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Abstract

This paper is concerned with the conjugate gradient method for solving an operator equation on
Hilbert spaces by using frames of subspaces. We design an algorithm, based on the bounds of a
frame of subspaces and conjugate gradient method, and investigate its convergence and optimality.
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1. Introduction and preliminaries

The area of conjugate direction algorithms has been one of great creativity in the non linear
programming field. Hereof the conjugate gradient method is the conjugate direction method that
is obtained by selecting the successive direction vectors as a conjugate version of the successive
gradients obtained as the method progresses. This method is extremely effective in dealing with
general objective functions is consider among the best general purpose methods. On the other hand
the potential of frames in numerical analysis is an almost unexplored field. On the one hand the
redundancy of a frame can give the freedom to implemented further properties, which would be
mutually exclusive in the Riesz bases case, e.g. both high smoothness and small support. On the
other hand, since one is working with a weaker concept, the concrete construction of a frame is
usually much simpler where compared to stable multiscale bases. Consequently, there is some hope
that the frame approach might simplify the geometrical construction on bounded domains. To handle
this emerging applications of frames, new methods have to be developed. One starting points is to
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first build frames ”locally” and then piece them together to obtain frames for the whole space. One
advantage of this idea is that it would facilitate the construction of frames for special applications,
since we can first construct frames or choose already known frames for smaller spaces. And on a
second step one could construct a frame for the whole space from them. This arise the concept of
the frame of subspaces.

In this paper we will use frames of subspaces to get some approximated solutions for the operator
equation

Lu = f, (1.1)

where L : H → H is a bounded, invertible and self adjoint linear operator on a separable Hilbert
space H. A natural approach to constructing an approximate solution is to solve a finite dimensional
analog of the problem (1.1). In [8, 1] you can see the development of numerical methods for solving
the problem by using frames.
First we will briefly recall the definitions and basic properties of frames and frames of subspaces. For
more information we refer to the survey articles by Cassaza and Gitta Kutyniok [5] and the book by
Christensen [7]. Throughout this paper H shall always denote an arbitrary separable Hilbert space.
Furthermore all subspaces are assumed to be closed. Moreover, Λ denotes a countable indexing set
and I denotes the identity operator. Also if W is a subspace of a Hilbert space H, we let πW denote
the orthogonal projection of H onto W .

Assume that H is a separable Hilbert space, Λ is a countable set of indices and Ψ = (ψλ)λ∈Λ ⊂ H
is a frame for H. This means that there exist constants 0 < AΨ ≤ BΨ <∞ such that

AΨ∥f∥2H ≤
∑
λ∈Λ

|⟨f, ψλ⟩|2 ≤ BΨ∥f∥2H , ∀f ∈ H. (1.2)

For a frame Ψ, the operator S : H → H defined by

S(f) =
∑
λ∈Λ

⟨f, ψλ⟩ψλ,

is called the frame operator. It was shown in [7], for the frame (ψλ)λ∈Λ, S is a positive invertible
operator satisfying AΨIH ≤ S ≤ BΨIH and B−1

Ψ IH ≤ S−1 ≤ A−1
Ψ IH . Also, the sequence

Ψ̃ = (ψ̃λ)λ∈Λ = (S−1ψλ)λ∈Λ,

is a frame (called the canonical dual frame) for H with bounds B−1
Ψ , A−1

Ψ . Every f ∈ H has the
expansion

f =
∑
λ∈Λ

⟨f, ψλ⟩ψ̃λ =
∑
λ∈Λ

⟨f, ψ̃λ⟩ψλ.

For an index set Λ̃ ⊂ Λ, (ψλ)λ∈Λ̃ is called a frame sequence if it is a frame for its closed span.
Now let H be a separable Hilbert space and Λ be a countable indexing set. For a family of weights

{vλ}λ∈Λ, i.e, vλ > 0 for all λ ∈ Λ, a family of subspaces {Hλ}λ∈Λ of a Hilbert space H is called a
frame of subspaces with respect to {vλ}λ∈Λ for H, if there exist constants 0 < A ≤ B <∞ such that

A∥f∥2 ≤
∑
λ∈Λ

v2λ∥πHλ
(f)∥2 ≤ B∥f∥2 ∀f ∈ H, (1.3)

where πHλ
denotes the orthogonal projection onto the subspace Hλ.

The constants A and B is called the frame bounds of the frame of subspaces. If A = B then the
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frame {Hλ}λ∈Λ with respect to{vλ}λ∈Λ, is called a A -tight frame of subspaces. It is proved that [5],
the family {Hλ}λ∈Λ of the frame of subspaces is complete, in the sense that spanλ∈Λ{Hλ} = H.
The following theorem [5], shows that how we able to string together frames for each of the subspaces
Hλ to get a frame for H.

Theorem 1.1. Let Λ be an index set, vλ > 0 for each λ ∈ Λ, and {ψλi
}i∈IΛ be a frame sequence

in H with frame bounds Aλ and Bλ. Define Hλ = spani∈IΛ{ψλi} for all λ ∈ Λ, and suppose that
0 < A = infλ∈ΛAλ ≤ B = supλ∈ΛBλ < ∞. Then {vλψiλ}λ∈Λ,i∈IΛ is a frame for H if and only if
{Hλ}λ∈Λ is a frame of subspaces with respect to {vλ}λ∈Λ for H.

As in the well know frame situation, the frame operator SH,v for {Hλ}λ∈Λ and {vλ}λ∈Λ is defined by

SH,v(f) =
∑
λ∈Λ

v2πHλ
(f).

The frame operator SH,v for {Hλ}λ∈Λ and {vλ}λ∈Λ is a operator, self-adjoint, invertible on H with
AI ≤ SH,v ≤ BI, where A and B are the bounded of the frame of subspaces. Further, the following
reconstruction formula satisfies:

f =
∑
λ∈Λ

v2λS
−1
H,vπHλ

(f) ∀f ∈ H.

It is proved that {S−1
H,vHλ}λ∈Λ is a frame of subspaces with respect to {vλ}λ∈Λ.

2. Some basic facts

The most straight forward approach to an iterative solution of a linear system is to rewrite the
equation (1.1) as a linear fixed-point iteration. One way to do this is the Richardson iteration. The
abstract method reads as follows:
write Lu = f as

u = (I − L)u+ f.

For given u0 ∈ H, define for k ≥ 0,

uk+1 = (I − L)uk + f. (2.1)

Since Lu− f = 0,

uk+1 − u = (I − L)uk + f − u− (f − Lu)

= (I − L)uk − u+ Lu

= (I − L)(uk − u).

Hence
∥uk+1 − u∥H ≤ ∥I − L∥H→H∥uk − u∥H ,

so that (2.1) converges if
∥I − L∥H→H < 1.

It is sometimes possible to precondition (1.1) by multiplying both sides by a matrix B,

BLu = Bf,

such that convergence of iterative methods is improved. This is very effective technique for solving
differential equations, integral equations, and related problems [2, 3]. The following proposition is
useful to use frames of subspaces in Richardson iterative method.
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Proposition 2.1. Let {Hλ}λ∈Λ be a frame of subspaces with respect to {vλ}λ∈Λ, and let L : H → H
be a bounded invertible operator on H. Then {L(Hλ)}λ∈Λ is a frame of subspaces with respect to
{vλ}λ∈Λ.

Proof . See [5]. □
In this case if u is the solution of equation (1.1) and S

′
is the frame operator of the frame of

subspaces {LHλ} then

u =
∑
λ∈Λ

v2λS
′−1
H,vπLHλ

u.

Now since L is invertible then πLHλ
= LπHλ

L−1. Therefore

u =
∑
λ∈Λ

v2λS
′−1
H,vLπHλ

L−1u =
∑
λ∈Λ

v2λS
′−1
H,vLπHλ

(L−1)2f.

Since H is a separable Hilbert space (infinite dimension), it is difficult to obtain L−1 and S ′−1.
Our goal is to find a sequence ui of approximated solutions, related to a frame of subspaces, such
that converges to the solution u of the equation (1.1). Let {Hλ}λ∈Λ be a frame of subspaces with
respect to {vλ}λ∈Λ for a separable Hilbert space H with the frame operator SH,v. By Proposition 2.1,
{L(Hλ)}λ∈Λ also is a frame of subspaces with respect to {vλ}λ∈Λ. We denote the frame operator for
{L(Hλ)}λ∈Λ and {vλ}λ∈Λ, by S ′

H,v. Also since L is bounded invertible then there exist two positive
constants c1 and c2 such that

c1∥u∥H ≤ ∥Lu∥H ≤ c2∥u∥H , ∀u ∈ H. (2.2)

Theorem 2.2. Let {Hλ}λ∈Λ be a frame of subspaces with respect to {vλ}λ∈Λ for H and let L be
bounded, invertible and self adjoint operator in H. If S ′

H,v is the frame operator for the frame of
subspaces {L(Hλ)}λ∈Λ with respect to {vλ}λ∈Λ with bounds A,B, and c1, c2 as in (2.2). Then

∥I − 2

c21A+ c22B
LS ′

H,vL∥ ≤ c22B − c21A

c21A+ c22B
. (2.3)

Proof . for every v ∈ H we have

⟨(I − 2

c21A+ c22B
LS ′

H,vL)v, v⟩ = ∥v∥2H − 2

c21A+ c22B
⟨S ′

H,vLv, Lv⟩

= ∥v∥2H − 2

c21A+ c22B
⟨
∑
λ∈Λ

v2λπLHλ
(Lv), Lv⟩

= ∥v∥2H − 2

c21A+ c22B

∑
λ∈Λ

v2λ∥πLHλ
(Lv)∥2H

≤ ∥v∥2H − 2A

c21A+ c22B
∥Lv∥2H

≤ ∥v∥2H − 2A

c21A+ c22B
c21∥v∥2H

= (
c22B − c21A

c21A+ c22B
)∥v∥2H ,



Application of frames of subspaces in conjugate gradient method for solving operator
equations11 (2020) No.2 , 209-217 213

where in the first inequality we used the property of the lower bound of the frame of subspaces and
in the second inequality we used the property of c1 in (2.2). Similarly we have

−(
c22B − c21A

c21A+ c22B
)∥v∥2H ≤ ⟨(I − 2

c21A+ c22B
LS ′

H,vL)v, v⟩.

Therefore

∥I − 2

c21A+ c22B
LS ′

H,vL∥ ≤ c22B − c21A

c21A+ c22B
.

□

3. Conjugate gradient method based on the upper and lower bounds of a frame of
subspaces

We define LS ′L-norm as

∥f∥LS′L = ⟨f, LS ′Lf⟩
1
2 = ∥(LS ′L)

1
2f∥, ∀f ∈ H.

In fact the corresponding inner product is ⟨f, g⟩LS′L = ⟨f, LS ′Lg⟩, ∀f, g ∈ H. Since LS ′L is positive
and invertible, this is indeed a new norm in H. First of all we note that if {Hλ}λ∈Λ be a frame of
subspaces and A,B are the frame bounds of the frame of subspaces {LHλ}λ∈Λ with frame operator
S ′, that is AI ≤ S ′ ≤ BI, and u be the solution of the equation (1.1), then

∥u∥2LS′L = ⟨u, LS ′Lu⟩ = ⟨Lu, S ′Lu⟩ = ⟨f, S ′f⟩,

therefore √
A∥f∥ ≤ ∥u∥LS′L ≤

√
B∥f∥. (3.1)

Now let Vn be the subspace generated by the vectors (LS ′L)ju, j = 1, . . . , n,

Vn = span{(LS ′L)ju, j = 1, . . . , n},

and let P−1 = 0, P0 = βLS ′f , where β = 2
c21A+c22B

, and for k ≥ 0,

Pk+1 = LS ′LPk −
⟨LS ′LPk, LS

′LPk⟩
⟨Pk, LS ′LPk⟩

Pk −
⟨LS ′LPk, LS

′LPk−1⟩
⟨Pk−1, LS ′LPk−1⟩

Pk−1.

In this case the following lemma holds.

Lemma 3.1. {P0, P1, . . . , Pn−1} is an orthogonal basis for Vn with respect to the inner product
⟨f, g⟩Ls′L = ⟨f, Ls′Lg⟩.

Proof . First we note that {P0, P1, . . . , Pn−1} ⊆ Vn. We verify this by induction. Clearly it is true
for n = 1. Assuming that it is true for all k ≤ n, then for k = n+1, by the definition of Pn, we have

Pn = LS ′LPn−1 −
⟨LS ′LPn−1, Ls

′LPn−1⟩
⟨Pn−1, LS ′LPn−1⟩

Pn−1 −
⟨LS ′LPn−1, LS

′LPn−2⟩
⟨Pn−2, LS ′LPn−2⟩

Pn−2

∈ LS′L(Vn) + Vn ⊆ Vn+1,
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as we desired.
Then we only have to show {P0, P1, . . . , Pn−1} is an orthogonal set. It is clear for n = 1. For n = 2
we have,

⟨P0, P1⟩Ls′L = ⟨Ls′LP0, P1⟩

= ⟨LS ′LP0, LS
′LP0 −

⟨LS ′LP0, LS
′LP0⟩

⟨P0, LS ′LP0⟩
P0⟩

= ⟨LS ′LP0, LS
′LP0⟩ −

⟨LS ′LP0, LS
′LP0⟩

⟨P0, Ls′LP0⟩
⟨LS ′LP0, P0⟩ = 0.

Now, arguing by induction, assume that we know already that ⟨Pn, LS
′LPj⟩ = 0 for j = 0, 1, . . . , n−1

and then {P0, P1, . . . , Pn} is an LS ′L-orthogonal basis for Vn+1.We have to show that ⟨Pn+1, LS
′LPj⟩ =

0 for j = 0, 1, . . . , n.
For j = n,

⟨Pn+1, LS
′LPn⟩ = ⟨LS ′LPn −

⟨LS ′LPn, LS
′LPn⟩

⟨Pn, LS ′LPn⟩
Pn

− ⟨LS ′LPn, LS
′LPn−1⟩

⟨Pn−1, LS ′LPn−1⟩
Pn−1, LS

′LPn⟩

= ⟨LS ′LPn, LS
′LPn⟩ − ⟨LS ′LPn, LS

′LPn⟩

− ⟨LS ′LPn, LS
′LPn−1⟩

⟨Pn−1, LS ′LPn−1⟩
⟨Pn−1, LS

′LPn⟩ = 0.

Similarity this argument also holds for j = n− 1.
For j < n − 1 we observe that LS ′LPj ∈ LS ′LVn−1 ⊆ Vn and by induction hypothesis LS ′LPj =∑n−1

i=1 ciPi.
Now because of orthogonality of Pj for j ≤ n (induction hypothesis) and ⟨Pn+1, Pn⟩ = ⟨Pn+1, Pn−1⟩ =
0, then

⟨Pn+1, LS
′LPj⟩ = ⟨LS ′LPn −

⟨LS ′LPn, LS
′LPn⟩

⟨Pn, LS ′LPn⟩
Pn

− ⟨LS ′LPn, LS
′LPn−1⟩

⟨Pn−1, LS ′LPn−1⟩
Pn−1, LS

′LPj⟩

= ⟨LS ′LPn, LS
′LPj⟩ = ⟨LS ′LPn,

n−1∑
i=1

ciPi⟩ = 0.

□
Now, we can design the following algorithm based on the conjugate gradient method and using

frame of subspaces in order to give an approximated solution to the equation(1.1). Let {Hλ}λ∈Λ be
a frame of subspaces and S ′ be the frame operator of the frame of subspaces {LHλ}λ∈Λ with lower

and upper bounds A,B respectively. Also let c1, c2 be as in the equation (2.2) and let σ = c2
√
B−c1

√
A

c2
√
B+c1

√
A
.

Algorithm[A,B, c1, c2, ϵ] → uϵ
(i)Put h0 = 0, P−1 = 0, n = 0, r0 = LS ′f, P0 = βLS ′f
(ii) While 2σn

1+σ2n

√
B∥f∥ > ϵ

(1) n := n+ 1
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(2) λn−1 =
⟨rn−1,Pn−1⟩

⟨Pn−1,LS′LPn−1⟩

(3) hn = hn−1 + λn−1Pn−1

(4) Pn = LS ′LPn−1 − ⟨LS′LPn−1,LS′LPn−1⟩
⟨Pn−1,LS′LPn−1⟩ Pn−1 − ⟨LS′LPn−1,LS′LPn−2⟩

⟨Pn−2,LS′LPn−2⟩ Pn−2

(5) rn = rn−1 − λn−1LS
′LPn−1

(iii) uϵ := hn.

Theorem 3.2. The approximated solution hn in the Algorithm[A,B, c1, c2, ϵ] is the orthogonal pro-
jection of the solution u of the problem (1.1) onto Vn, with respect to the LS′L−inner product. That
is

∥u− hn∥LS′L ≤ ∥u− g∥LS′L, ∀g ∈ Vn.

Proof . Since hn =
∑n−1

k=0 λkPk ∈ Vn, then it is enough to show that ⟨u−hn, hn⟩LS′L = 0. By Lemma
3.1 we have

⟨hj, Pj⟩LS′L = ⟨
j−1∑
k=0

λkPk, Pj⟩LS′L = 0. (3.2)

Rewriting rj as

rj = rj−1 − λj−1LS
′LPj−1 = · · · = r0 −

j−1∑
k=0

λkLS
′LPk

= r0 − LS ′L(

j−1∑
k=0

λkPk) = r0 − LS ′Lhj = LS ′f − LS ′Lhj

= LS ′Lu− LS ′Lhj = LS ′L(u− hj), (3.3)

we obtain

λj =
⟨rj, Pj⟩

⟨Pj, LS ′LPj⟩
=

⟨LS ′L(u− hj), Pj⟩
⟨Pj, Pj⟩LS′L

,

and by using (3.2) and (3.3) we conclude

⟨u− hn, hn⟩LS′L = ⟨u−
n−1∑
j=0

λjPj,

n−1∑
j=0

λjPj⟩LS′L

=
n−1∑
j=0

λj⟨u, Pj⟩LS′L −
n−1∑
j=0

λjλj⟨Pj, Pj⟩LS′L

=
n−1∑
j=0

λj(⟨u, Pj⟩LS′L − λj⟨Pj, Pj⟩LS′L)

=
n−1∑
j=0

λj(⟨u, Pj⟩LS′L − ⟨LS ′L(u− hj), Pj⟩
⟨Pj, Pj⟩LS′L

⟨Pj, Pj⟩LS′L)

=
n−1∑
j=0

λj⟨LS ′Lu− LS ′L(u− hj), Pj⟩ =
n−1∑
j=0

λj⟨LS ′Lhj, Pj⟩ = 0.
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□
By definition of Vn we observe that

hn = qn−1(LS
′L)βLS ′Lu,

where qn−1(x) is a polynomial of degree n− 1. Therefore

u− hn = (I − qn−1(LS
′L)βLS ′L)u = ϕn(I − βLS ′L)u,

where ϕn(x) = 1− (1− x)qn−1(
1−x
β
) is a polynomial of degree n and ϕn(1) = 1.

For the error estimate we have

∥u− hn∥LS′L = ∥ϕn(I − βLS ′L)u∥LS′L

= ∥(LS ′L)
1
2ϕn(I − βLS ′L)(LS ′L)−

1
2 (LS ′L)

1
2u∥

≤ ∥(LS ′L)
1
2ϕn(I − βLS ′L)(LS ′L)−

1
2∥∥(LS ′L)

1
2u∥

= ∥ϕn(I − βLS ′L)∥∥u∥LS′L

≤ max
|x|≤α0

|ϕn(x)|∥u∥LS′L.

So
∥u− hn∥LS′L ≤ max

|x|≤α0

|ϕn(x)|∥u∥LS′L, (3.4)

where α0 =
c22B−c21A

c22B+c21A
.

The aim is to minimize this error. Therefore we try to find

min
ϕn(x)

max
|x|≤α0

|ϕn(x)|, (3.5)

where min is considered on all polynomials of degrees less than or equal n such that ϕn(1) = 1. This
is done by Chebyshev polynomials, satisfying the recurrence relation

C0(x) = 1, C1(x) = x, Cn(x) = 2xCn−1(x)− Cn−2(x), ∀n ≥ 2. (3.6)

In fact

Cn(x) =

{
cos(n cos−1(x)), |x| ≤ 1

cosh(cosh−1(x)) = 1
2
((x+

√
x2 − 1)n + (x+

√
x2 − 1)−n), |x| ≥ 1.

For more details see [6].
In this case, the following lemma holds [6].

Lemma 3.3. Given a < b < 1 set

Pn(x) =
Cn(

2x−a−b
b−a

)

Cn(
2−a−b
b−a

)
.

Then
max
a≤x≤b

|Pn(x)| ≤ max
a≤x≤b

|ϕn(x)|,

for all ϕn(x) of degree less than or equal n, satisfying ϕn(1) = 1.
Furthermore

maxa≤x≤b|Pn(x)| =
1

Cn(
2−a−b
b−a

)
.
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Theorem 3.4. The approximated solution hn in the Algorithm[A,B, c1, c2, ϵ] satisfies

∥u− hn∥LS′L ≤ 2σn

1 + σ2n

√
B∥f∥.

Proof . Based on the above argument, by setting a = −α0 and b = α0 in Lemma 3.3, the polynomial

Pn(x) =
Cn(

2x+α0−α0

α0+α0
)

Cn(
2+α0−α0

α0+α0
)
=
Cn(

x
α0
)

Cn(
1
α0
)
. (3.7)

Solves (3.5) and minimize the error ∥u− hn∥LS′L in (3.4). Also the maximum is

1

Cn(
2+α0−α0

α0+α0
)
= Cn(

1

α0

) = Cn(
c22B + c21A

c22B − c21A
)

=
1

2
((
c22B + c21A

c22B − c21A
+

√
(c22B + c21A)

2

(c22B − c21A)
2
− 1)n +

1

(
c22B+c21A

c22B−c21A
+
√

(c22B+c21A)2

(c22B−c21A)2
− 1)n

)

=
1

2
((
c22B + c21A

c22B − c21A
+

√
4(c22B)(c21A)

(c22B − c21A)
2
)n +

1

(
c22B+c21A

c22B−c21A
+
√

4(c22B)(c21A)

(c22B−c21A)2
)n
)

=
1

2
((
(
√
c22B +

√
c21A)

2

c22B − c21A
)n +

1

(
(
√

c22B+
√

c21A)2

c22B−c21A
)n
)

=
1

2
((
c2
√
B + c1

√
A

c2
√
B − c1

√
A
)n +

1

( c2
√
B+c1

√
A

c2
√
B−c1

√
A
)n
)

=
1

2
(
1

σn
+ σn) =

1 + σ2n

2σn
.

Finally, by the inequalities (3.4) and (3.1) we obtain

∥u− hn∥LS′L ≤ 1

Cn(
1
α0
)
∥u∥LS′L = (Cn(

1

α0

))−1∥u∥LS′L

=
2σn

1 + σ2n
∥u∥LS′L ≤ 2σn

1 + σ2n

√
B∥f∥,

as we desired. □
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