection for engineering optimization.” Mathematical Problems in Engineering 2014: 1–18.
[41] Mohanty, B., et al. (2014). ”Controller parameters tuning of differential evolution algorithm
and its application to load frequency control of multi-source power system.” International Journal of
Electrical Power & Energy Systems 54: 77-85.
[42] Storn, R. and K. Price (1997). ”Differential evolution–a simple and efficient heuristic for global
optimization over continuous spaces.” Journal of global optimization 11(4): 341-359.

102 Amid Khatibi Bardsiri

[43] Shepperd, M. and G. Kadoda (2001). ”Comparing Software Prediction Techniques Using Simu-
lation.” IEEE Transactions on Software Engineering, 27(11): 1014-1022.
[44] Mair, C., et al. (2005). An analysis of data sets used to train and validate cost prediction
systems. ACM SIGSOFT Software Engineering Notes, ACM.
[45] ISBSG (2011). International Software Benchmarking standard Group.
[46] Desharnais, J.-M. (1989). ”Analyse statistique de la productivitie des projets informatique a
partie de la technique des point des fonction.” University of Montreal.
[47] Li, Y.-F., et al. (2009b). ”A study of project selection and feature weighting for analogy based
software cost estimation.” Journal of Systems and Software 82(2): 241-252.
[48] Jodpimai, P., et al. (2010). Estimating software effort with minimum features using neural
functional approximation. Computational Science and Its Applications (ICCSA), 2010 International
Conference on, IEEE.

	 Introduction
	Related works
	 Analogy Based Estimation
	 Similarity Function
	Solution Function
	K Nearest Neighbor

	 Differential evolution
	 The Proposed Model
	 Performance criteria
	 Training Step in the Proposed Model
	 Testing Step in the Proposed Model
	 Datasets description
	ISBSG dataset
	Dasharnais dataset

	 Experimental results
	 ISBSG Dataset
	 Desharnais Dataset

	 Threats to the validity
	 Discussion
	Conclusion

