
Int. J. Nonlinear Anal. Appl. 11 (2020) No. 2, 255-284
ISSN: 2008-6822 (electronic)
http://dx.doi.org/10.22075/ijnaa.2019.18915.2041

Character amenability of real Banach algebras

Hamidreza Alihoseinia, Davood Alimohammadib,∗

aDepartment of Mathematics, Faculty of Science, Arak university, Arak 38156-8-8349, Iran.
bDepartment of Mathematics, Faculty of Science, Arak university, Arak 38156-8-8349, Iran.

(Communicated by Madjid Eshaghi Gordji)

Abstract

Let (A, ∥ · ∥) be a real Banach algebra. In this paper we first introduce left and right φ-amenability
of A and discuss the relation between left (right, respectively) φ-amenability and φ-amenability of
A for φ ∈ △(A) ∪ {0} where φ ∈ △(A) is the conjugate of φ. Next we show that A is left (right,
respectively) φ-amenable if and only if AC is left (right, respectively) φC-amenable, where AC is a
suitable complexification of A and φC ∈ △(AC) is the induced character by φ on AC. In continue,
we give a hereditary property for 0-amenability of A. We also study relations between the injectivity
of Banach left A-modules and right φ-amenability of A. Finally, we characterize the left character
amenability of certain real Banach algebras.
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1. Introduction and preliminaries

The symbol F denotes a field that can be R or C. For a Banach space (X, ∥ · ∥) over F, we denote
by X∗ the dual space of X. Let A be an algebra and X be an A-bimodule over F with the left module
action (a, x) 7−→ a · x : A× X −→ X and the right module action (a, x) 7−→ x · a : A× X −→ X. A
linear map D : A −→ X over F is called an X-derivation on A if D(ab) = D(a) · b + a ·D(b) for all
a, b ∈ A. For each x ∈ X, the map dA,X,x : A −→ X defined by dA,X,x(a) = a · x − x · a (a ∈ A), is
an X-derivation on A over F. An X-derivation D on A over F is called inner if D = dA,X,x for some
x ∈ X.
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Let (A, ∥ ·∥) be a Banach algebra over F. An A-bimodule X over F is called a Banach A-bimodule
if X is a Banach space with a norm ∥ · ∥ and there exists a positive constant k such that

∥a · x∥ ≤ k∥a∥∥x∥, ∥x · a∥ ≤ k∥a∥∥x∥,

for all a ∈ A and x ∈ X. Let X be a Banach A-bimodule over F with the module operations
(a, x) 7→ a · x, (a, x) 7→ x · a : A×X −→ X. Then X∗ is a Banach A-module over F with the natural
module operations (λ, a) 7−→ a · λ, (λ, a) 7−→ λ · a : A× X∗ −→ X∗ given by

(a · λ)(x) = λ(x · a), (λ · a)(x) = λ(a · x) (a ∈ A, λ ∈ X∗, x ∈ X),

and with the operator norm ∥ · ∥op. We denote by Z1
F(A,X) the set of all continuous X-derivations on

A over F. It is known that Z1
F(A,X) is a linear subspace of BF(A,X), the linear space of all bounded

linear operators from A to X over F. We denote by N1
F(A,X) the set of all inner X-derivations on

A over F. Clearly, N1
F(A,X) is a linear subspace of Z1

F(A,X) over F. We denote by H1
F(A,X) the

quotient space Z1
F(A,X)/N

1
F(A,X) which is called the first cohomology group of A over F with the

coefficients in X.
A Banach algebra A over F is called amenable if H1

F(A,X
∗) = {0} for all Banach A-bimodule X

over F.
Let A be a Banach algebra over F and let φ : A −→ C be an algebra homomorphism from A to

C over F. We say that φ is a character of A (the zero homomorphism from A to C, respectively)
if φ(a0) ̸= 0 for some a0 ∈ A (φ(a) = 0 for all a ∈ A, respectively). The zero homomorphism from
A to C is denoted by 0. We denote by △(A) the set of all characters of A. It is known that △(A)
is a subset of BF(A,C). If A is a commutative Banach algebra with identity over F, then △(A) is
nonempty. It is not true whenever A is noncommutative. For example H, the set of all quaternion
numbers, is a real noncommutative Banach algebra with identity but △(H) = ∅ (see [16, Page 20]).
Note that it is possible △(A) = ∅ wherever A has not the identity ( see [14, Examples 2.1.6 and
2.1.7]). If A is a real Banach algebra, then φ ∈ △(A) if and only if φ ∈ △(A), where φ : A −→ C is
defined by φ(a) = φ(a) (a ∈ A).

Let A be a Banach algebra over F and φ ∈ △(A) ∪ {0}. We denote by Mr
F(A,φ) (Ml

F(A,φ),
respectively) the collection of all complex Banach space X for which X is a Banach A-bimodule over F
with the right (left, respectively) module action defined by x ·a = φ(a)x (a ·x = φ(a)x, respectively)
for all (a, x) ∈ A× X.

Definition 1.1. Let (B, ∥ · ∥) be a complex Banach algebra and let φ ∈ △(B) ∪ {0}. Then B is
called left (right, respectively) φ-amenable if H1

C(B,X
∗) = {0} for all X ∈ Ml

C(B,φ) (X ∈ Mr
C(B,φ),

respectively).

The concepts of left and right φ-amenability of complex Banach algebras were first introduced by
Hu, Sangani Monfared and Traynor in [11] which is modified by Nasr-Isfahani and Soltani in [19] as
the definition above.

Let (A, ∥ ·∥) be a real Banach algebra and φ ∈ △(A)∪{0}. It is easy to see that if X ∈ Mr
R(A,φ)

satisfying i(a · x) = a · (ix) for all (a, x) ∈ A× X (X ∈ Ml
R(A,φ) satisfying i(x · a) = (ix) · a for all

(a, x) ∈ A×X, respectively), then X∗ ∈ Ml
R(A,φ) and i(f · a) = (if) · a holds for all (f, a) ∈ X∗ ×A

(X∗ ∈ Mr
R(A,φ)and i(a · f) = a · (if) holds for all (a, f) ∈ A × X∗, respectively ), where i =

√
−1.

We now introduce the left and right φ-amenability for real Banach algebras A as the following.

Definition 1.2. Let A be a real Banach algebra and let φ ∈ △(A)∪{0}. We say that A is left (right,
respectively) φ-amenable if H1

R(A,X
∗) = {0} for all X ∈ Ml

R(A,φ) (X ∈ Mr
R(A,φ), respectively)

satisfying
i(x · a) = (ix) · a (i(a · x) = a · (ix), respectively),
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for all (a, x) ∈ A× X.

Definition 1.3. Let A be a Banach algebra over F.

(i) For φ ∈ △(A) ∪ {0}, we say that A is φ-amenable if A is left and right φ-amenable.

(ii) A is called left (right, respectively) character amenable if A is left (right, respectively) φ-
amenable for all φ ∈ △(A) ∪ {0}.

(iii) A is called character amenable if A is left and right character amenable.

Let E be a real linear space (real algebra, respectively). A complex linear space (complex algebra,
respectively) EC is called a complexification of E if there exists an injective real linear mapping (a
real algebra homomorphism, respectively) J : E −→ EC such that EC = J(E)⊕ iJ(E).

If X is a real linear space, then X×X with the additive operation and scalar multiplication defined
by

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2) (x1, x2, y1, y2 ∈ X),

(α + iβ)(x, y) = (αx− βy, αy + βx) (α, β ∈ R, x, y ∈ X), (1.1)

is a complexification of X with respect to the injective linear map J : X −→ X × X defined by
J(x) = (x, 0), x ∈ X.

If A is a real algebra, then A× A with the algebra operations

(a1, b1) + (a2, b2) = (a1 + a2, b1 + b2) (a1, a2, b1, b2 ∈ A), (1.2)

(α + iβ)(a, b) = (αa− βb, αb+ βa) (α, β ∈ R, a, b ∈ A),

(a1, b1)(a2, b2) = (a1a2 − b1b2, a1b2 + b1a2) (a1, b1, a2, b2 ∈ A),

is a complexification of A with the algebra homomorphism J : A −→ A × A defined by J(a) =
(a, 0), a ∈ A.

Let (E, ∥ · ∥) be a real normed linear space (algebra, respectively), EC be a complexification of E
with respect to an injective real linear mapping (algebra homomorphism, respectively) J : E −→ EC
and ∥| · ∥| be a norm (an algebra norm, respectively) on EC. We say that ∥| · ∥| satisfies in the (∗)
condition if there exist positive constants k1 and k2 such that

max{∥a∥, ∥b∥} ≤ k1∥|J(a) + iJ(b)∥| ≤ k2 max{∥a∥, ∥b∥},

for all a, b ∈ E. By [5, Proposition I.1.13], there exists a norm (an algebra norm) ∥| · ∥| on EC
satisfying in the (∗) condition with k1 = 1 and k2 = 2 where EC = E × E and J : E −→ EC is
defined by J(a) = (a, 0), a ∈ E. Note that the (∗) condition implies that (E, ∥ · ∥) is a real Banach
space (a real Banach algebra, respectively) if and only if (EC, ∥| · ∥|) is a complex Banach space (a
complex Banach algebra, respectively).

Let (A, ∥ · ∥) be a real Banach algebra, AC be a complexification of A with respect to an injective
real algebra homomorphism J : A −→ AC and ∥| · ∥| be an algebra norm on AC satisfying in the (∗)
condition. It is known [3, Theorem 2.4] that A is amenable if and only if AC is amenable. In Section
2, we prove that A is left (right, respectively) φ-amenable if and only if A is φ-amenable, whenever
φ ∈ △(A). Moreover, we give a characterization of left and right φ-amenability of A whenever
φ ∈ △(A) with φ = φ. In Section 3, we show that A is right character (right character, character)
amenable if and only if AC is left character (right character, character) amenable, respectively. In
Section 4, we give a characterization of the left (right, respectively) 0-amenability of A. In Section
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5, we show that if φ ∈ △(A) and X is a complex Banach space, then A is left φ-amenable if and
only if the real left Banach A-module X, with the left module action a · x = φ(a)x ((a, x) ∈ A×X),
is injective. In Section 6, for a complex Banach algebra B we assume that BR is B regarded as a
real Banach algebra and show that BR is right character amenable if and only if B is right character
amenable. In Section 7, applying certain known results for left and right character amenability of
complex Banach algebras and some obtained results in Sections 2-6, we give some results for the left
and right character amenability of certain real Banach algebras.

2. φ-amenability and φ-amenability

We first investigate the relation between φ-amenability and φ-amenability for a real Banach
algebra A, where φ ∈ △(A).

Theorem 2.1. Let (A, ∥ · ∥) be a real Banach algebra with △(A) ̸= ∅ and let φ ∈ △(A). Then the
following assertions hold.

(i) A is left φ-amenable if and only if A is left φ-amenable.

(ii) A is right φ-amenable if and only if A is right φ-amenable.

(iii) A is φ-amenable if and only if A is φ-amenable.

Proof . (i) We first assume that A is left φ-amenable. Let X ∈ Ml
R(A,φ) with the norm ∥ · ∥

such that i(x · a) = (ix) · a for all (a, x) ∈ A × X. Let X denote X with the scalar multiplication
(α, x) 7−→ α ∗ x : X× C −→ X defined by

α ∗ x = ᾱx (α ∈ C, x ∈ X).

It is easy to see that X is a complex Banach space with the norm ∥ · ∥ and a real Banach A-bimodule
with the module actions (a, x) 7−→ a⊙ x : A× X −→ X and (a, x) 7−→ x⊙ a : A× X −→ X defined
by

a⊙ x = φ(a) ∗ x = φ(a)x (a ∈ A, x ∈ X),

x⊙ a = x · a (x ∈ X, a ∈ A).

Hence, X ∈ Ml
R(A,φ). Moreover, for each (a, x) ∈ (A× X) we have

i ∗ (x⊙ a) = ī(x⊙ a) = −i(x⊙ a) = −((ix) · a)
= (−ix) · a = (̄ix) · a = (i ∗ x)⊙ a.

It is easy to see that (X)∗ = {f : f ∈ X∗}. Moreover, one can show that

f · a = f ⊙ a, a · f = a⊙ f (a ∈ A, f ∈ X∗). (2.1)

Since A is left φ-amenable, we deduce that

H1
R(A, (X)

∗) = {0}. (2.2)

Assume that d ∈ Z1
R(A,X

∗). Define the map d : A −→ (X)∗ by

d(a) = d(a) (a ∈ A). (2.3)
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It is easy to see that d is a bounded real linear operator from A to (X)∗ and ∥d∥ = ∥d∥. Moreover,
by (2.3) and (2.1) we have

d(ab) = d(ab) = d(a) · b+ a · d(b) = d(a) · b+ a · d(b)
= d(a)⊙ b+ a⊙ d(b) = d(a)⊙ b+ a⊙ d(b),

for all a, b ∈ A. Hence, d ∈ Z1
R(A, (X)

∗) and so, by (2.2), there exists g ∈ (X)∗ such that

d = dA,(X)∗,g. (2.4)

Applying (2.4), for each a ∈ A we get

d(a) = d(a) = dA,(X)∗,g(a) = a⊙ g − g ⊙ a

= a⊙ g − g ⊙ a = a · g − g · a = dA,X∗,g(a).

Hence, d = dA,X∗,g. Therefore, H
1
R(A,X

∗) = {0} and so A is left φ-amenable.
We now assume that A is left φ-amenable. By the necessity part, A is left φ-amenable, that is,

A is left φ-amenable. Hence, (i) holds.
(ii) It follows similar to (i).
(iii) This follows from (i) and (ii). □
We now characterize the φ-amenability of a real Banach algebra A, where φ ∈ △(A) with φ = φ.

Theorem 2.2. Let (A, ∥ · ∥) be a real Banach algebra with △(A) ̸= ∅ and let φ ∈ △(A) with φ = φ.
Then the following assertions are equivalent.

(i) A is left φ-amenable.

(ii) H1
R(A,X

∗) = {0} for each real Banach A-bimodule X with the left module action a · x =
φ(a)x, (a, x) ∈ A× X.

(iii) There is an element m ∈ A∗∗ such that m(φ) = 1 and m(f.a) = φ(a)m(f) for all a ∈ A and
f ∈ A∗.

Proof . (i)⇒(ii) Let (X, ∥ · ∥) be a real Banach A-bimodule with the left module actions defined
by a · x = φ(a)x (x ∈ X, a ∈ A). Set XC = X × X. Then XC is a complex linear space with the
additive and scalar multiplication defined by (1.1). Moreover, XC is a complexification of X with the
injective real linear mapping J : X −→ XC defined by J(x) = (x, 0), It is known that there exists a
norm ∥|·∥| on XC satisfying in the (∗) condition with the positive constant k1 = 1 and k2 = 2. Hence,
(XC, ∥| · ∥|) is a complex Banach space. It is easy to see that XC is a real Banach A-bimodule with
the module actions (a, (x, y)) 7−→ a(x, y) : A×XC −→ XC and (a, (x, y)) 7−→ (x, y)a : A×XC −→ XC
defined by

a(x, y) = (a · x, a · y) (a ∈ A, (x, y) ∈ XC),

(x, y)a = (x · a, y · a) ((x, y) ∈ XC, a ∈ A).

On the other hand, for all (a, (x, y)) ∈ A× XC we have

i((x, y)a) = i(x · a, y · a) = (−(y · a), x · a)
= (−y · a, x · a) = (−y, x)a
= i(x, y)a.
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Since φ is real-valued, for each (a, (x, y)) ∈ A× XC we have

a⊙ (x, y) = (a · x, a · y) = (φ(a)x, φ(a)y) = φ(a)(x, y).

Therefore, XC ∈ Ml
R(A,φ) and so by (i) we have

H1
R(A, (XC)

∗) = {0}. (2.5)

Assume that d ∈ Z1
R(A,X

∗). Define the map D : A −→ (XC)
∗ by

D(a)(x, y) = d(a)(x) + id(a)(y) (a ∈ A, (x, y) ∈ XC).

It is easy to see that D is a real linear mapping from A to (XC)
∗. Let a, b ∈ A, since for each

(x, y) ∈ XC we have

D(ab)(x, y) = d(ab)(x) + id(ab)(y)

= (d(a) · b+ a · d(b))(x) + i(d(a) · b+ a · d(b))(y)
= [d(a)(b · x) + id(a)(b · y)] + [d(b)(x · a) + id(b)(y · a)]
= D(a)(b · x, b · y) +D(b)(x · a, y · a)
= D(a)(b(x, y)) +D(b)((x, y)a)

= (D(a)b)(x, y) + (aD(b))(x, y)

= (D(a)b+ aD(b))(x, y),

we deduce that D(ab) = D(a)b + aD(b). Therefore, D is an (XC)
∗-derivation on A over R. On the

other hand, ∥D(a)∥ ≤ 2∥d∥∥a∥ for all a ∈ A. Hence, D is bounded and ∥D∥ ≤ 2∥d∥. Therefore,
D ∈ Z1

R(A, (XC)
∗) and so, by (2.5), there exists f ∈ (XC)

∗ such that

D = dA,(XC)∗,f . (2.6)

Define the function λ : X −→ R by

λ(x) = Re f(x, 0) (x ∈ X).

Clearly, λ ∈ X∗. Let a ∈ A. Since d(a)(x) ∈ R for all x ∈ X, we have

d(a)(x) = Re d(a)(x) = Re dA,(XC)∗,f (a)(x, 0)

= Re (af(x, 0)− fa(x, 0) = Re (f((x, 0)a)− f(a(x, 0))

= Re (f(x · a, 0)− f(a · x, 0)) = Re f(x · a, 0)− Re f(a · x, 0)
= λ(x · a)− λ(a · x) = a · λ(x)− λ · a(x)
= (a · λ− λ · a)(x) = dA,X∗,λ(a)(x),

for all x ∈ X. Hence, d(a) = dA,X∗,λ(a). Since this equality holds for all a ∈ A, we deduce that
d = dA,X∗,λ. Hence, H

1
R(A,X

∗) = {0} and so (ii) holds.
(ii)⇒(iii) Clearly, A∗ is a real Banach A-bimodule with the module actions defined by

f · a(b) = f(ab) (f ∈ A∗, a, b ∈ A),

a · f(b) = φ(a)f(b) (a ∈ A, f ∈ A∗, b ∈ A).
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Since φ is real-valued, we deduce that φ ∈ A∗. Set M = {rφ : r ∈ R}. Then M is a closed real
subspace of A∗. Let a ∈ A. Then a · φ = φ(a)φ ∈M . Since for each b ∈ A we have

φ · a(b) = φ(ab) = φ(a)φ(b) = (φ(a)φ)(b),

we deduce that φ · a = φ(a)φ and so φ · a ∈ M . Therefore, M is a closed A-submodule of A∗. Set
X = A∗/M . It is easy to see that X is a real Banach A-bimodule with the module actions

a · (f +M) = (a · f) +M (a ∈ A, f ∈ A∗)

(f +M) · a = (f · a) +M (a ∈ A, f ∈ A∗).

Moreover, for each a ∈ A and f ∈ A∗ we have

a · (f +M) = (a · f) +M = φ(a)f +M = φ(a)(f +M). (2.7)

Define the map π : A∗ −→ X by
π(f) = f +M (f ∈ A∗).

Then π is a surjective continuous linear mapping. Moreover, π is module homomorphism. Hence, π∗ :
X∗ −→ A∗∗, the adjoint of π, is a injective linear operator. Moreover, π∗ is module homomorphism.
Since φ ∈ A∗ \ {0}, there exist ν ∈ A∗∗ with ν(φ) = 1. Define the map d : A −→ A∗∗ with
d = dA,A∗∗,ν . We claim that for each a ∈ A there exists a unique Λa ∈ X∗ such that π∗(Λa) = d(a).
Let a ∈ A. Then

d(a)(φ) = (a · ν − ν · a)(φ) = (a · ν)(φ)− (ν · a)(φ)
= ν(φ · a)− ν(a · φ) = ν(φ · a− a · φ)
= ν(φ(a)φ− φ(a)φ) = ν(0) = 0.

This implies that d(a)(M) = {0} and so M ⊆ ker(d(a)). Define the function Λa : X −→ R by

Λa(f +M) = d(a)(f) (f ∈ A∗).

Then, Λa is well-defined since M ⊆ ker(d(a)). It is easy to see that Λa ∈ X∗.On the other hand, for
each f ∈ A∗ we have

π∗(Λa)(f) = Λa ◦ π(f) = Λa(π(f)) = Λa(f +M) = d(a)(f).

Hence, π∗(Λa) = d(a). The injectivity of π∗ implies that Λa is unique. Hence, our claim is justified.
Now define the map D : A −→ X∗ by D(a) = Λa for all a ∈ A. It is easy to see that D is a real
linear operator. The surjectivity of π implies that there exist a δ > 0 such that ∥π∗(x∗)∥ ≥ δ∥x∗∥
for all x∗ ∈ X∗. Hence, for each a ∈ A, we have

∥D(a)∥ = ∥Λa∥ ≤ 1

δ
∥π∗(Λa)∥ =

1

δ
∥d(a)∥ ≤ 1

δ
∥d∥∥a∥.

Therefore, D is continuous. Since π∗ is a module homomorphism from X∗ to A∗∗, we deduce that

π∗(D(ab)) = d(ab) = d(a) · b+ a · d(b)
= π∗(Λa) · b+ a · π∗(Λb) = π∗(Λa · b) + π∗(a · Λb)

= π∗(Λa · b+ a · Λb) = π∗(D(a) · b+ a ·D(b)),
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for all a, b ∈ A. The injectivity of π∗ implies that D(ab) = D(a) · b + a · D(b) for all a, b ∈ A.
Therefore, D ∈ Z1

R(A,X
∗). Since the left module action of A on X∗ is given by (2.7), we deduce that

H1
R(A,X

∗) = {0}. Thus, there exists λ ∈ X∗ such that D = dA,X∗,λ. This implies that

a · π∗(λ)− π∗(λ) · a = π∗(a · λ− λ · a) = π∗(D(a)) = d(a) = a · ν − ν · a, (2.8)

for all a ∈ A. Take m = ν − π∗(λ). Then m ∈ A∗∗ and

m(φ) = ν(φ)− π∗(λ)(φ) = 1− λ ◦ π(φ) = 1− λ(π(φ))

= 1− λ(φ+M) = 1− λ(M) = 1− λ(0X) = 1.

On the other hand, by (2.8) for each a ∈ A we have

a ·m = a · (ν − π∗(λ)) = a · ν − a · π∗(λ)

= a · ν − (a · ν − ν · a)− π∗(λ) · a = ν · a− π∗(λ) · a
= (ν − π∗(λ)) · a = m · a.

Therefore,
m(f · a) = a ·m(f) = m · a(f) = m(a · f) = m(φ(a)f) = φ(a)m(f),

for all a ∈ A and f ∈ A∗. Hence, (iii) holds.
(iii) ⇒ (i) Let X ∈ Ml

R(A,φ) and d ∈ Z1
R(A,X

∗). Let x ∈ X. Define the map dx : A −→ R by

dx(a) = Re d(a)(x) (a ∈ A).

Clearly, dx is a real linear functional on A and

|dx(a)| = |Re d(a)(x)| ≤ |d(a)(x)| ≤ ∥d(a)∥∥x∥ ≤ ∥d∥∥a∥∥x∥,

for all a ∈ A. Therefore, dx ∈ A∗ and ∥dx∥ ≤ ∥d∥∥x∥. We now define the map D : X −→ A∗ by

D(x) = dx (x ∈ X).

Suppose that x, y ∈ X with dx ̸= dy. Then there exist a ∈ A such that dx(a) ̸= dy(a), i.e, Re d(a)(x) ̸=
Re d(a)(y). This implies that x ̸= y. Therefore, D is well-defined. It is easy to see that D is a real
linear mapping. On the other hand,

∥D(x)∥ = ∥dx∥ ≤ ∥d∥∥x∥,

for all x ∈ X. Thus, D is bounded and ∥D∥ ≤ ∥d∥. According to φ = φ and a · x = φ(a)x for all
(a, x) ∈ A× X, we deduce that

D(a · x) = φ(a)D(x) (a ∈ A, x ∈ X). (2.9)

Since X ∈ Ml
R(A,φ), φ = φ and d ∈ Z1

R(A,X
∗), for each (a, x) ∈ A× X and every b ∈ A we have

D(x · a)(b) = dx·a(b) = Re (a · d(b))(x)
= Re (d(ab)− d(a) · b)(x) = Re d(ab)(x)− Re (d(a) · b)(x)
= dx(ab)− Re d(a)(b · x) = D(x)(ab)− Re d(a)(φ(b)(x)

= D(x) · a(b)− φ(b)Re d(a)(x) = (D(x) · a)(b)− φ(b)dx(a)

= (D(x) · a)(b)−D(x)(a)φ(b) = (D(x) · a)(b)− (D(x)(a)φ)(b)

= (D(x) · a−D(x)(a)φ)(b).
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This implies that

D(x · a) = D(x) · a−D(x)(a)φ, (2.10)

for all (a, x) ∈ A×X. Assume that XR denotes X regarded as a real Banach space. Let D∗ : A∗∗ −→
(XR)

∗ be adjoint operator of D. Take λ = D∗(m). Then λ ∈ (XR)
∗. Let a ∈ A be given. By (2.9),

we have

(λ · a)(x) = λ(a · x) = D∗(m)(a · x) = m(D(a · x))
= m(φ(a)D(x)) = φ(a)m(D(x)) = φ(a)D∗(m)(x)

= φ(a)λ(x) = (φ(a)λ)(x)

for all x ∈ X. This implies that

λ · a = φ(a)λ. (2.11)

By the definition of λ, (2.10), (iii) and (2.11) for each x ∈ X we have

(a · λ)(x) = D∗(m)(x · a) = m(D(x) · a−D(x)(a)φ)

= m(D(x) · a)−D(x)(a)m(φ) = φ(a)m(D(x))− Re d(a)(x)

= φ(a)D∗(m)(x)− (Re d(a))(x) = φ(a)λ(x)− (Re d(a))(x)

= (φ(a)λ− Re d(a))(x) = ((λ · a)− Re d(a))(x).

Therefore,
a · λ = (λ · a)− Re d(a). (2.12)

Define the map Ψ : X∗ −→ (XR)
∗ by

Ψ(Γ) = Re Γ (Γ ∈ X∗).

It is known that Ψ is a surjective real linear isometry. The surjectivity of Ψ implies that there exist
Λ ∈ X∗ such that

λ = Ψ(Λ). (2.13)

By the definition of Ψ and (2.13), for each x ∈ X we have

Ψ(a · Λ)(x) = (Re (a · Λ))(x) = Re (a · Λ)(x) = Re (Λ)(x · a)
= (Re (Λ))(x · a) = Ψ(Λ)(x · a) = λ(x · a) = (a · λ)(x).

Therefore, Ψ(a · Λ) = a · λ. One can similary show that Ψ(Λ · a) = λ · a. Hence, by (2.12) we get

Ψ(d(a)) = Re d(a) = λ · a− a · λ
= Ψ(Λ · a− a · Λ) = Ψ(dA,X∗,−Λ(a)).

This implies that d(a) = dA,X∗,−Λ(a). Since a was arbitrary chosen, we deduce that d = dA,X∗,−Λ.
Therefore, H1

R(A,X
∗) = {0} and so A is left φ-amenable. Hence, (i) holds. □

Similarly, we obtain the following result.

Theorem 2.3. Let (A, ∥ · ∥) be a real Banach algebra with △(A) ̸= ∅ and let φ ∈ △(A) with φ = φ.
Then the following assertions are equivalent.

(i) A is right φ-amenable.
(ii) H1

R(A,X
∗) = {0} for each real Banach A-bimodule X with the left module action x · a =

φ(a)x, (a, x) ∈ A× X.
(iii) There is an element m ∈ A∗∗ such that m(φ) = 1 and m(a · f) = φ(a)m(f) for all a ∈ A and

f ∈ A∗.
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3. Character amenability of A and AC

Let (A, ∥ · ∥) be a real Banach algebra, let AC be a complexification of A with respect to an
injective real algebra homomorphism J : A −→ AC and let ∥| ·∥| be an algebra norm on AC satisfying
in the (∗) condition. For φ ∈ △(A) ∪ {0}, we define the map φC : AC −→ C by

φC(J(a) + iJ(b)) = φ(a) + iφ(b) (a, b ∈ A). (3.1)

Clearly, φC ∈ △(AC) if φ ∈ △(A) and φC = 0 if φ = 0. Moreover, the map Φ : △(A) ∪ {0} −→
△(AC) ∪ {0} defined by

Φ(φ) = φC (φ ∈ △(A) ∪ {0}), (3.2)

is bijection and Φ(0) = 0. For φ ∈ △(A), φC is called the character of AC induced φ. Here, we show
that character amenability of real Banach algebra (A, ∥ · ∥) is equivalent to character amenability of
complex Banach algebra (AC, ∥| · ∥|).

Theorem 3.1. Let (A, ∥ · ∥) be a real Banach algebra, let AC be a complexification of A with respect
to an injective real algebra homomorphism J : A −→ AC, and let ∥| · ∥| be an algebra norm on AC
satisfying in the (∗) condition. Then the followings hold.

(i) For φ ∈ △(A) ∪ {0}, A is left (right, respectively) φ-amenable if and only if AC is left (right,
respectively) φC-amenable.

(ii) A is left (right, respectively) character amenable if and only if AC is left (right, respectively)
character amenable.

(iii) A is character amenable if and only if AC is character amenable.

Proof . (i) Since the algebra norm ∥| · ∥| satisfies in the (∗) condition, there exist positive constants
k1 and k2 such that

max{∥a∥, ∥b∥} ≤ k1∥|J(a) + iJ(b)∥| ≤ k2max{∥a∥, ∥b∥}, (3.3)

for all a, b ∈ A. We first assume that φ ∈ △(A)∪{0} and A is right φ-amenable. Let X ∈ Mr
C(AC, φC)

with the norm ∥ · ∥ and the module actions (c, x) 7−→ c · x and (c, x) 7−→ x · c. It is easy to see that
X is a real A-bimodule with the module actions (a, x) 7−→ a⊙ x and (a, x) 7−→ x⊙ a defined by

a⊙ x = J(a) · x (a ∈ A, x ∈ X), (3.4)

x⊙ a = x · J(a) (a ∈ A, x ∈ X). (3.5)

Since X is a Banach AC-module with the norm ∥ · ∥, there exists a positive constant k such that

∥(J(a) + iJ(b)) · x∥ ≤ k∥|J(a) + iJ(b)∥| ∥x∥ (a, b ∈ A, x ∈ X), (3.6)

∥x · (J(a) + iJ(b))∥ ≤ k∥|J(a) + iJ(b)∥| ∥x∥ (a, b ∈ A, x ∈ X). (3.7)

Applying (3.3), (3.4), (3.5), (3.6) and (3.7), we have

∥a⊙ x∥ = ∥J(a) · x∥ ≤ k∥|J(a)∥| ∥x∥ ≤ kk2
k1

∥a∥ ∥x∥ (a, b ∈ A, x ∈ X),

∥x⊙ a∥ = ∥x · J(a)∥ ≤ k∥|J(a)∥| ∥x∥ ≤ kk2
k1

∥a∥ ∥x∥ (a, b ∈ A, x ∈ X).
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Thus X is a real Banach A-bimodule. Since X ∈ Mr
C(AC, φC), we have x · J(a) = φC(J(a))x for all

(x, a) ∈ X × A. This implies that x⊙ a = φ(a)x for all (x, a) ∈ X × A. Hence, X ∈ Mr
R(A,φ). On

the other hand, for each (a, x) ∈ A× X we have

i(a⊙ x) = i(J(a) · x) = J(a) · (ix) = a⊙ (ix).

Since A is right φ-amenable, we have

H1
R(A,X

∗) = {0}. (3.8)

Let D ∈ Z1
C(AC,X

∗). Define the map d : A −→ X∗ by

d(a) = D(J(a)) (a ∈ A).

It is easy to see that d is a real X∗-derivation on A. Since

∥d(a)∥ = ∥D(J(a)∥ ≤ ∥D∥ ∥|J(a)∥| ≤ k2
k1

∥D∥ ∥a∥,

for all a ∈ A, we deduce that d is bounded and ∥d∥ ≤ k2
k1
∥D∥. Thus d ∈ Z1

R(A,X
∗). According to

(3.8), there exists Λ ∈ X∗ such that
d = dA,X∗,Λ. (3.9)

It is easy to see that

a⊙ Λ = J(a) · Λ (a ∈ A), Λ⊙ a = Λ · J(a) (a ∈ A). (3.10)

By the definition of d and applying (3.9) and (3.10) we get

D(J(a) + iJ(b)) = D(J(a)) + iD(J(b))

= d(a) + id(b)

= dA,X∗,Λ(a) + idA,X∗,Λ(b)

= a⊙ Λ− Λ⊙ a+ i(b⊙ Λ− Λ⊙ b)

= J(a) · Λ− Λ · J(a) + i(J(b) · Λ− Λ · J(b))
= (J(a) · Λ− Λ · J(a)) + ((iJ(b)) · Λ− Λ · (iJ(b))
= (J(a) + iJ(b)) · Λ− Λ · (J(a) + iJ(b))

= dAC,X∗,Λ(J(a) + iJ(b))

for all a, b ∈ A. This implies that D = dAC,X∗,Λ and so

H1
C(AC,X

∗) = {0}.

Therefore, AC is right φC-amenable.
We now assume that φ ∈ △(A) ∪ {0} and AC is right φC-amenable. We show that A is right

φ-amenable. Let X ∈M r
R(A,φ) with the norm ∥ · ∥ and with the module actions (a, x) 7−→ a · x and

(a, x) 7−→ x · a such that
i(a · x) = a · (ix), (3.11)

for all (a, x) ∈ A× X. Define the map (J(a) + iJ(b), x) 7−→ (J(a) + iJ(b))x : AC × X −→ X by

(J(a) + iJ(b))x = (a · x) + i(b · x) (a, b ∈ A, x ∈ X), (3.12)
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and the map (J(a) + iJ(b), x) 7−→ x(J(a) + iJ(b)) : AC × X −→ X by

x(J(a) + iJ(b)) = (x · a) + i(x · b) (x ∈ X, a, b ∈ A). (3.13)

Applying (3.11) and (3.12), we can show that

(α + iβ)((J(a) + iJ(b))x) = ((α+ iβ)(J(a) + iJ(b)))x

= (J(a) + iJ(b))((α + iβ)x)

for all (α, β, a, b, x) ∈ R × R × A × A × X. Since φ ∈ △(A) ∪ {0} and X ∈ Mr
R(A,φ), we have

x · a = φ(a)x for all (x, a) ∈ X× A. This implies that

x(J(a) + iJ(b)) = φC(J(a) + iJ(b))x, (3.14)

for all x ∈ X and a, b ∈ A. Applying (3.14) and (3.13), we get

(α + iβ)(x(J(a) + iJ(b))) = ((α+ iβ)(xJ(a) + iJ(b)))

= x((α + iβ)(J(a) + iJ(b)))

for all (α, β, a, b, x) ∈ R × R × A × A × X. Hence, X is a complex AC-bimodule. Since X is a real
Banach A-bimodule, there exists a positive constant k such that

∥a · x∥ ≤ k∥a∥ ∥x∥ (a ∈ A, x ∈ X), (3.15)

∥x · a∥ ≤ k∥a∥ ∥x∥ (a ∈ A, x ∈ X). (3.16)

Applying (3.3), (3.12) and (3.15), we get

∥(J(a) + iJ(b))x∥ ≤ 2kk1∥|J(a) + iJ(b)∥| ∥x∥,

for all (a, b, x) ∈ A× A× X and applying (3.4), (3.13) and (3.16), we get

∥x(J(a) + iJ(b))∥ ≤ 2kk1∥|J(a) + iJ(b)∥| ∥x∥,

for all (a, b, x) ∈ A × A × X. Hence, X is a complex Banach AC-bimodule and so, by (3.14),
X ∈ Mr

C(AC, φC). Therefore,
H1

C(AC,X
∗) = {0}. (3.17)

Let d ∈ Z1
R(A,X

∗). Define the map D : AC −→ X∗ by

D(J(a) + iJ(b)) = d(a) + id(b) (a, b ∈ A). (3.18)

It is easy to show that D is a complex linear operator. According to d ∈ Z1
R(A,X

∗) and applying
(3.12), (3.13) and (3.18), one can show that

D((J(a) + iJ(b))(J(a′) + iJ(b′))) = D((J(a) + iJ(b)))(J(a′) + iJ(b′))

+ (J(a) + iJ(b))D(J(a′) + iJ(b′)),

for all a, b, a′, b′ ∈ A. Hence, D is a complex X∗-derivation on AC. By (3.18) and (3.3), we have

∥D(J(a) + iJ(b))∥ = ∥d(a) + id(b)∥ ≤ ||d(a)||+ ∥d(b)∥
≤ ∥d∥ ∥a∥+ ∥d∥ ∥b∥ ≤ 2∥d∥max {∥a∥, ∥b∥}
≤ 2k1∥d∥ ∥|J(a) + iJ(b)∥|,
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for all a, b ∈ A. This implies that D is bounded and ∥D∥ ≤ 2k1∥d∥. Hence, D ∈ Z1
C(AC,X

∗). By
(3.17), there exists Λ ∈ X∗ such that

D = dAC,X∗,Λ. (3.19)

It is easy to see that
J(a)Λ = a · Λ, ΛJ(a) = Λ · a, (3.20)

for all a ∈ A. Applying the definition of D, (3.19) and (3.20), we have

d(a) = D(J(a)) = dAC,X∗,Λ(J(a)) = J(a)Λ− ΛJ(a)

= a · Λ− Λ · a = dA,X,x(a),

for all a ∈ A. Hence, d = dA,X∗,Λ and so H1
R(A,X

∗) = {0}. Therefore, A is right φ-amenable.
Similarly, we can show that if φ ∈ △(A) ∪ {0} then A is left φ-amenable if and only if AC is left

φC-amenable. Hence, (i) holds.
(ii) Since the map Φ : △(A)∪{0} −→ △(AC)∪{0} defined by (3.2) is bijection, (ii) follows from

(i).
(iii) Clearly, (ii) implies that (iii) holds. □

4. A hereditary property of left and right 0-amenability

A hereditary property of the left 0-amenability of complex Banach algebras studied by Nasr-
Isfahani and Soltani [19, Proposition 3.4(i)] which is modified as the following.

Proposition 4.1. Let (B, ∥ · ∥) be a complex Banach algebra. Then B is left (right, respectively)
0-amenable if and only if B has a bounded right (left, respectively) approximate identity.

Applying Proposition 4.1 and part (i) of Theorem 3.1 for φ = 0, we obtain a hereditary property of
left and right 0-amenability for real Banach algebras as the following.

Proposition 4.2. Let (A, ∥ · ∥) be a real Banach algebra. Then A is left (right, respectively) 0-
amenable if and only if A has a bounded right (left, respectively) approximate identity.

Proof . Take AC = A×A. Recall that AC is a complex algebra with the algebra operations defined
by (1.2) and so it is a complexification of A with respect to the injective real algebra homomorphism
J : A −→ AC defined by J(a) = (a, 0), (a ∈ A). By [5, Proposition, I.1.13], there exists an algebra
norm ∥| · ∥| on AC satisfy the (∗) condition with k1 = 1 and k2 = 2.

We first assume that A is left (right, respectively) 0-amenable. By part (i) of Theorem 3.1 for
φ = 0, the complex Banach algebra (AC, ∥| · ∥|) is left (right, respectively) 0-amenable. Hence, AC
has a bounded right (left, respectively) approximate identity {(uγ, vγ)}γ∈Γ by Proposition 4.1. It is
easy to see that {uγ}γ∈Γ is a bounded right (left, respectively) approximate identity for A.

We now assume that A has a bounded right (left, respectively) approximate identity {uγ}γ∈Γ. It
is easy to see that {(uγ, 0)}γ∈Γ is a bounded right (left, respectively) approximate identity for AC.
Hence, AC is left (right, respectively) 0-amenable by Proposition 4.1. Therefore, A is left (right,
respectively) 0-amenable by part (i) of Theorem 3.1 for φ = 0. □ As consequences of Propositions
4.1 and 4.2, we obtain the following results.

Corollary 4.3. Let (A, ∥ · ∥) be a commutative Banach algebra over F. Then A is left 0-amenable
if and only if A is right 0-amenable.
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Corollary 4.4. Let (A, ∥ · ∥) be a Banach algebra over F. Then A is 0-amenable if and only if A
has a bounded approximate identity.

Corollary 4.5. Let (B, ∥ · ∥) be a complex Banach algebra and let BR denote B regarded as a real
algebra. Then B is left (right, respectively) 0-amenable if and only if BR is left (right, respectively)
0-amenable.

5. Right φ-amenability and injectivity

In this section, we assume that A is a real Banach algebra with △(A) ̸= ∅ and φ ∈ △(A). We
discuss the relation between left φ-amenability of A and injectivity of real Banach left A-modules.

Let A be a Banach algebra and X be a left Banach A-module over F. We say that X is faithful
if A · x ̸= {0} for all x ∈ X \ {0}, where A · x = {a · x : a ∈ A} for x ∈ X.

The following result is a modification of [19, Proposition 4.1] which is useful in the sequel.

Proposition 5.1. Let A be a Banach algebra over F with △(A) ̸= ∅, let φ ∈ △(A) and let X be a
complex Banach space. Then X is a faithful Banach left A-module over F with the left module action
(a, x) 7−→ a · x : A× X −→ X defined by a · x = φ(a)x, (a, x) ∈ A× X.

Let X and Y be Banach spaces over F. We denote by BF(X,Y) the Banach space of all bounded
linear operators from X to Y over F with the operator norm. We say that T ∈ BF(X,Y) is admissible
if T ◦ S ◦ T = T for some S ∈ BF(Y,X).

Let A be a Banach algebra over F and let X and Y be Banach left A-modules over F. We denote
by ABF(X,Y) the set of all T ∈ BF(X,Y) for which T is an A-module morphism. Clearly, ABF(X,Y)
is a closed subspace of BF(X,Y) over F. An operator T ∈ ABF(X,Y) is called a coretraction if there
exists S ∈ AB(Y,X) with S ◦ T = IX, the identity self-map on X.

Let A be a Banach algebra and let J be a Banach left A-module over F. We say that J is injective
if for any Banach left A-modules X and Y over F, each admissible monomorphism T ∈ ABF(X,Y)
and each S ∈ ABF(X,J ), there exists R ∈ ABF(Y,J ) such that R ◦ T = S.

Let A be a Banach algebra and let X be a Banach space over F. It is known [6, Example 2.6.2(viii)]
that BF(A,X) is a Banach A-bimodule with the module actions (a, T ) −→ a · T and (a, T ) −→ T · a
defined by

(a · T )(b) = T (ba) (a ∈ A, T ∈ BF(A,X), b ∈ A),

(T · a)(b) = T (ab) (a ∈ A, T ∈ BF(A,X), b ∈ A).

Let A be a Banach algebra and let X be a Banach A-bimodule over F. For each x ∈ X, define the
map Tx : A −→ X by

Tx(a) = a · x (a ∈ A).

It is easy to see that Tx ∈ BF(A,X) for all x ∈ X. Define the map ΠF : X −→ BF(A,X) by

ΠF(x) = Tx (x ∈ X).

It is easy that ΠF ∈ ABF(X,BF(A,X)). ΠF is called the canonical embedding from X to BF(A,X).
The following result is due to Helemskii which is useful in the sequel.

Proposition 5.2. [9, Proposition III.1.31]. Let A be a Banach algebra and let X be a faithful left
A-module over F. Then X is injective if and only if the canonical embedding ΠF ∈ ABF(X,BF(A,X))
is a coretraction.
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For a real Banach algebra (A, ∥ · ∥) and a complex Banach space (X, ∥ · ∥), we show that X is
an injective real Banach left A-module with a suitable left module action if and only if X is an
injective complex Banach AC-module with a suitable left module action. For this purpose we need
the following lemma which its proof is straightforward.

Lemma 5.3. Let (A, ∥ · ∥) be a real Banach algebra and let (X, ∥ · ∥) be a complex Banach space.
Then the followings hold.

(i) BR(A,X) with the operator norm is a complex Banach space whenever the scalar multiplication
is determined by

(αS)(a) = αS(a) (α ∈ C, S ∈ BR(A,X), a ∈ A). (5.1)

(ii) Real Banach left A-module BR(A,X) satisfies

i(a · T ) = a · (iT ) (a ∈ A, T ∈ BR(A,X)). (5.2)

Theorem 5.4. Let (A, ∥ · ∥) be a real Banach algebra and let φ ∈ △(A) and let AC be a complexi-
fication of A with respect to an injective real algebra homomorphism J : A −→ AC, let |∥ · ∥| be an
algebra norm on AC satisfying in the (∗) condition. Suppose that X is a complex Banach space. Then
the following assertions are equivalent.

(i) X is an injective real Banach left A-module with the left module action (a, x) 7−→ a·x : A×X −→
X defined by a · x = φ(a)x, (a, x) ∈ A× X.

(ii) X is an injective complex Banach left AC-module with the left module action (J(a)+iJ(b), x) 7−→
(J(a)+ iJ(b)) ·x : AC×X −→ X defined by (J(a)+ iJ(b)) ·x = φC(J(a)+ iJ(b))x, (a, b, x) ∈
A× A× X.

Proof . Clearly, X is a real Banach left A-module (a complex Banach left AC-module, respectively)
with the left module action defined in (i) (in (ii), respectively). Hence, A (AC, respectively) is
a faithful real (complex, respectively) Banach left AC-module by Proposition 5.1. Let ΠR : X −→
BR(A,X) be the canonical embedding from X to BR(A,X) and ΠC : X −→ BC(AC,X) be the canonical
embedding from X to BC(AC,X). Then

ΠR(x)(a) = a · x = φ(a)x (x ∈ X, a ∈ A),

and
ΠC(x)(J(a) + iJ(b)) = J(a) + iJ(b) · x = φC(J(a) + iJ(b))x (x ∈ X, a, b ∈ A).

Applying (5.2), one can show BR(A,X) is a complex Banach left AC-module with the left module
action

J(a) + iJ(b)S = a · S + i(b · S) (a, b ∈ A, S ∈ BR(A,X).

Moreover, we can easily show that for each T ∈ BC(AC,X), T ◦ J ∈ BR(A,X) and ∥T ◦ J∥ ≤ k2
k1
∥T∥.

We now define the map Θ : BC(AC,X) −→ BR(A,X) by

Θ(T ) = T ◦ J (T ∈ BC(AC,X)).

Clearly, Θ is a real linear mapping from the complex Banach space BC(AC,X) to the complex Banach
space BR(A,X). Since for each T ∈ BC(AC,X) we have

Θ(iT )(a) = ((iT ) ◦ J)(a) = (iT )(J(a)) = iT (J(a)) = (iΘ(T ))(a),
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for all a ∈ A, we deduce that Θ(iT ) = iΘ(T ) for all T ∈ BC(AC,X). Hence, Θ is a complex linear
mapping. Since ∥T ◦J∥ ≤ k2

k1
∥T∥ for all T ∈ BC(AC,X), we deduce that Θ is bounded and ∥Θ∥ ≤ k2

k1
.

Let a, b ∈ A and T ∈ BC(AC,X). Then

Θ((J(a) + iJ(b)) · T )(c) = ((J(a) + iJ(b)) · T )(J(c))
= T (J(c)((J(a) + iJ(b))

= T (J(c)J(a)) + iT (J(c)J(b))

= T (J(ca)) + iT (J(cb))

= Θ(T )(ca) + iΘ(T )(cb)

= (a ·Θ(T ))(c) + i((b ·Θ(T ))(c))

= (a ·Θ(T ))(c) + (i(b ·Θ(T ))(c))

= (J(a)Θ(T ))(c) + (i(J(b)Θ(T ))(c))

= (J(a)Θ(T )) + (iJ(b))Θ(T ))(c)

= ((J(a) + iJ(b))Θ(T ))(c),

for all c ∈ A.Hence,
Θ((J(a) + iJ(b)) · T ) = (J(a) + iJ(b))Θ(T ).

Therefore, Θ ∈ ACBC(BC(AC,X),BR(A,X)).
For each S ∈ BR(A,X)), define the map ΛS : AC −→ X by

ΛS(J(a) + iJ(b)) = S(a) + iS(b) (a, b ∈ A).

It is easy to see that ΛS ∈ BC(AC,X). Define the map Γ : BR(A,X) −→ BC(AC,X) by

Γ(S) = ΛS (S ∈ BR(A,X)).

It is easy to see that Θ ◦ Γ = IBR(A,X) and Γ ◦ Θ = IBC(AC,X). Therefore, Γ = Θ−1 and Γ ∈
BC(BR(A,X),BC(AC,X)) by open mapping theorem for complex Banach spaces.

Clearly, BC(AC,X) is a real Banach left A-module with the left module action

a⊙ T = J(a) · T (a ∈ A, T ∈ BC(AC,X)).

Let c ∈ A and S ∈ BR(A,X). Then for each a, b ∈ A we have

Γ(c · S)((J(a) + iJ(b)) = Λc·S((J(a) + iJ(b)) = c · S(a) + i(c · S)(b)
= S(ac) + iS(bc) = ΛS(J(ac) + iJ(bc))

= ΛS((J(a) + iJ(b))J(c)) = (J(c) · ΛS)(J(a) + iJ(b))

= (c⊙ ΛS)(J(a) + iJ(b)) = (c⊙ Γ(S))(J(a) + iJ(b)).

Therefore, Γ(c · S) = c⊙ Γ(S) and so Γ ∈ ABC(BR(A,X),BC(AC,X)). Let x ∈ X. Since

((Θ ◦ ΠC)(x))(a) = (Θ(ΠC(x))(a) = (ΠC(x) ◦ J)(a)
= φC(J(a))x = φ(a)x = ΠR(x)(a),

for all a ∈ A, we deduce that (Θ ◦ ΠC)(x) = ΠR(x). Therefore,

Θ ◦ ΠC = ΠR. (5.3)
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Since Γ = Θ−1, we have
ΠC = Γ ◦ ΠR. (5.4)

By (5.3) and the complex linearity of ΠC and Θ, we deduce that ΠR is complex linear. To prove
(i) ⇒ (ii), assume that X is a injective real Banach left A-module with the left module action defined
by

a · x = φ(a)x (a ∈ A, x ∈ X).

By Proposition 5.1 for F = R, X is faithful real Banach left A-module. Therefore, by Proposition 5.2
for F = R, we deduce that ΠR is a coretraction. Hence, there exists Q ∈ ABR(BR(A,X),X) such that

Q ◦ ΠR = IX. (5.5)

Define the map QC : BR(A,X) −→ X by

QC(S) = Q(S)− iQ(iS) (S ∈ BR(A,X)).

It is easy to see that QC ∈ BC(BR(A,X),X). Applying (5.2), we get

QC(J(a)S) = QC(a · S) = Q(a · S)− iQ(i(a · S))
= Q(a · S)− iQ(a · (iS)) = a ·Q(S)− i(a ·Q(iS))
= φ(a)Q(S)− i(φ(a)Q(iS)) = φ(a)(Q(S)− i(Q(iS))

= φC(J(a))(Q(S)− iQ(iS)) = J(a) ·QC(S),

for all a ∈ A and S ∈ BR(A,X). This implies that

QC((J(a) + iJ(b))S) = (J(a) + iJ(b)) ·QC(S),

for all a, b ∈ A and S ∈ BR(A,X). Hence, QC ∈ ACBC(BR(A,X),X). Therefore, 1
2
QC ◦ Θ ∈

ACBC(BC(AC,X),X) since Θ ∈ ACBC(BC(AC,X),BR(A,X)). Applying (5.3) and (5.5) and complex
linearity of ΠR, we have

1

2
(QC ◦Θ ◦ ΠC)(x) =

1

2
(QC ◦ ΠR)(x) =

1

2
(QC)(ΠR(x))

=
1

2
(Q(ΠR(x))− iQ(iΠR(x)) =

1

2
(Q(ΠR(x))− iQ(ΠR(ix))

=
1

2
((Q ◦ ΠR(x))− i(Q ◦ ΠR(ix)) =

1

2
(IX(x)− iIX(ix))

=
1

2
(x+ x) = x

for all x ∈ X and so 1
2
(QC ◦ Θ) ◦ ΠC = IX. Therefore, ΠC is a coretraction. Since X is a faithful

complex Banach left AC-module, by proposition 5.2 for F = C, we deduce that X is an injective
complex Banach left AC-module with the module action defined in (ii). Hence, (i) implies (ii).

To prove (ii) ⇒ (i), assume that X is an injective complex Banach left AC-module with the left
module action (J(a) + iJ(b), x) 7−→ (J(a) + iJ(b)) · x : AC × X −→ X defined by

(J(a) + iJ(b)) · x = φC(J(a) + iJ(b))x (a, b ∈ A, x ∈ X).

By Proposition 5.1 for F = C, X is a faithful complex Banach left AC-module. Therefore, by
Proposition 5.2 for F = C, the complex canonical embedding ΠC : X −→ BC(AC,X) is a coretraction.
Thus, there exists P ∈ ACBC(BC(AC,X),X) such that

P ◦ ΠC = IX. (5.6)
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Define tha map P ′ : BR(A,X) −→ X by
P ′ = P ◦ Γ. (5.7)

Applying (5.6), (5.7) and (5.4), we get

P ′ ◦ ΠR = (P ◦ Γ) ◦ ΠR = P ◦ (Γ ◦ ΠR) = P ◦ ΠC = IX

Hence, ΠR is a coretraction. Since X is a faithful real Banach left A-module, we deduce that X is an
injective real Banach left AC-module by Proposition 5.2 for F = R. Hence, (ii) implies (i). □

A relation between φ-amenability of a complex Banach algebra B and the injectivity of certain
Banach left B-modules is given in [19, Theorem 5.2]. We obtain similar result for real Banach
algebras as the following.

Theorem 5.5. Let (A, ∥·∥) be a real Banach algebra and let φ ∈ △(A). Then the following assertions
are equivalent.

(i) If X is a complex dual Banach space, then X is an injective real Banach left A-module with the
left module action (a, x) 7−→ a · x : A× X −→ X defined by a · x = φ(a)x, (a ∈ A, x ∈ X).

(ii) C is an injective real Banach left A-module with the left module action (a, z) 7−→ a·z : A×C −→
C defined by a · z = φ(a)z, (a ∈ A, x ∈ C).

(iii) There is a complex Banach space X such that X is an injective real Banach left A-module with
the left module action (a, x) 7−→ a · x : A×X −→ X defined by a · x = φ(a)x, (a ∈ A, x ∈ X).

(iv) A is right φ-amenable.

Proof . (i)⇒ (ii) Since C is a complex dual Banach space, we deduce that C is an injective
real Banach left A-module with the left module action (a, z) 7−→ a · z : A × C −→ C defined by
a · z = φ(a)z, (a ∈ A, x ∈ C), by (i).Hence (ii) holds.

(ii)⇒ (iii) Take X = C. Then (iii) holds by (ii).
(iii)⇒ (iv) Set AC = A×A. Then AC is a complex algebra with the algebra operations defined in

(1.2) and it is a complexification of A with the injective real algebra homomorphism J : A −→ AC
defined by J(a) = (a, 0), a ∈ A. By [5, Proposition I.1.13], there exists an algebra norm ∥| · ∥|
on AC satisfying in the (∗) condition with k1 = 1 and k2 = 2. By (iii), there exists a complex
Banach space X such that X is an injective real Banach left A-module with the left module action
(a, x) 7−→ a · x : A × X −→ X defined by a · x = φ(a)x, (a ∈ A, x ∈ X). By Theorem 5.4,
X is an injective complex Banach left AC-module with the left module action (J(a) + iJ(b), x) 7−→
(J(a)+iJ(b)) ·x : AC×X −→ X defined by (J(a)+iJ(b)) ·x = φC(J(a)+iJ(b))x, (a, b ∈ A, x ∈ X).
Therefore, AC is right φC-amenable by [19, Theorem 5.2]. Hence, A is right φ-amenable by part (i)
of Theorem 3.1 and so (iv) holds.

(iv)⇒ (i) Let X be a complex dual Banach space. Clearly, X is a real (complex, respectively)
Banach left A-module (AC-module, respectively), with the left module action a · x = φ(a)x for all
a ∈ A, x ∈ X, ((J(a) + iJ(b)) · x = φC(J(a) + iJ(b))x for all a, b ∈ A, x ∈ X, respectively). By (iv)
and part (i) of Theorem 3.1, we deduce that AC is left φC-amenable. Therefore, X is an injective
complex Banach left AC-module with the mentioned left module action by [19, Theorem 5.2]. Hence,
by Theorem 5.4, X is an injective real Banach left A-module with the left module action defined by
a · x = φ(a)x, (a ∈ A, x ∈ X). Thus (i) holds. □

6. Character amenability of B and BR

Let (B, ∥ · ∥) be a complex Banach algebra with △(B) ̸= ∅ and let BR denote B regarded as a
real algebra. Clearly,

△(B) ∪ {φ : φ ∈ △(B)} ⊆ △(BR).
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For each φ ∈ △(B), we give a characterization of right φ-amenability of B as the following.

Theorem 6.1. Let (B, ∥ · ∥) be a complex Banach algebra and let BR denote B regarded as a real
algebra. Then the following assertions are equivalent.

(i) B is right φ-amenable.

(ii) C is an injective complex Banach left B-module with the left module action (b, z) 7−→ b · z :
B × C −→ C defined by b · z = φ(b)z, (b ∈ B, x ∈ C).

(iii) C is an injective real Banach left BR-module with the left module action (b, z) 7−→ b ⊙ z :
BR × C −→ C defined by b⊙ z = φ(b)z, (b ∈ B, x ∈ C).

(iv) BR is right φ-amenable.

Proof . (i)⇒ (ii) It follows by [19, Theorem 5.2].
(ii)⇒ (iii) Clearly, C is a real Banach left BR-module with the left module action (b, z) 7−→ b⊙z :

BR × C −→ C defined by
b⊙ z = φ(b)z, (b ∈ BR, x ∈ C).

Take B′ = BR(BR,C). By part (i) of Lemma 5.3, B′ is a complex Banach space. Let ΠR : C −→ B′

be the canonical embedding of C in B′. Then

ΠR(z)(b) = φ(b)z (z ∈ C, b ∈ BR).

Moreover, for each z ∈ C we have

ΠR(z)(ib) = φ(ib)z = iφ(b)z = iΠR(z)(b),

for all b ∈ B. Therefore, ΠR(z) ∈ B∗ for all z ∈ C.
Let ΠC : C −→ BC(B,C) = B∗ be the canonical embedding of C in B∗. Clearly, ΠR = ΠC. By (ii),
there exists Q ∈ BBC(B

∗,C) such that
Q ◦ ΠC = IC. (6.1)

It is easy to see that B∗ × B∗ is a complex Banach space with the additive operation, scalar multi-
plication defined by

(f1, g1) + (f2, g2) = (f1 + f2, g1 + g2) (f1, f2, g1, g2 ∈ B∗),

α(f, g) = (αf, αg) (α ∈ C, f, g ∈ B∗).

and with the norm ∥| · |∥ defined by

∥|(f, g)|∥ = max{∥f∥, ∥g∥} (f, g ∈ B∗).

Define the map Ω : B∗ ×B∗ −→ B′ by

Ω(f, g) = Re f + iIm g (f, g ∈ B∗).

We can easily show that Ω is well-defined and it is a real linear mapping. Let (f, g) ∈ B∗ ×B∗ with
Ω(f, g) = 0. Then Re f = 0 and Im g = 0. Therefore, f = 0 and g = 0 since for each h ∈ B∗ we
have

h(b) = Re h(b)− iRe h(ib),

for all b ∈ B. Hence, (f, g) = (0, 0) and so Ω is injective.
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Let Λ ∈ B′. Thus Re Λ, Im Λ ∈ (BR)
∗. Define the maps f, g : B −→ C by

f(b) = Re Λ(b)− iRe Λ(ib) (b ∈ B),

g(b) = Im Λ(ib) + iIm Λ(b) (b ∈ B).

It is easy to see that f, g ∈ B∗, Re f = Re Λ and Im g = Im Λ. Therefore, (f, g) ∈ B∗ ×B∗ and

Ω(f, g) = Re f + iIm g = Re Λ + iIm Λ = Λ.

Hence, Ω is surjective.
Since

∥Ω(f, g)∥ = ∥Re f + iIm g∥ ≤ ∥Re f∥+ ∥Im g∥
= ∥f∥+ ∥g∥ ≤ 2max{∥f∥, ∥g∥}
= ∥|(f, g)|∥,

for all f, g ∈ B∗, we deduce that Ω is bounded. Therefore, Ω ∈ BR(B
∗×B∗, B′). It is easy to see that

B′ is a real Banach left B-module with the module action (b,Λ) 7−→ b ·Λ : B×B′ −→ B′ defined by

(b · Λ)(c) = Λ(cb) (b, c ∈ B, Λ ∈ B′).

We can show that B∗×B∗ is a complex Banach left B-module with the module action (b, (f, g)) 7−→
b · (f, g) : B × (B∗ ×B∗) −→ B∗ ×B∗ defined by

b · (f, g) = (b · f, b · g) (b ∈ B, f, g ∈ B∗).

It is easy to see that
Re (b · h) = b · Re h, Im (b · h) = b · Im h (6.2)

for all b ∈ B and h ∈ B∗. We claim that

b · iIm h = i(b · Im h) (6.3)

for all b ∈ B and h ∈ B∗. Let b ∈ B and h ∈ B∗. Since for each b′ ∈ B we have

(b · iIm h)(b′) = (iIm h)(b′b) = i(Im h)(b′b)

= i(b · Im h)(b′) = (i(b · Im h))(b′),

we deduce that (6.3) holds.
Let b ∈ B and f, g ∈ B∗. Then, by the definition of Ω, (6.2) and (6.3) we have

Ω(b · (f, g)) = Ω(b · f, b · g) = Re (b · f) + iIm (b · g)
= b · Re f + i(b · Im g) = b · Re f + b · iIm g

= b · (Re f + iIm g) = b · Ω(f, g).

Therefore, Ω ∈ BRBR(B
∗ ×B∗, B′). This implies that Ω−1 ∈ BRBR(B

′, B∗ ×B∗). Now define the map
µ : B∗ ×B∗ −→ B∗ by

µ(f, g) =
1

2
(f + g) (f, g ∈ B∗).
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Clearly, µ ∈ BRBR(B
∗ × B∗, B∗). Thus Q ◦ µ ◦ Ω−1 ∈ BRBR(B

′,C). According to Ω(f, f) = Re f +
iIm f = f for all f ∈ B∗, we deduce that Ω−1(f) = (f, f) for all f ∈ B∗. Let z ∈ C. Then
Ω−1(ΠR(z)) = (ΠR(z),ΠR(z)) and so, by ΠR(z) = ΠC(z) and (6.1), we get

(Q ◦ µ ◦ Ω−1) ◦ ΠR(z) = (Q ◦ µ)(Ω−1(ΠR(z))) = (Q ◦ µ)(ΠR(z),ΠR(z))

= Q(ΠR(z)) = Q(ΠC(z)) = (Q ◦ ΠC)(z)

= IC(z).

Therefore, (Q ◦ µ ◦ Ω−1) ◦ΠR = IC. This implies that ΠR is a coretraction. Since φ ∈ △(BR) and C
is a real Banach left BR-module with the left module action (b, z) 7−→ b⊙ z : BR × C −→ C defined
by b ⊙ z = φ(b)z (b ∈ BR, z ∈ C), we deduce that C is an faithful real Banach left BR-module by
Proposition 5.1 for F = R. Hence, C is an injective real Banach left BR-module with the left module
action defined in (iii) and so (iii) holds.

(iii)⇒ (iv) It follows by Theorem 5.5.
(iv)⇒ (i) Let X ∈ Mr

C(B,φ) with the module actions (b, x) 7−→ b · x and (b, x) 7−→ x · b. Clearly,
X is a real Banach BR-module with the module actions (b, x) 7−→ b⊙ x and (b, x) 7−→ x⊙ b defined
by

b⊙ x = b · x = φ(b)x (b ∈ BR, x ∈ X),

x⊙ b = x · b (x ∈ X, b ∈ BR).

Since φ ∈ △(BR), we deduce that X ∈ Mr
R(BR, φ). On the other hand

i(x⊙ b) = i(x · b) = (ix) · b = ix⊙ b,

for all x ∈ X and b ∈ B. Hence,
H1

R(BR,X
∗) = {0}, (6.4)

by (iv). Let D ∈ Z1
C(B,X

∗). Define the map d : BR −→ X∗ by

d(b) = D(b) (b ∈ BR).

It is easy to see that d ∈ Z1
R(BR,X

∗). According to (6.4), there exists f ∈ X∗ such that

d = dBR,X∗,f . (6.5)

Since B = BR, by (6.5) we have

D(b) = d(b) = dBR,X∗,f (b) = b⊙ f − f ⊙ b

= b · f − f · b = dB,X∗,f (b),

for all b ∈ B. Hence, D = dB,X∗,f and so H1
C(B,X

∗) = {0}. Therefore, (i) holds. □
By [16, Remark 1.2.8], it is known that if B is a complex commutative Banach algebra with

identity, then
△(BR) = △(B) ∪ {φ : φ ∈ △(B)}. (6.6)

Here, we give an extension of the mentioned result as the following.

Proposition 6.2. Let (B, ∥ · ∥) be a complex Banach algebra and let BR denote B regarded as a real
algebra. Then

△(BR) = △(B) ∪ {φ : φ ∈ △(B)}.
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Proof . Clearly,
△(B) ∪ {φ : φ ∈ △(B)} ⊆ △(BR). (6.7)

Suppose that ψ ∈ △(BR). Then ψ(B) is real subalgebra of C and {0} is a proper subset of ψ(B).
Thus, ψ(B) = R or ψ(B) = C. Therefore, 1 ∈ ψ(B) and so there exists b1 ∈ B with ψ(b1) = 1. It
follows that

(ψ(ib1))
2 = (ψ(ib1)

2) = ψ(−b21) = −ψ(b21) = −(ψ(b1))
2 = −1.

Therefore, either ψ(ib1) = i or ψ(ib1) = −i. If ψ(ib1) = i, then for each b ∈ B we have

ψ(ib) = ψ(b1)ψ(ib) = ψ(ib1b) = ψ(ib1)ψ(b) = iψ(b).

This implies that ψ((α + iβ)b) = (α + iβ)ψ(b) for all α, β ∈ R and b ∈ B. Hence, ψ ∈ △(B). If
ψ(ib1) = −i, then by a similar calculation we get ψ(b) = iψ(b) for all b ∈ B which implies that
ψ ∈ △(B). Therefore, ψ ∈ △(B) ∪ {φ : φ ∈ △(B)}. Thus,

△(BR) ⊆ △(B) ∪ {φ : φ ∈ △(B)}. (6.8)

From (6.7) and (6.8), we have

△(BR) = △(B) ∪ {φ : φ ∈ △(B)},

and so the proof is complete. □

Theorem 6.3. Let (B, ∥ · ∥) be a complex Banach algebra and let BR denote B regarded as a real
algebra. Then B is right character amenable if and only if BR is right character amenable.

Proof . We firt assume that B is right character amenable . Let φ ∈ △(BR). Then φ ∈ △(B)
or φ ∈ △(B) by Proposition 6.2. If φ ∈ △(B), then B is right φ-amenable and so BR is right φ-
amenable by Theorem 6.1. If φ ∈ △(B), then B is right φ-amenable and so BR is right φ-amenable
by Theorem 6.1. Therefore, BR is right φ-amenable by part (ii) of Theorem 2.1. Suppose that φ = 0.
Then B is right 0-amenable and so by Corollary 4.5, BR is right 0-amenable. Therefore, BR is right
character amenable.

Conversely, we assume that BR is right character amenable. Let φ ∈ △(B). Then φ ∈ △(BR)
and so BR is right φ-amenable. Hence, B is right φ-amenable by Theorem 6.1. Suppose that φ = 0.
Then BR is right 0-amenable and so B is right 0-amenable by Corollary 4.5. Therefore, B is right
character amenable. □

7. Applications and examples

Applying some results in Sections 2-6 and some known results of character amenability for complex
commutative Banach algebras, we obtain the following theorems.

Theorem 7.1. Let (A, ∥ · ∥) be a commutative real Banach algebra. If A is reflexive and character
amenable, then A is finite dimensional.

Proof . Let A be reflexive and character amenable. Set AC = A × A. Then AC with the algebra
operations defined by (1.2) is complex algebra which is complexification of A with respect to the
injective real algebra homomorphism J : A −→ AC defined by J(a) = (a, 0) a ∈ A. Moreover, by
[5, Proposition I.1.13], there exists an algebra norm ∥| · ∥| on AC satisfying the (∗) condition with
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the positive constants k1 = 1 and k2 = 2. Hence, AC is character amenable by part (iii) of Theorem
3.1 and also reflexive Banach space by [1, Lemma 2.3(vii)]. Therefore, AC is finite dimensional by
[11, Theorem 3.5] and so there exists a finite subset {(a1, b1), · · · , (an, bn)} of AC which generates
AC. It is easy to see that A is generated by the finite set {a1, b1, · · · , an, bn}. Hence, A is a finite
dimensional real linear space. □

Let (B, ∥ · ∥) be a complex Banach algebra with △(B) ̸= ∅. The relative topology on △(B)
induced by weak topology (B∗∗-topology) on B∗ is called the weak topology on △(B).

Let (A, ∥·∥) be a real Banach algebra with△(A) ̸= ∅. set A′ = BR(A,C). Then△(A) ⊆ A′ and A′

is a complex Banach space by Lemma 5.3. The relative topology on △(A) induced by (A′)∗-topology
on A′ is called the weak topology on △(A).

Theorem 7.2. Let (A, ∥ · ∥) be a real Banach algebra and let φ ∈ △(A). If A is left or right
φ-amenable, then φ is an isolated point in △(A) with the weak topology.

Proof . Let A be left φ-amenable. Set AC = A× A. Then AC with the algebra operations defined
by (1.2) is complex algebra which is a complexification of A with respect to the injective real algebra
homomorphism J : A −→ AC defined by J(a) = (a, 0) a ∈ A. Moreover by [5, Proposition I.1.13],
there exists an algebra norm ∥| · ∥| on AC satisfying the (∗) condition with the positive constants
k1 = 1 and k2 = 2. Hence, AC is left φC-amenable by Theorem 3.1. Thus, there exist m ∈ (AC)

∗∗

such that m(φC) = 1 and m(η) = 0 for all η ∈ △(AC) \ {φC} by [13, Remark 5.1]. Define the map
σ : A′ −→ (AC)

∗ by
σ(Λ)(a, b) = Λ(a) + iΛ(b) (Λ ∈ A′, a, b ∈ A).

Clearly, σ is well-defined and σ(ψ) = ψC for all ψ ∈ △(A). It is easy to see that σ is a bounded
complex linear mapping. Thus, σ∗ : (AC)

∗∗ −→ (A′)∗, the adjoint operator of σ, is a complex
bounded linear mapping. Therefore, σ∗(m) ∈ (A′)∗ and

σ∗(m)(φ) = m(σ(φ)) = m(φC) = 1.

Let ψ ∈ △(A) \ {φ}. Then ψC ∈ △(AC) \ {φC} and so m(ψC) = 0 Thus,

σ∗(m)(ψ) = m(σ(ψ)) = m(ψC) = 0.

Therefore, △(A) ∩ (σ∗(m))−1({0}) = △(A) \ {φ}. This implies that △(A) \ {φ} is a closed set in
△(A) with the weak topology and so {φ} is an open set in △(A) with the weak topology. Hence, φ
is an isolated point of △(A) with the weak topology. □

The following example shows that the converse of Theorem 7.2 is not true in general.

Example 7.3. Let S = N ∪ {0} and define the semigroup operation on S by

m ∗ n =

{
m if n = m
0 if n ̸= m

(m,n ∈ S).

The semigroup algebra l1(S) with the convolution product is a complex commutative Banach algebra
with the l1-norm. It is known that l1(S) generate by {em : m ∈ S}, where em = {em,n}∞n=0 for all
m ∈ S and

em,n =

{
1 n = m
0 n ̸= m

(n ∈ N ∪ {0}).
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Moreover, △(l1(S)) = {φS} ∪ {φt : t ∈ N}. where φS(em) = 1, (m ∈ S) and for each t ∈ N;

φt(em) =

{
1 m = t
0 m ̸= t

(m ∈ S).

Let B be the unitisation of l1(S) with unit eB. Then △(B) = △(l1(S)) ∪ {φ∞}, where

φ∞(em) = 0 (m ∈ S) and φ∞(eB) = 1.

Let BR be B regarded as a real Banach algebra. Then BR is a commutative real Banach algebra and

△(BR) = △(B) ∪ {φ : φ ∈ △(B)}.

We claim that φ∞ is an isolated point in △(BR) with the weak topology. Define the function
f : B′ −→ C by

f(Λ) = Λ(ieB) (Λ ∈ B′).

It is easy to see that f ∈ (B′)∗. Suppose that φ∞ is not an isolated point in △(BR) with the weak
topology. Then there exists a net {φγ}γ∈Γ in △(BR) \ {φ∞} such that

lim
γ
φγ = φ∞ (in △(BR) with the weak topology).

This implies that
lim
γ
f(φγ) = f(φ∞) = φ∞(ieB) = iφ∞(eB) = i (7.1)

On the other hand, f(φγ) ∈ {0,−i} for all γ ∈ Γ. This implies that lim
γ
f(φγ) ̸= i, which contradicts

to (7.1). Hence, our claim is justified.
It is known [8, Example 2.2] that B is not φ∞-amenable. Therefore, BR is not φ∞-amenable by
Theorem 6.1.

In continue we study character amenability of certain real Banach algebras.
Let X be a compact Hausdorff space. We denote by CF(X) the set of all continuous F-valued

functions on X. Then CF(X) is a unital commutative Banach algebra over F with unit 1X , the
constant function on X with value 1, and with the uniform norm ∥ · ∥X on X defined by

∥f∥X = sup{|f(x)| : x ∈ X} (f ∈ CF(X)).

We write C(X) instead of CC(X). A complex subalgebra B of C(X) is called a Banach function
algebra on X if B separates the points of X, 1X ∈ B and B is a unital Banach algebra under an
algebra norm ∥ · ∥. A complex uniform algebra on X is a complex Banach function algebra on X
with the uniform norm ∥ · ∥X .

Let B be a Banach function algebra on X. For each x ∈ X, the map eB,x : B −→ C defined by
eB,x(f) = f(x) (f ∈ B), is a character of B which is called the evaluation character on B at x. B
is called natural if △(B) = {eB,x : x ∈ X}. The Choquet boundary of B is denoted by Ch(B,X)
and definded as the set of all x ∈ X such that δx, the point mass measure on X at x, is the unique
probability measure µ on X such that µ is a representing measure for eB,x, i.e. eB,x(f) =

∫
X
fdµ

for all f ∈ B. Hu, Sangani Monfared and Traynor studied character amenability of complex Banach
function algebra on compact Housdorff space in [11] and obtained the following results which are
useful in the sequel.
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Theorem 7.4. [11, Theorem 5.1] Let B be a complex Banach function algebra on a compact Haus-
dorff space X. If B is character amenable, then Ch(B,X) = X.

Theorem 7.5. [11, Corollary 5.2] Let B be a complex natural uniform algebra on a compact Haus-
dorff space X. Then B is character amenable if and only if Ch(B,X) = X.

Let X be a compact Hausdorff space. A self-map τ : X −→ X is called a topological involution on
X if τ is continuous and τ(τ(x)) = x for all x ∈ X. Let τ : X −→ X be an topological involution
on X. Then the map τ ∗ : C(X) −→ C(X) defined by τ ∗(f) = f̄ ◦ τ (f ∈ C(X)), is an algebra
involution on C(X) which is called the algebra involution on C(X) induced by τ . Set

C(X, τ) = {f ∈ C(X) : τ ∗(f) = f}.

Then C(X, τ) is a self-adjoint real uniformly closed subalgebra of C(X) containing 1X and separating
the points of X. Moreover, C(X) = C(X, τ)⊕ iC(X, τ) and

max{∥f∥X , ∥g∥X} ≤ ∥f + ig∥X ≤ 2max{∥f∥X , ∥g∥X},

for all f, g ∈ C(X, τ). Furthermore, C(X, τ) = CR(X) if and only if τ is the identity map on X. A
real subalgebra A of C(X, τ) is called a real Banach function algebra on (X, τ) if A separates the
points of X, 1X ∈ A and A is a unital real Banach algebra with an algebra norm ∥ · ∥ on A. If the
norm on real Banach function algebra on A is ∥ · ∥X , then A is called a real uniform algebra on X.

Let A be a real Banach function algebra on (X, τ). For each x ∈ X, the map eA,x : A −→ C
defined by eA,x(f) = f(x) (f ∈ A) is a character of A which is called evaluation character on
X. A is called natural if △(A) = {eA,X : x ∈ X}. The Choquet boundary of A with respect to
(X, τ) is denoted by Ch(A,X, τ) and defined the set of all x ∈ X such that mx is the unique real part
representing measure µ for eA,x, i.e. eA,x(f) = f(x) =

∫
X
fdµ for all f ∈ A , wheremx = 1

2
(δx+δτ(x)).

Here, we study character amenability of real Banach function algebras on (X, τ) as the following.

Theorem 7.6. Let X be a compact Hausdorff space, let τ : X −→ X be a topological involution on
X and let (A, ∥ · ∥) be a real Banach function algebra on (X, τ). If A is character amenable, then
Ch(A,X, τ) = X.

Proof . Take B = {f + ig : f, g ∈ A}. Then B is a complex function algebra on X, B = A⊕ iA
and there exists a complex norm algebra ∥| · |∥ on B and C ≥ 1 such that ∥|f |∥ = ∥f∥ for all f ∈ A
and

max{∥f∥, ∥g∥} ≤ C∥|f + ig|∥ ≤ 2Cmax{∥f∥, ∥g∥}
for all f, g ∈ A. Then B is a complexification of A with the injective real algebra homomorphism
J : A −→ B defined by J(f) = f (f ∈ A) and ∥| · |∥ satisfies in the (∗) condition with k1 = C and
k2 = 2C. Thus, (B, ∥| · |∥) is a complex Banach function algebra on X. Let A be character amenable.
Then B is character amenable by part (iii) of Theorem 3.1. Therefore,

Ch(B,X) = X, (7.2)

by Theorem 7.4. On the other hand,

Ch(B,X) = Ch(A,X, τ), (7.3)

by [4, theorem 16]. From (7.2) and (7.3), we get

Ch(A,X, τ) = X,

and so the proof is complete. □
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Theorem 7.7. Let X be a compact Hausdorff space, let τ : X −→ X be a topological involution on
X, and let (A, ∥ · ∥) be a natural real uniform algebra on (X, τ). Then A is character amenable if
and only if Ch(A,X, τ) = X.

Proof . Take B = {f + ig : f, g ∈ A}. By [16, Theorem 1.3.20], B is a complex natural uniform
algebra on X, B = A⊕ iA and

max{∥f∥X , ∥g∥X} ≤ ∥f + ig∥X ≤ 2max{∥f∥X , ∥g∥X}

for all f, g ∈ A. Then B is a complexification of A with the injective real algebra homomorphism
J : A −→ B defined by J(f) = f (f ∈ A) and ∥ · ∥X satisfies in the (∗) condition with k1 = 1 and
k2 = 2. By part (iii) of Theorem 3.1, A is character amenable if and only if B is character amenable.
By Theorem 7.5, B is character amenable if and only if

Ch(B,X) = X.

On the other hand,
Ch(B,X) = Ch(A,X, τ)

by [16, Theorem 4.3.7]. Therefore, A is character amenable if and only if Ch(A,X, τ) = X and so
the proof is complete. □

The following example show that in sufficient case of Theorem 7.7, we can not omit the naturality
condition on A.

Example 7.8. Let T = {z ∈ C : |z| = 1} and P (T) be the set of all f ∈ C(T) for which f is a
uniform limit of a sequence of polynomials with coefficients in C on T. It is known that P (T) is a
complex uniform algebra on T, Ch(P (T),T) = T and P (T) ̸= C(T). By [11, Theorem 5.3], P (T) is
not character amenable. Define the map τ : T −→ T by

τ(z) = z (z ∈ C).

Clearly, τ is a topological involution on T. Moreover, it is easy to see that τ ∗(P (T)) ⊆ P (T). Define

A = {f ∈ P (T) : τ ∗(f) = f}.

Then A is a real uniform algebra on (T, τ), P (T) = A⊕ iA and

max{∥f∥T, ∥g∥T} ≤ ∥f + ig∥T ≤ 2max{∥f∥T, ∥g∥T}

for all f, g ∈ A. Moreover, A is not natural and Ch(A,T, τ) = T. Thus, P (T) is a complexification of
A with the injective real algebra homomorphism J : A −→ P (T) defined by J(f) = f (f ∈ A) and
∥ · ∥T satisfies in the (∗) condition with k1 = 1 and k2 = 2. Therefore, A is not character amenable
by Theorem 3.1.F

Let (X, d) be a compact metric space and α ∈ (0, 1]. By LipF(X, d
α), we denote the set of all F-valued

functions f on X for which

p(X,dα)(f) = sup{|f(x)− f(y)|
dα(x, y)

: x, y ∈ X, x ̸= y} <∞.



Character amenability of real Banach algebras11 (2020) No. 2, 255-284 281

Then LipF(X, d
α) is an algebra over F containing 1X and separates the points of X. LipF(X, d

α) is
called Lipschitz algebra of order α over F. For α ∈ (0, 1), we denote by lipF(X, d

α) the set of all
f ∈ LipF(X, d

α) for which

lim
d(x,y) 7−→0

|f(x)− f(y)|
dα(x, y)

= 0.

Then lipF(X, d
α) is a subalgebra of LipF(X, d

α) over F. The algebra lipF(X, d
α) is called little Lipschitz

algebra of order α over F. We know that LipF(X, d
β) ⊆ lipF(X, d

α) ⊆ LipF(X, d
α) ⊆ CF(X) whenever

0 < α ≤ β. The Lipschitz algebra LipF(X, d
α) and the little Lipschitz algebra LipF(X, d

α) were
first introduced by Sherbert in [20, 21]. We write Lip(X, dα) (lip(X, dα), respectively) instead of
LipC(X, d

α) (lipC(X, d
α), respectively). It is known that Lip(X, dα) is a natural complex Banach

function algebra on (X, d) under the algebra Lipschitz norm ∥ · ∥Lip(X,dα) defined by

∥f∥Lip(X,dα) = ∥f∥X + p(X,dα)(f) (f ∈ LipF(X, d
α)).

Moreover, lipF(X, d
α) is a closed subalgebra of (Lip(X, dα), ∥ · ∥Lip(X,dα)) whenever α ∈ (0, 1). Also,

(lip(X, dα), ∥ · ∥Lip(X,dα)) is a natural complex Banach function algebra on (X, d). A self-map τ :
X −→ X is called a Lipschitz mapping on (X, d) if

p(τ) = sup{d(τ(x), τ(y))
d(x, y)

: x, y ∈ X, x ̸= y} <∞.

A Lipschitz mapping τ on (X, d) is called a Lipschitz involution on (X, d) if τ(τ(x)) = x for all
x ∈ X. It is easy to see that if τ : X −→ X is a Lipschitz involution on (X, d), then τ ∗(Lip(X, dα)) =
Lip(X, dα) for α ∈ (0, 1] and τ ∗(lip(X, dα)) = lip(X, dα) for α ∈ (0, 1). Define

Lip(X, dα, τ) = {f ∈ Lip(X, dα) : τ ∗(f) = f} (α ∈ (0, ]),

lip(X, dα, τ) = {f ∈ lip(X, dα) : τ ∗(f) = f} (α ∈ (0, 1)).

It is known [2, Theorem 2.7] that if B = Lip(X, dα) (B = lip(X, dα), respectively) and A =
Lip(X, dα, τ) (A = lip(X, dα, τ), respectively), then B = A⊕ iA,

max{∥f∥Lip(X,dα), ∥g∥Lip(X,dα)} ≤ (p(τ))α∥f + ig∥Lip(X,dα)

≤ 2(p(τ))α max{∥f∥Lip(X,dα), ∥g∥Lip(X,dα)}

for all f, g ∈ A and (A, ∥ · ∥Lip(X,dα)) is a natural real Banach function algebra on ((X, d), τ). The
real Lipschitz algebras Lip(X, dα, τ) and lip(X, dα, τ) were first introduced in [2].

Theorem 7.9. Let (X, d) be a compact metric space, let τ : X −→ X be a Lipschitz involution on
(X, d) and let A = Lip(X, dα, τ) for α ∈ (0, 1] or A = lip(X, dα, τ) for α ∈ (0, 1).

(i) If x ∈ X, then A is eA,x-amenable if and only if x is an isolated point in (X, d).

(ii) A is character amenable if and only if X is finite.

Proof . (i) Let B = Lip(X, dα) for α ∈ (0, 1] (B = lip(X, dα) for α ∈ (0, 1), respectively). Then
(B, ∥ · ∥Lip(X,dα)) is a natural complex Banach function algebra on (X, d) and B is a complexification
of A with the injective real algebra homomorphism J : A −→ B defined by J(f) = f (f ∈ A) and

max{∥f∥Lip(X,dα), ∥g∥Lip(X,dα)} ≤ (p(τ))α∥f + ig∥Lip(X,dα)

≤ 2(p(τ))α max{∥f∥Lip(X,dα), ∥g∥Lip(X,dα)}
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for all f, g ∈ A. According to eB,x = (eA,x)C , we deduce that A is eA,x-amenable if and only if B is
eB,x-amenable by part (i) of Theorem 3.1. Since B is a natural complex Banach function algebra on
X contained in Lip(X, dα), by [8, Theorem 2.6], B is eB,x-amenable if and only if x is an isolated
point of X. Hence, (i) holds.
(ii) By part (iii) of Theorem 3.1, A is character amenable if and only if B is character amenable. On
the other hand, by [8, Corollary 2.7], B is character amenable if and only if X is finite. Hence, (ii)
holds. □

Let G be locally compact group. We denote by M(G) the set of all complex Borel measures on
G. It is known that M(G) is a complex Banach algebra with the norm

∥µ∥ = |µ|(G) (µ ∈M(G)).

Let λ be a left Haar measure on G and L1(G) = L1(G, λ), the group algebra on G with respect to
measure λ, equipped the L1(G)-norm

∥f∥L1(G) =

∫
G

|f | dλ (f ∈ L1(G)).

A map τ : G −→ G is called a topological group involution on G if τ is a continuous group automor-
phism on G and τ(τ(x)) = x for all x ∈ G.

Let G be locally compact group and let τ : G −→ G be a topological group involution on G. It
is easy to see that µ ◦ τ ∈M(G) for all µ ∈M(G). Define

M(G, τ) = {µ ∈M(G) : µ ◦ τ = µ̄}.

It is shown [7, Proposition 2.2] thatM(G, τ) is a closed real subalgebra ofM(G),M(G) =M(G, τ)⊕
iM(G, τ) and

max {∥µ∥, ∥ν∥} ≤ ∥µ+ iν∥ ≤ 2max {∥µ∥, ∥ν∥},

for all µ, ν ∈M(G, τ). Let λ be a Haar measure on G. By [7, Theorem 2.4], λ ◦ τ = λ. Define

L1(G, τ) = {f ∈ L1(G) : f ◦ τ = f̄}.

By [7, Theorem 2.5], L1(G, τ) is a closed real subalgebra of L1(G),

L1(G) = L1(G, τ)⊕ iL1(G, τ),

and
max {∥f∥L1(G), ∥g∥L1(G)} ≤ ∥f + ig∥L1(G) ≤ 2max {∥f∥L1(G), ∥g∥L1(G)},

for all f, g ∈ L1(G, τ).

Theorem 7.10. Let G be a locally compact group and let τ : G −→ G be a topological group
involution on G. Then the following assertions are equivalent.

(i) L1(G, τ) is left character amenable.

(ii) L1(G, τ) is right character amenable.

(iii) G is amenable.
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Proof . Since L1(G) = L1(G, τ)⊕ iL1(G, τ),

max {∥f∥L1(G), ∥g∥L1(G)} ≤ ∥f + ig∥L1(G) ≤ 2max {∥f∥L1(G), ∥g∥L1(G)},

for all f, g ∈ L1(G, τ), we deduce that L1(G) is left (right, respectively) character amenable if and
only if L1(G, τ) is left (right, respectively) character amenable by part (ii) of Theorem 3.1. On the
other hand, G is amenable if and only if L1(G) is left (right, respectively) character amenable by [18,
Corollary 2.4]. Therefore, the result holds. □

Theorem 7.11. Let G be a locally compact group and let τ : G −→ G be a topological group
involution on G. Then M(G, τ) is character amenable if and only if G is a discrete amenable group.

Proof . Since M(G) =M(G, τ)⊕ iM(G, τ),

max {∥µ∥, ∥ν∥} ≤ ∥µ+ iν∥ ≤ 2max {∥µ∥, ∥ν∥},

for all µ, ν ∈M(G, τ), we deduce thatM(G, τ) is character amenable if and only ifM(G) is character
amenable by part (iii) of Theorem 3.1. Therefore, the result holds by [18, Corollary 2.5]. □

Let G be locally compact group, λ be a left Haar measure on G and L1(G) = L1(G, λ). Let
τ : G −→ G be a topological group involution on G. Since L1(G) is a complexification of L1(G, τ)
with respect to the injective real algebra homomorphism J : L1(G, τ) −→ L1(G) defined by J(f) =
f (f ∈ L1(G, τ)) and

max {∥f∥L1(G), ∥g∥L1(G)} ≤ ∥f + ig∥L1(G) ≤ 2max {∥f∥L1(G), ∥g∥L1(G)},

for all f, g ∈ L1(G, τ), by [1, Lemmas 2.3 and 2.4], ((L1(G))∗∗,□) is a complexification of ((L1(G, τ))∗∗,□)
with respect to the injective algebra homomorphism J2 : (L1(G, τ))∗∗ −→ (L1(G))∗∗ defined by
J2(Φ) = ΦC (Φ ∈ (L1(G, τ))∗∗) and

max {∥Φ∥, ∥Ψ∥} ≤ 4∥J2(Φ) + iJ2(Ψ)∥ ≤ 32max {∥Φ∥, ∥Ψ∥},

for all Φ,Ψ ∈ (L1(G, τ))∗∗.
Applying part (iii) of Theorem 3.1 and [11, Theorem 3.10], we get the following result.

Theorem 7.12. Let G be locally compact group with a left Haar measure λ, let L1(G) = L1(G, λ)
and let τ : G −→ G be a topological group involution on G. Then (L1(G, τ)∗∗,□) is character
amenable if and only if G is finite.
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