q-Analogue of Liu-Srivastava operator on meromorphic functions based on subordination

M. H. Golmohamadia, Sh. Najafzadeh ${ }^{\text {a,* }}$, M. R. Foroutan ${ }^{\text {a }}$
${ }^{2}$ Department of Mathematics, Payame Noor University, P.O.Box 19395-3697, Tehran, Iran.

(Communicated by Madjid Eshaghi Gordji)

Abstract

In this paper, the authors investigate a new subclass of meromorphic functions associated with q Analogue of Liu-Srivastava operator and differential subordination. Some properties in the form of coefficient inequality, Integral representation, Radii of starlikeness and convexity, and partial sum concept are introduced.

Keywords: Meromorphic function, q-Analogue of Liu-Srivastava operator, Coefficient bounds, Radii properties, Partial sum, Neighborhoods, Hadamard product.
2010 MSC: 30C45; 30C50.

1. Introduction

Studying the theory of analytical functions has been an area of concern for many researchers. A more specific field is the study of inequalities in complex analysis. Literature review indicates lots of studies based on the classes of analytical functions. The q-Analogue of Liu-Srivastava operator and differential subordination a very important aspect in complex function theory study.
The q-analogue of derivative and integral operators were introduced by Jackson [6, 7] along with some applications of q-calculus.Purohit and Raina [[5]], Juma, Abdulhussain and Al-khafaji [8] used fractional q-calculus operator investigating certain classes of functions which are analytic in the open disk. Kanas and Raducanu [9] gave the q-analogue of Ruscheweyh differential operator using the concepts of convolution and then studied some of its properties. More applications of this operator can be seen in the paper [2].

[^0]The theory of q-analogues or q-extensions of classical formulas and functions based on the observation that

$$
\lim _{q \rightarrow 1} \frac{1-q^{\alpha}}{1-q}=\alpha, \quad|q|<1
$$

therefore the number $\frac{1-q^{\alpha}}{1-q}$ is sometimes called the basic number $[\alpha]_{q}$. In this work we derive $q-$ analogue of Liu-Srivastava operator and employ this new differential operator to define an integral operator for meromorphic functions.
Let Σ denote the class of meromorphic functions of the type

$$
\begin{equation*}
f(z)=\frac{1}{z}+\sum_{k=1}^{+\infty} a_{k} z^{k-1} \tag{1.1}
\end{equation*}
$$

which are analytic in the punctured open disk

$$
\mathbb{U}^{*}=\{z \in \mathbb{C}: 0<|z|<1\} .
$$

If $f \in \Sigma$ is given by ($\amalg . . \mathbb{}$) and $g \in \Sigma$ given by

$$
g(z)=\frac{1}{z}+\sum_{k=1}^{+\infty} b_{k} z^{k-1}
$$

then the Hadamard product (or convolution) $f * g$ of f and g is defined by

$$
(f * g)(z)=\frac{1}{z}+\sum_{k=1}^{+\infty} a_{k} b_{k} z^{k-1}=(g * f)(z)
$$

The q-shifted factorial is defined for $w, q \in \mathbb{C}$ as a product of n factors by:

$$
(w, q)_{n}= \begin{cases}1 & , \quad n=0 \tag{1.2}\\ (1-w)(1-w q) \ldots\left(1-w q^{n-1}\right) & , \quad n \in \mathbb{N}=\{1,2, \ldots\}\end{cases}
$$

In view of the relation ($\mathbb{L 2})$, we get

$$
\begin{equation*}
\lim _{q \rightarrow 1^{-}} \frac{\left(q^{w}, q\right)_{n}}{(1-q)^{n}}=(w)_{n} \tag{1.3}
\end{equation*}
$$

where $(w)_{n}=w(w+1) \cdots(w+n-1)$ is the familiar Pochhammer symbol. For complex parameters

$$
\alpha_{i}, \beta_{j}, \quad\left(i=1, \cdots, t, \quad j=1, \cdots, m, \quad \alpha_{i} \in \mathbb{C}, \quad \beta_{j} \in \mathbb{C} \backslash\{0,-1,-2, \cdots\}\right),
$$

the q-hypergeometric function is the q-Analogue of the hypergeometric function and it is introduced as follow:

$$
\begin{align*}
\Psi\left(\alpha_{1}, \ldots, \alpha_{t}, \beta_{1}, \ldots, \beta_{m}, q, z\right) & =\sum_{k=0}^{\infty} \frac{\left(\alpha_{1}, q\right)_{k} \ldots\left(\alpha_{t}, q\right)_{k}}{(q, q)_{k}\left(\beta_{1}, q\right)_{k} \ldots\left(\beta_{m}, q\right)_{k}} \\
& \times\left[(-1)^{k} q^{\binom{k}{2}}\right]^{1+m-t} z^{k} \tag{1.4}
\end{align*}
$$

where $\binom{k}{2}=\frac{k(k-1)}{2}, \quad q \neq 0, \quad t>m+1 \quad\left(t, m \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}\right)$ and $(w, q)_{k}$ is the q-analogue of the Pochhammer symbol $(w)_{k}$ defined in ([2) see [[4$]$.
For $z \in \mathbb{U}=\{z \in \mathbb{C}:|z|<1\},|q|<1$ and $t=m+1$, the q-Analogue of the hypergeometric function defined in ([L.4) takes the from

$$
\begin{equation*}
{ }_{t} \Phi_{m}\left(\alpha_{1}, \ldots, \alpha_{t}, \beta_{1}, \ldots, \beta_{m}, q, z\right)=\sum_{k=0}^{\infty} \frac{\left(\alpha_{1}, q\right)_{k} \ldots\left(\alpha_{t}, q\right)_{k}}{(q, q)_{k}\left(\beta_{1}, q\right)_{k} \ldots\left(\beta_{m}, q\right)_{k}} z^{k} \tag{1.5}
\end{equation*}
$$

which converges absolutely in the open unit disk \mathbb{U}.
Also corresponding to the function defined in ($[. .5)$), consider

$$
\begin{align*}
\frac{1}{z}{ }_{t} \Phi_{m}\left(\alpha_{1}, \ldots, \alpha_{t}, \beta_{1}, \ldots, \beta_{m}, q, z\right) & =\frac{1}{z}+\sum_{k=0}^{\infty} \frac{\left(\alpha_{1}, q\right)_{k+1} \ldots\left(\alpha_{t}, q\right)_{k+1}}{(q, q)_{k+1}\left(\beta_{1}, q\right)_{k+1} \ldots\left(\beta_{m}, q\right)_{k+1}} z^{k} \\
& ={ }_{t} \mathcal{G}_{m}\left(\alpha_{1}, \ldots, \alpha_{t}, \beta_{1}, \ldots, \beta_{m}, q, z\right) \tag{1.6}
\end{align*}
$$

Now we consider the linear operator

$$
\mathcal{L}_{m}^{t}\left(\alpha_{1}, \ldots, \alpha_{t}, \beta_{1}, \ldots, \beta_{m}, q\right): \Sigma \longrightarrow \Sigma
$$

by

$$
\begin{align*}
\mathcal{L}_{m}^{t}\left(\alpha_{1}, \ldots, \alpha_{t}, \beta_{1}, \ldots, \beta_{m}, q\right) f(z) & ={ }_{t} \Phi_{m}\left(\alpha_{1}, \ldots, \alpha_{t}, \beta_{1}, \ldots, \beta_{m}, q, z\right) * f(z) \\
& =\frac{1}{z}+\sum_{k=1}^{+\infty} X_{m}^{t}(k) a_{k} z^{k} \tag{1.7}
\end{align*}
$$

where

$$
\begin{equation*}
X_{m}^{t}(k)=\frac{\left(\alpha_{1}, q\right)_{k+1} \ldots\left(\alpha_{t}, q\right)_{k+1}}{(q, q)_{k+1}\left(\beta_{1}, q\right)_{k+1} \ldots\left(\beta_{m}, q\right)_{k+1}} \tag{1.8}
\end{equation*}
$$

see [3].
For the sake of simplicity we write

$$
\begin{equation*}
\mathcal{L}_{m}^{t}\left(\alpha_{1}, \ldots, \alpha_{t}, \beta_{1}, \ldots, \beta_{m}, q\right) f(z)=\mathcal{L}_{m}^{t}\left[\alpha_{i}, \beta_{j}, q\right] f(z) \tag{1.9}
\end{equation*}
$$

In special case, when

$$
\alpha_{i}=q^{\alpha_{i}}, \beta_{j}=q^{\beta_{j}}, \alpha_{i}>0, \beta_{j}>0 \quad(i=1, \ldots, t, j=1, \ldots, m, t=m+1)
$$

and $q \rightarrow 1$, the operator

$$
\mathcal{L}_{m}^{t}\left[\alpha_{i}, \beta_{j}, q\right] f(z)=\mathcal{H}_{m}^{t}\left[\alpha_{i}\right] f(z)
$$

was introduced by Liu and Srivastara [TIT].
Also for $t=2, m=1, \alpha_{2}=q$ and $q \rightarrow 1$ the operator investigated in [iT]].
Let $f(z)$ and $g(z)$ be analytic in \mathbb{U}^{*}, then we say that $f(z)$ is subordinate to $g(z)$, if there exists an analytic function $w(z)$ with $w(0)=0$ and $|w(z)|<1$, such that $f(z)=g(w(z))$.
We denote this subordination by $f(z) \prec g(z)$.
We denote the subclass $\Sigma_{q}^{\alpha_{t}, \beta_{m}}(A, B, C, \theta)$ of Σ consisting of function $f \in \Sigma$ for which

$$
\begin{equation*}
-\frac{z\left[\mathcal{L}_{m}^{t}\left[\alpha_{i}, \beta_{j}, q\right] f(z)\right]^{\prime \prime}}{\left[\mathcal{L}_{m}^{t}\left[\alpha_{i}, \beta_{j}, q\right] f(z)\right]^{\prime}} \prec 2 \frac{1+A z}{1+B z} \tag{1.10}
\end{equation*}
$$

where

$$
A=B+(C-B)(1-\theta), 0 \leq \theta<1,-1 \leq B<C \leq 1 \text { and }-1 \leq B<A \leq 1
$$

several other classes studied by various authors, for example see [[] , [[12] and [[3].

2. Main Results

In this section, we obtain coefficient bounds and some properties for the class $\Sigma_{q}^{\alpha_{t}, \beta_{m}}(A, B, C, \theta)$.

Theorem 2.1. Let $f(z) \in \sum$, then $f(z) \in \Sigma_{q}^{\alpha_{t}, \beta_{m}}(A, B, C, \theta)$ if and only if

$$
\begin{equation*}
\sum_{k=1}^{+\infty}\left[k^{2}(1+B)+k(B+2(C-B)(1-\theta))\right] X_{m}^{t}(k) a_{k}<2(C-B)(1-\theta) \tag{2.1}
\end{equation*}
$$

where $X_{m}^{t}(k)$ is given in ($\left.\mathbb{L} .8\right)$.
The result is sharp for the function $F(z)$ given by

$$
\begin{equation*}
F(z)=\frac{1}{z}+\frac{2(C-B)(1-\theta)}{\left[k^{2}(1+B)+k(B+2(C-B)(1-\theta))\right] X_{m}^{t}(k)} z^{k}, \quad k=1,2, \ldots, \tag{2.2}
\end{equation*}
$$

and $X_{m}^{t}(k)$ is given in ((L.8).
Proof . Let $f(z) \in \Sigma_{q}^{\alpha_{t}, \beta_{m}}(A, B, C, \theta)$, then the subordination relation ($\left.\mathbb{L}, \underline{M}\right)$ or equivalently

$$
\begin{equation*}
\left|\frac{z\left[\mathcal{L}_{m}^{t}\left[\alpha_{i}, \beta_{j}, q\right] f(z)\right]^{\prime \prime}+2\left[\mathcal{L}_{m}^{t}\left[\alpha_{i}, \beta_{j}, q\right] f(z)\right]^{\prime}}{z B\left[\mathcal{L}_{m}^{t}\left[\alpha_{i}, \beta_{j}, q\right] f(z)\right]^{\prime \prime}+2\left(B+(C-B)(1-\theta)\left[\mathcal{L}_{m}^{t}\left[\alpha_{i}, \beta_{j}, q\right] f(z)\right]^{\prime}\right.}\right|<1 \tag{2.3}
\end{equation*}
$$

holds true , therefore by making use of ((L.8) and ($\mathbb{L} .9)$ we have

$$
\left|\frac{\sum_{k=1}^{+\infty} k^{2} X_{m}^{t}(k) a_{k} z^{k-1}}{-2(C-B)(1-\theta) z^{-2}+\sum_{k=1}^{+\infty} k(B(k-1)+2 A) X_{m}^{t}(t) a_{z} z^{k-1}}\right|<1 .
$$

Since $\Re(z) \leq|z|$ for all z, therefore

$$
\Re\left\{\frac{\sum_{k=1}^{+\infty} k^{2} X_{m}^{t}(k) a_{k} z^{k-1}}{2(C-B)(1-\theta) z^{-2}-\sum_{k=1}^{+\infty} k(B(k-1)+2 A) X_{m}^{t}(t) a_{k} z^{k-1}}\right\}<1
$$

By letting $z \rightarrow \overline{1}$ through real values, we conclude

$$
\sum_{k=1}^{+\infty}\left[k^{2}(1+B)+k(B+2(C-B)(1-\theta))\right] X_{m}^{t}(k) a_{k}<2(C-B)(1-\theta),
$$

where $X_{m}^{t}(k)$ is defined in (L.
Conversely, let ($[. \pi)$ holds true, it we let $z \in \partial \mathbb{U}^{*}$, where $\partial \mathbb{U}^{*}$ denotes the boundary of \mathbb{U}^{*}, then we have

$$
\begin{aligned}
& \left|\frac{z\left[\mathcal{L}_{m}^{t}\left[\alpha_{i}, \beta_{j}, q\right] f(z)\right]^{\prime \prime}+2\left[\mathcal{L}_{m}^{t}\left[\alpha_{i}, \beta_{j}, q\right] f(z)\right]^{\prime}}{z B\left[\mathcal{L}_{m}^{t}\left[\alpha_{i}, \beta_{j}, q\right] f(z)\right]^{\prime \prime}+2\left(B+(C-B)(1-\theta)\left[\mathcal{L}_{m}^{t}\left[\alpha_{i}, \beta_{j}, q\right] f(z)\right]^{\prime}\right.}\right| \\
& \leq \frac{\sum_{k=1}^{+\infty} k^{2} X_{m}^{t}(k)\left|a_{k}\right|}{2(C-B)(1-\theta)-\sum_{k=1}^{+\infty} k(B(k-1)+2 A) X_{m}^{t}(k)\left|a_{k}\right|}<1
\end{aligned}
$$

(by (2. 2)).
Thus by the maximum modulus theorem we conclude $f(z) \in \Sigma_{q}^{\alpha_{t}, \beta_{m}}(A, B, C, \theta)$.

Remark 2.2. Theorem shows that if $f(z) \in \sum_{q}^{\alpha_{t}, \beta_{m}}(A, B, C, \theta)$, then

$$
\begin{equation*}
\left|a_{k}\right| \leq \frac{2(C-B)(1-\theta)}{\left[k^{2}(1+B)+k(B+2(C-B)(1-\theta))\right] X_{m}^{t}(k)}, k=1,2, \ldots, \tag{2.4}
\end{equation*}
$$

where $X_{m}^{t}(k)$ is given in (ㄸ.8).
Now we obtain integral representation for $\mathcal{L}_{m}^{t}\left[\alpha_{i}, \beta_{j}, q\right] f(z)$.
Theorem 2.3. if $f(z) \in \sum_{q}^{\alpha_{t}, \beta_{m}}(A, B, C, \theta)$ then

$$
\begin{equation*}
\mathcal{L}_{m}^{t}\left[\alpha_{i}, \beta_{j}, q\right] f(z)=\int_{0}^{z} \exp \left\{\int_{0}^{z} \frac{2[(B+(C-B)(1-\theta)) \mathcal{M}(\nu)-1]}{\nu(1-B \mathcal{M}(\nu))} d \nu\right\} d \omega \tag{2.5}
\end{equation*}
$$

where $|\mathcal{M}(z)|<1$.
Proof . since $f(z) \in \sum_{q}^{\alpha_{t}, \beta_{m}}(A, B, C, \theta)$, so (2.T) holds true or equivalently we have

$$
|\mathcal{M}(z)|=\left|\frac{z\left[\mathcal{L}_{m}^{t}\left[\alpha_{i}, \beta_{j}, q\right] f(z)\right]^{\prime \prime}+2\left[\mathcal{L}_{m}^{t}\left[\alpha_{i}, \beta_{j}, q\right] f(z)\right]^{\prime}}{z B\left[\mathcal{L}_{m}^{t}\left[\alpha_{i}, \beta_{j}, q\right] f(z)\right]^{\prime \prime}+2(B+(C-B)(1-\theta))\left[\mathcal{L}_{m}^{t}\left[\alpha_{i}, \beta_{j}, q\right] f(z)\right]^{\prime}}\right|<1 .
$$

Hence

$$
\frac{\left[\mathcal{L}_{m}^{t}\left[\alpha_{i}, \beta_{j}, q\right] f(z)\right]^{\prime \prime}}{\left[\mathcal{L}_{m}^{t}\left[\alpha_{i}, \beta_{j}, q\right] f(z)\right]^{\prime}}=\frac{2[(B+(C-B)(1-\theta)) \mathcal{M}(\nu)-1]}{z(1-B \mathcal{M}(\nu))}
$$

where $|\mathcal{M}(z)|<1, \quad z \in \mathbb{U}^{*}$.
After integration we get the required result.

3. Radii and partial sum properties

In the last section we introduce Radii of starlikeness and convexity. Also partial sum property is considered.

Theorem 3.1. if $f(z) \in \Sigma_{q}^{\alpha_{t}, \beta_{m}}(A, B, C, \theta)$ then,
(i) f is meromorphically univalent starlike of order $\lambda(0 \leq \lambda<1)$ in disk $|z|<R_{1}$, where

$$
\begin{equation*}
R_{1}=\inf _{k}\left\{\frac{(1-\lambda)\left[k^{2}(1+B)+k(B+2(C-B)(1-\theta))\right] X_{m}^{t}(k)}{2(C-B)(1-\theta)(k+2-\lambda)}\right\}^{\frac{1}{k+1}} \tag{3.1}
\end{equation*}
$$

and $X_{m}^{t}(k)$ is given in (‥区).
(ii) f is meromerphically univalent convex of order $\lambda(0 \leq \lambda<1)$ in disk $|z|<R_{2}$ where

$$
\begin{equation*}
R_{2}=\inf _{k}\left\{\frac{(1-\lambda)\left[k^{2}(1+B)+k(B+2(C-B)(1-\theta))\right] X_{m}^{t}(k)}{2 k(C-B)(1-\theta)(k+2-\lambda)}\right\}^{\frac{1}{k+1}} \tag{3.2}
\end{equation*}
$$

$X_{m}^{t}(k)$ is given in (\mathbb{L}. $)$.
Proof . (i) For starlikeness it is enough to show that

$$
\left|\frac{z f(z)^{\prime}}{f(z)}+1\right|<1-\lambda
$$

but

$$
\left|\frac{z f(z)^{\prime}}{f(z)}+1\right|=\left|\frac{\sum_{k=1}^{+\infty}(k+1) a_{k} z^{k+1}}{1+\sum_{k=1}^{+\infty} a_{k} z^{k+1}}\right| \leq \frac{\sum_{k=1}^{+\infty}(k+1) a_{k}|z|^{k+1}}{1-\sum_{k=1}^{+\infty} a_{k}|z|^{k+1}} \leq 1-\lambda,
$$

or

$$
\sum_{k=1}^{+\infty} \frac{k+2-\lambda}{1-\lambda} a_{k}|z|^{k+1} \leq 1
$$

By using ([2.4), we obtain

$$
\begin{aligned}
& \sum_{k=1}^{+\infty} \frac{k+2-\lambda}{1-\lambda} a_{k}|z|^{k+1} \\
& \leq \sum_{k=1}^{+\infty} \frac{2(C-B)(1-\theta)(k+2-\lambda)}{(1-\lambda)\left[k^{2}(1+B)+k(B+2(C-B)(1-\theta))\right] X_{m}^{t}(k)}|z|^{k+1} \\
& \leq 1
\end{aligned}
$$

So, it is enough to suppose

$$
|z|^{k+1} \leq \frac{(1-\lambda)\left[k^{2}(1+B)+k(B+2(C-B)(1-\theta))\right] X_{m}^{t}(k)}{2(C-B)(1-\theta)(k+2-\lambda)}
$$

(ii) For convexity by using the fact that " f is convex if and only if $z f^{\prime}$ is starlike" and by an easy calculation we conclude the required result.

Theorem 3.2. Let $f(z) \in \sum$, and define

$$
\begin{equation*}
S_{1}(z)=\frac{1}{z}, \quad S_{m}(z)=\frac{1}{z}+\sum_{k=1}^{m-1} a_{k} z^{k}, \quad(m=2,3, \ldots) . \tag{3.3}
\end{equation*}
$$

Also suppose $\sum_{k=1}^{+\infty} d_{k} a_{k} \leq 1$, where

$$
d_{k}=\frac{\left[k^{2}(1+B)+k(B+2(C-B)(1-\theta))\right] X_{m}^{t}(k)}{2(C-B)(1-\theta)},
$$

then

$$
\begin{equation*}
\Re\left\{\frac{f(z)}{S_{m}(z)}\right\}>1-\frac{1}{d_{m}}, \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\Re\left\{\frac{S_{m}(z)}{f(z)}\right\}>\frac{d_{m}}{1+d_{m}} \tag{3.5}
\end{equation*}
$$

Proof . Since $\sum_{k=1}^{+\infty} d_{k} a_{k} \leq 1$, they by Theorem [2.], $f(z) \in \sum_{q}^{\alpha_{t}, \beta_{m}}(A, B, C, \theta)$.
Also by $k \geq 1$, we conclude and $\left\{d_{k}\right\}$ is an increasing sequence, therefore we obtain

$$
\begin{equation*}
\sum_{k=1}^{m-1} a_{k}+d_{m} \sum_{k=m}^{+\infty} a_{k} \leq 1 \tag{3.6}
\end{equation*}
$$

Now by putting

$$
V(z)=d_{m}\left[\frac{f(z)}{S_{m}(z)}-\left(1-\frac{1}{x_{m}}\right)\right],
$$

and making use of (3.61) we obtain

$$
\begin{aligned}
\Re\left\{\frac{V(z)-1}{V(z)+1}\right\} \leq\left|\frac{V(z)-1}{V(z)+1}\right| & =\left|\frac{d_{m} f(z)-d_{m} S_{m}(z)}{d_{m} f(z)-d_{m} S_{m}(z)+2 S_{m}(z)}\right| \\
& =\left|\frac{d_{m} \sum_{k=m}^{+\infty} a_{k} z^{k}}{d_{m} \sum_{k=m}^{+\infty} a_{k} z^{k}+2\left(\frac{1}{z}+\sum_{k=1}^{m-1} a_{k} z^{k}\right)}\right| \\
& \leq \frac{d_{m} \sum_{k=m}^{+\infty}\left|a_{k}\right|}{2-\sum_{k=1}^{m-1}\left|a_{k}\right|-d_{m} \sum_{k=m}^{+\infty}\left|a_{k}\right|} \leq 1
\end{aligned}
$$

By a simple calculation we conclude $\Re\{V(z)\}>0$, therefore $\Re\left\{\frac{V(z)}{d_{m}}\right\}>0$, or equivalently

$$
\Re\left\{\frac{f(z)}{S_{m}(z)}-\left(1-\frac{1}{d_{m}}\right)\right\}>0
$$

and this gives the first inequality in(3,4).
For the second inequality (3.5), we consider

$$
W(z)=\left(1+d_{m}\right)\left[\frac{S_{m}(z)}{f(z)}-\frac{d_{m}}{1+d_{m}}\right]
$$

and by using (3.6) we have $\left|\frac{W(z)-1}{W(z)+1}\right| \leq 1$, and hence $\Re\{W(z)\}>0$, therefore $\Re\left\{\frac{W(z)}{1+d_{m}}\right\}>0$, or equivalently

$$
\Re\left\{\frac{S_{m}(z)}{f(z)}-\frac{d_{m}}{1+d_{m}}\right\}>0
$$

and this shows the second inequality in (3.5). So the proof is complete.

4. Neighborhoods and Hadamard product

In this section, we start by introducing the δ-neighborhood of a function $f \in \Sigma$, for more detils see [5, 14, [16, [7]. To do this, we assume that $-1 \leq B<A \leq 1,-1 \leq B<C \leq 1$, $A=B+(C-B)(1-\theta), 0 \leq \theta<1$ and $\delta \geq 0$. Define δ-neighborhood of a function $f \in \Sigma$ of the from of (ㄴ..) as:

$$
N_{\delta}(f)=\left\{g(z): g(z)=\frac{1}{z}+\sum_{k=1}^{+\infty} b_{k} z^{k-1} \in \Sigma \text { and } M \leq \delta\right\}
$$

where, for $i=1, \cdots, t, j=1, \cdots, m, \alpha_{i} \in \mathbb{C}, \beta_{j} \in \mathbb{C} \backslash\{0,-1,-2, \cdots\}$, we have

$$
M=\sum_{k=1}^{+\infty} \frac{\left[k^{2}(1+B)+k(|B|+2(C-B)(1-\theta))\right] X_{m}^{t}(k)}{2(C-B)(1-\theta)}\left|a_{k}-b_{k}\right|
$$

and

$$
X_{m}^{t}(k)=\frac{\left(\alpha_{1}, q\right)_{k+1} \cdots\left(\alpha_{t}, q\right)_{k+1}}{(q, q)_{k+1}\left(\beta_{1}, q\right)_{k+1} \cdots\left(\beta_{m}, q\right)_{k+1}} .
$$

Theorem 4.1. Let the function $f(z)$ defined by (때) be in the class $\Sigma_{q}^{\alpha_{t}, \beta_{m}}(A, B, C, \theta)$. If $f(z)$ satisfies the following condition:

$$
\frac{f(z)+\nu z^{-1}}{1+\nu} \in \Sigma_{q}^{\alpha_{t}, \beta_{m}}(A, B, C, \theta) \quad, \quad(\nu \in \mathbb{C},|\nu|<\delta, \delta>0)
$$

then $N_{\delta}(f) \subset \Sigma_{q}^{\alpha_{t}, \beta_{m}}(A, B, C, \theta)$.
Proof . By using (L.3), we obtain $f \in \Sigma_{q}^{\alpha_{t}, \beta_{m}}(A, B, C, \theta)$ if and only if,

$$
\frac{z\left[\mathcal{L}_{m}^{t}\left[\alpha_{i}, \beta_{j}, q\right] f(z)\right]^{\prime \prime}+2\left[\mathcal{L}_{m}^{t}\left[\alpha_{i}, \beta_{j}, q\right] f(z)\right]^{\prime}}{z B\left[\mathcal{L}_{m}^{t}\left[\alpha_{i}, \beta_{j}, q\right] f(z)\right]^{\prime \prime}+2\left(B+(C-B)(1-\theta)\left[\mathcal{L}_{m}^{t}\left[\alpha_{i}, \beta_{j}, q\right] f(z)\right]^{\prime}\right.} \neq 1
$$

which is equivalent to

$$
\begin{equation*}
\frac{(f * Q)(z)}{z^{-1}} \neq 0 \quad, \quad\left(z \in U^{*}\right) \tag{4.1}
\end{equation*}
$$

where

$$
Q(z)=\frac{1}{z}+\sum_{k=1}^{+\infty} e_{k} z^{k-1}, \quad\left(z \in U^{*}\right)
$$

such that

$$
\begin{equation*}
e_{k}=\frac{\left[k^{2}(1+B)+k(B+2(C-B)(1-\theta))\right] X_{m}^{t}(k)}{2(C-B)(1-\theta)} \tag{4.2}
\end{equation*}
$$

It follows from (4.21$)$ that

$$
\begin{aligned}
\left|e_{k}\right| & =\left|\frac{\left[k^{2}(1+B)+k(B+2(C-B)(1-\theta))\right] X_{m}^{t}(k)}{2(C-B)(1-\theta)}\right| \\
& \leq \frac{\left[k^{2}(1+B)+k(|B|+2(C-B)(1-\theta))\right] X_{m}^{t}(k)}{2(C-B)(1-\theta)}
\end{aligned}
$$

Since $\frac{f(z)+\nu z^{-1}}{1+\nu} \in \Sigma_{q}^{\alpha_{t}, \beta_{m}}(A, B, C, \theta)$ by ([.]) , we get

$$
\begin{equation*}
\frac{\left(\frac{f(z)+\nu z^{-1}}{1+\nu} * Q\right)(z)}{z^{-1}} \neq 0 \tag{4.3}
\end{equation*}
$$

Now assume that $\left|\frac{(f * Q)(z)}{z^{-1}}\right|<\delta$. Then, by (4.3), we get

$$
\left|\frac{1}{1+\nu} \frac{(f * Q)(z)}{z^{-1}}+\frac{\nu}{1+\nu}\right| \geq \frac{1}{|1+\nu|}(|\nu|-1)\left|\frac{(f * Q)(z)}{z^{-1}}\right|>\frac{|\nu|-\delta}{|1+\nu|} \geq 0
$$

This is a contradiction with $|\nu|<\delta$. Therefore $\left|\frac{(f * Q)(z)}{z^{-1}}\right| \geq \delta$. Now, if we suppose that $g(z)=$ $\frac{1}{z}+\sum_{k=1}^{+\infty} b_{k} z^{k-1} \in N_{\delta}(f)$ then

$$
\begin{aligned}
& \left|\frac{(f-g)(z) * Q)(z)}{z^{-1}}\right|=\left|\sum_{k=1}^{+\infty}\left(a_{k}-b_{k}\right) e_{k} z^{k-1}\right| \leq \sum_{k=1}^{+\infty}\left|a_{k}-b_{k}\right|\left|e_{k}\right|\left|z^{k-1}\right| \\
& \leq\left|z^{k-1}\right| \times \sum_{k=1}^{+\infty} \frac{\left[k^{2}(1+B)+k(|B|+2(C-B)(1-\theta))\right] X_{m}^{t}(k)}{2(C-B)(1-\theta)}\left|a_{k}-b_{k}\right| \leq \delta
\end{aligned}
$$

Thus, we have

$$
\frac{(g * Q)(z)}{z^{-1}} \neq 0 \quad, \quad\left(z \in U^{*}\right)
$$

which implies that $g \in \Sigma_{q}^{\alpha_{t}, \beta_{m}}(A, B, C, \theta)$. So $N_{\delta}(f) \subset \sum_{q}^{\alpha_{t}, \beta_{m}}(A, B, C, \theta)$.
Theorem 4.2. If $f(z), g(z) \in \Sigma_{q}^{\alpha_{t}, \beta_{m}}(A, B, C, \theta)$ then Hadamard product of f and g defined by

$$
f * g(z)=\frac{1}{z}+\sum_{k=1}^{+\infty} a_{k} b_{k} z^{k-1}
$$

is in the class $\sum_{q}^{\alpha_{t}, \beta_{m}}(A, B, C, \phi)$ such that

$$
\phi \leq 1-\frac{\left[k^{2}(1+B)+k(B+2(C-B)(1-\theta))\right]^{2} X_{m}^{t}(k)}{4 k(C-B)^{2}(1-\theta)}+\frac{k(1+B)+k B}{2(C-B)} .
$$

Proof . Since $f(z), g(z) \in \sum_{q}^{\alpha_{t}, \beta_{m}}(A, B, C, \theta)$, so by Theorem ([.]), we have

$$
\sum_{k=1}^{+\infty}\left[k^{2}(1+B)+k(B+2(C-B)(1-\theta))\right] X_{m}^{t}(k) a_{k}<2(C-B)(1-\theta)
$$

and

$$
\sum_{k=1}^{+\infty}\left[k^{2}(1+B)+k(B+2(C-B)(1-\theta))\right] X_{m}^{t}(k) b_{k}<2(C-B)(1-\theta)
$$

Therefore, we must find the smallest ϕ such that

$$
\sum_{k=1}^{+\infty}\left[k^{2}(1+B)+k(B+2(C-B)(1-\phi))\right] X_{m}^{t}(k) a_{k} b_{k}<2(C-B)(1-\theta)
$$

By using the Cauchy-Schwarts inequality, we have

$$
\begin{equation*}
\sum_{k=1}^{+\infty}\left[k^{2}(1+B)+k(B+2(C-B)(1-\theta))\right] X_{m}^{t}(k) \sqrt{a_{k} b_{k}}<2(C-B)(1-\theta) \tag{4.4}
\end{equation*}
$$

Now, it is enough to show that

$$
\begin{aligned}
& {\left[k^{2}(1+B)+k(B+2(C-B)(1-\phi))\right] X_{m}^{t}(k) a_{k} b_{k}} \\
& \leq\left[k^{2}(1+B)+k(B+2(C-B)(1-\theta))\right] X_{m}^{t}(k) \sqrt{a_{k} b_{k}}
\end{aligned}
$$

which is equivalent to

$$
\begin{equation*}
\sqrt{a_{k} b_{k}} \leq \frac{\left[k^{2}(1+B)+k(B+2(C-B)(1-\theta))\right]}{\left[k^{2}(1+B)+k(B+2(C-B)(1-\phi))\right]} . \tag{4.5}
\end{equation*}
$$

But from equation (4.4), we have

$$
\begin{equation*}
\sqrt{a_{k} b_{k}} \leq \frac{2(C-B)(1-\theta)}{\left[k^{2}(1+B)+k(B+2(C-B)(1-\theta))\right] X_{m}^{t}(k)} . \tag{4.6}
\end{equation*}
$$

In view of equations (4.5) and (4.6), this is equivalent to showing that

$$
\begin{aligned}
& \frac{2(C-B)(1-\theta)}{\left[k^{2}(1+B)+k(B+2(C-B)(1-\theta))\right] X_{m}^{t}(k)} \\
& \leq \frac{\left[k^{2}(1+B)+k(B+2(C-B)(1-\theta))\right]}{\left[k^{2}(1+B)+k(B+2(C-B)(1-\phi))\right]}
\end{aligned}
$$

which yields the following inequality

$$
\begin{aligned}
& 2(C-B)(1-\theta)\left[k^{2}(1+B)+k(B+2(C-B)(1-\phi))\right] \\
& \leq\left[k^{2}(1+B)+k(B+2(C-B)(1-\theta))\right]^{2} X_{m}^{t}(k)
\end{aligned}
$$

Therefore

$$
\phi \leq 1-\frac{\left[k^{2}(1+B)+k(B+2(C-B)(1-\theta))\right]^{2} X_{m}^{t}(k)}{4 k(C-B)^{2}(1-\theta)}+\frac{k(1+B)+k B}{2(C-B)}
$$

This completes the proof of the theorem.

References

[1] H. Aldweby and M. Darus, univalence of a new General integral operator associated with the q-Hypergeometric functions, I. J. Math. Math. sci., (2013), Article ID 769537, 5 pages.
[2] H. Aldweby and M. Darus, Some subordination results on q-analogue of Ruscheweyh differential operator, Abstr. Appl. Anal., 2014(2014), Article ID 958563, 6 pages.
[3] H. Aldweby and M. Darus, Integral operator defined by q-Analogue of Liu- Srivastara operator, stud. Unir. Babes - Bolyai Math. 58(4)(2013), 529-537.
[4] H. Exton, q-Hypergeometric functions and applications, Ellis Horwood Limited, Chichester, (1983).
[5] A. W. Goodman, univalent functions and analytic curves, Proc. Amer. Math. Soc., 8(3)(1975), 598-601.
[6] F. H. Jackson, On q-definite integrals, The Quarterly J. Pure Appl. Math., 41(1910), 193-203.
[7] F. H. Jackson, On q-functions and a certain difference operator, Trans. Royal Soc. Edinburgh, 46(2)(1909), 253-281.
[8] A. R. S. Juma, M. S. Abdulhussain and S. N. Al-khafaji, Certain subclass of p-valent meromorphic Bazilevic function defined by fractional q-calculus operators, Int. J. Nonlinear Anal. Appl., 9(2018), 223-230.
[9] S. Kanas and D. Raducanu, Some class of analytic functions related to conic domains, Math. Slovaca, 64(5)(2014), 1183-1196.
[10] J. L. Liu and H. M. Srivastara, A linear operator and associated families of meromorphically multivalent functions, J. Math. Anal. appl., $259(2)(2001), 566-581$.
[11] J. L. Liu and H. M. Srivastara, meromorphically multivalent functions associated with the generalized hypergeometric functions, Mathematical and Computer Modeling, 39(1)(2004), 21-34.
[12] A. Mohammed and M. Darus, a new Integral operator for meromorphic functions, Acta unirersitatis Apulensis, 24(2010), 231-238.
[13] A. Mohammed and M. Darus, Starlikeness properties of a new Integral operator for meromorphic functions, J. Appl. Math., (2011), Article ID 804150, 8 pages.
[14] S. S. Miller and P. T. Mocanu, Differentail Subordinateions: Theory and Applications. Marcel Dekker, New York, (2000).
[15] S. D. Purohit and R. K. Raina, Certain subclasses of analytic functions associated with fractional q - caluulus operators, Math. Scand., 109(2011), 55-70.
[16] S. Ruscheweyh, Neighborhoods of univalent functions, Proc. Amer. Math. Soc., 81(4)(1981), 521-527.
[17] J. Stankiwicz, Neighorhoods of Meromorphic function and Hadamard products, Ann. Polon. Math., 66(1985), 317-331.

[^0]: *Corresponding author
 Email addresses: m_gol50@yahoo.com (M. H. Golmohamadi), najafzadeh1234@yahoo.ie (Sh. Najafzadeh), foroutan_mohammadreza@yahoo.com (M. R. Foroutan)

