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Abstract

The aim of this paper is to introduce a new class of mappings called (α, β)-Berinde-φ-contraction
mappings and to establish some fixed point results for this class of mappings in the frame work
of metric spaces. Furthermore, we applied our results to the existence of solution of second order
differential equations and the existence of a solution for the following nonlinear integral equation:

x(t) = g(t) +

∫ b

a

M(t, s)K(t, x(s))ds,

where M : [a, b] × [a, b] → R+, K : [a, b] × R → R and g : [a, b] → R are continuous functions.
Our results improve, extend and generalize some known results in the literature. In particular, our
main result is a generalization of the fixed point result of R. Pant, Fixed point theorem for nonlinear
contractions with application to iterated function system, Appl. Gen. Topol. 19 (1) (2018), 163-172.
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1. Introduction and Premilinaries

For the past three to four decades, the theory of fixed point has played an important role in non-
linear functional analysis and known to be very useful in establishing the existence and uniqueness
theorems for nonlinear differential and integral equations. In fact, the theory of fixed point has been
applied to solve many real life problems, such as, equilibrium problems, variational inequalities, and
optimization problems. Banach [9] in 1922 proved the well celebrated Banach contraction principle
in the frame work of metric spaces. The importance of the Banach contraction principle cannot
be over emphasized in the study of fixed point theory and its applications. Due to its importance
and useful applications, several authors have generalized this result by considering different classes
of nonlinear mappings and spaces which are more general than contraction mappings and metric
spaces, (see [1, 23, 25, 26, 27, 28, 29, 32, 34] and the references therein). Also, over the years, sev-
eral authors have developed several iterative schemes for solving fixed point problem for different
operators and in Hilbert, Banach, p-uniformly convex metric and Hadamard spaces, see for example,
[2, 3, 4, 5, 6, 7, 8, 15, 16, 17, 18, 19, 20, 21, 22, 24, 37, 38, 39]. For example, Boyd and Wong [13]
introduced a class of mappings called the φ-contraction mapping in the frame work of metric spaces
and obtained some fixed point results for this class of mappings.

Definition 1.1. [13] Let (X, d) be a metric space and φ : [0,∞) → [0,∞) a function such that
φ(t) < t for t > 0. A selfmap T : X → X is called φ-contraction if

d(Tx, Ty) ≤ φ(d(x, y)) (1.1)

for all x, y ∈ X.

Theorem 1.2. [13] Let (X, d) be a complete metric space and T : X → X a φ-contraction such that
φ is upper semicontinuous from the right on [0,∞) and satisfies φ(t) < t for all t > 0. Then T has
a unique fixed point.

Remark 1.3. It is clear that if φ(x) ≤ δx for δ ∈ [0, 1), then we obtain the Banach contraction
mapping.

More so, Berinde [11, 12] introduced and studied the following class of contraction mappings:

Definition 1.4. Let (X, d) be a metric space. A mapping T : X → X is said to be a generalized
almost contraction if there exist δ ∈ [0, 1) and L ≥ 0 such that

d(Tx, Ty) ≤ δd(x, y) + Lmin{d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}, (1.2)

for all x, y ∈ X.

Furthermore, in 2008, Suzuki [35] introduced a class of mappings satisfying condition (C) which is
also known as Suzuki-type generalized nonexpansive mapping and proved some fixed point theorems
for this class of mappings.

Definition 1.5. Let (X, d) be a metric space. A mapping T : X → X is said to satisfy condition
(C) if for all x, y ∈ X,

1

2
d(x, Tx) ≤ d(x, y) ⇒ d(Tx, Ty) ≤ d(x, y).
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Theorem 1.6. Let (X, d) be a compact metric space and T : X → X be a mapping satisfying
condition (C). Then T has a unique fixed point.

Samet et al. [33] introduced another class of mappings, called the α-admissible mappings and obtain
some fixed point results for this class of mappings.

Definition 1.7. [33] Let α : X×X → [0,∞) be a function. We say that a self mapping T : X → X
is α-admissible if for all x, y ∈ X,

α(x, y) ≥ 1 ⇒ α(Tx, Ty) ≥ 1.

Definition 1.8. [23] Let T : X → X and α : X × X → [0,∞) be mappings. We say that T is a
triangular α-admissible if

1. T is α-admissible and

2. α(x, y) ≥ 1 and α(y, z) ≥ 1 ⇒ α(x, z) ≥ 1 for all x, y, z ∈ X.

Theorem 1.9. [33] Let (X, d) be a complete metric space and T : X → X be an α-admissible
mapping. Suppose that the following conditions hold:

1. for all x, y ∈ X, we have α(x, y)d(Tx, Ty) ≤ ψ(d(x, y)), where ψ : [0,∞) → [0,∞) is a
nondecreasing function such that

∑∞
n=1 ψ

n(t) <∞ for all t > 0;

2. there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;

3. either T is continuous or for any sequence {xn} in X with α(xn, xn+1) ≥ 1 for all n ≥ 0 and
xn → x as n→ ∞, then α(xn, x) ≥ 1.

Then T has a fixed point.

In 2016, Chandok et al. [14] introduced another class of mappings, called the TAC-contractive and
established some fixed point results in the frame work of complete metric spaces.

Definition 1.10. Let T : X → X be a mapping and let α, β : X → R+ be two functions. Then T
is called a cyclic (α, β)-admissible mapping, if

1. α(x) ≥ 1 for some x ∈ X implies that β(Tx) ≥ 1,

2. β(x) ≥ 1 for some x ∈ X implies that α(Tx) ≥ 1.

Definition 1.11. Let (X, d) be a metric space and let α, β : X → [0,∞) be two mappings. We say
that T is a TAC-contractive mapping, if for all x, y ∈ X,

α(x)β(y) ≥ 1 ⇒ ψ(d(Tx, Ty)) ≤ f(ψ(d(x, y)), ϕ(d(x, y))),

where ψ is a continuous and nondecreasing function with ψ(t) = 0 if and only if t = 0, ϕ is continuous
with limn→∞ ϕ(tn) = 0 ⇒ limn→∞ tn = 0 and f : [0,∞)2 → R is continuous, f(a, t) ≤ a and
f(a, t) = a⇒ a = 0 or t = 0 for all s, t ∈ [0,∞).

Theorem 1.12. Let (X, d) be a complete metric space and let T : X → X be a cyclic (α, β)-
admissible mapping. Suppose that T is a TAC-contraction mapping. Assume that there exists x0 ∈ X
such that α(x0) ≥ 1, β(x0) ≥ 1 and either of the following conditions hold:

1. T is continuous,
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2. if for any sequence {xn} in X with β(xn) ≥ 1, for all n ≥ 0 and xn → x as n → ∞, then
β(x) ≥ 1.

In addition, if α(x) ≥ 1 and β(y) ≥ 1 for all x, y ∈ F (T ) (where F (T ) denotes the set of fixed points
of T ), then T has a unique fixed point.

Very recently, Pant [31] introduce the notion of Suzuki type generalized φ-contractive mapping and
also established some fixed point results for this class of mappings.

Definition 1.13. [31] Let (X, d) be a metric space. A selfmap T : X → X is called a Suzuki type
generalized φ-contractive if for all x, y ∈ X,

1

2
d(x, Tx) ≤ d(x, y) ⇒ d(Tx, Ty) ≤ φ(m(x, y)), (1.3)

where m(x, y) = max{d(x, y), d(x, Tx), d(y, Ty)} and φ : [0,∞) → [0,∞) is a function such that
φ(t) < t and lim sups→t+ φ(s) < t for all t > 0.

Theorem 1.14. [31] Let (X, d) be a complete metric space and T : X → X a Suzuki type generalized
φ-contractive mapping. Then T has a unique fixed point in X.

Lemma 1.15. [10] Suppose that (X, d) is a metric space and {xn} is a sequence in X such that
d(xn, xn+1) → 0 as n→ ∞. If {xn} is not a Cauchy sequence then there exists an ϵ > 0 and sequences
of positive integers {xmk

} and {xnk
} with nk > mk ≥ k such that d(xmk

, xnk
) ≥ ϵ, d(xmk

, xnk−1
) < ϵ

and

1. limk→∞ d(xmk
, xnk

) = ϵ,

2. limk→∞ d(xnk
, xmk+1

) = ϵ,

3. limk→∞ d(xmk−1
, xnk

) = ϵ,

4. limk→∞ d(xnk
, xmk+1

) = ϵ.

Inspired by the works of Boyd and Wong [13], Pant [31], Samet et al. [33] and Chandok et al. [14],
we introduced a new class of (α, β)-cyclic admissible mappings and a new class of (α, β)-Berinde-φ-
contraction mappings and establish the existence and uniqueness theorems for fixed points of the class
of (α, β)-Berinde-φ-contraction mappings in the frame work of complete metric spaces. Furthermore,
we present some examples and applications of our main results.

2. Main Result

In this section, we introduce a new class of mappings and prove the existence and uniqueness theorems
for fixed points of this class of mappings.

Definition 2.1. Let X be a nonempty set, T : X → X be a mapping and α, β : X ×X → R+ be
two functions. We say that T is an (α, β)-cyclic admissible mapping, if for all x, y ∈ X

1. α(x, y) ≥ 1 ⇒ β(Tx, Ty) ≥ 1,

2. β(x, y) ≥ 1 ⇒ α(Tx, Ty) ≥ 1.

Remark 2.2. Clearly, if β(x, y) = α(x, y), we obtain Definition 1.7.
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Definition 2.3. Let (X, d) be a metric space, α, β : X ×X → [0,∞) be two functions and T be a
self map on X. The mapping T is said to be an (α, β)-Berinde-φ-contraction mapping, if there exists
L ≥ 0 such that for all x, y ∈ X with Tx ̸= Ty, we have

α(x, Tx)β(y, Ty) ≥ 1 ⇒ d(Tx, Ty) ≤ φ(d(x, y)) + Lmin{d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)},
(2.1)

where φ : [0,∞) → [0,∞) is a continuous function which satisfies φ(t) < t for all t > 0 and φ(0) = 0.

Example 2.4. Let X = [0,∞) and d : X × X → [0,∞) be defined as d(x, y) = |x − y| for all
x, y ∈ X. It is clear that (X, d) is a metric space. We define T : X → X by

Tx =

{
x
7

if x ∈ [0, 1]

5x if x ∈ (1,∞),

α, β : X ×X → [0,∞) by

α(x, y) =

{
1 if x, y ∈ [0, 1]

0 if x, y ∈ (1,∞),

β(x, y) =

{
2 if x, y ∈ [0, 1]

0 if x, y ∈ (1,∞),

and φ : [0,∞) → [0,∞) by φ(t) = t
2
. Then T is an (α, β)-Berinde-φ-contraction mapping but not an

φ-contraction as defined by Boyd et al. [13] and Suzuki type generalized φ-contraction as defined by
Rant [31].

Proof . Clearly, for any x, y ∈ [0, 1], we have that α(x, Tx) = 1 and β(y, Ty) = 2, as such we
have that α(x, Tx)β(y, Ty) > 1. Since α(x, Tx)β(y, Ty) > 1 if x, y ∈ [0, 1], we need to show that
d(Tx, Ty) ≤ φ(d(x, y)) + Lmin{d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)} for any x, y ∈ [0, 1]. Observe
that for L ≥ 0, we have

d(Tx, Ty) = |x
7
− y

7
| = 1

7
|x− y| ≤ 1

2
|x− y|+ Lmin{|x− x

7
|, |y − y

7
|, |x− y

7
|, |y − x

7
|}

= φ(d(x, y)) + Lmin{d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}.

Thus, T is an (α, β)-Berinde-φ-contraction mapping. However T is not an φ-contraction mapping
as defined by Boyd et al. [13] and Pant [31]. Suppose x = 0 and y = 4. Observe that

d(Tx, Ty) = 20 > 2 = φ(d(x, y)).

Also, we have

1

2
d(x, Tx) = 0 < 4 = d(x, y),

but

d(Tx, Ty) = 20 > 8 = φ(d(y, Ty)) = φ(m(x, y)),

where m(x, y) = max{d(x, y), d(x, Tx), d(y, Ty)}. □
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Remark 2.5. In Definition 2.3, if we suppose that φ(t) = δt, where δ ∈ [0, 1). Then, we obtain a
new type of contractive mapping

α(x, Tx)β(y, Ty) ≥ 1 ⇒ d(Tx, Ty) ≤ δd(x, y) + Lmin{d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}. (2.2)

Using the above example, it is easy to see that (2.2) is a generalization of (1.2).

Lemma 2.6. Let X be a nonempty set and T : X → X be an (α, β)-cyclic admissible mapping.
Suppose that there exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and β(x0, Tx0) ≥ 1. Define the sequence
{xn} by xn+1 = Txn, then α(xm, xm+1) ≥ 1 implies that β(xn, xn+1) ≥ 1 and β(xm, xm+1) ≥ 1 implies
that α(xn, xn+1) ≥ 1, for all n,m ∈ N ∪ {0} with m < n.

Proof . Using our hypothesis and the fact that T is an (α, β)-cyclic admissible mapping, we have
that there exists x0 ∈ X such that

α(x0, Tx0) = α(x0, x1) ≥ 1 ⇒ β(Tx0, Tx1) = β(x1, x2) ≥ 1

and

β(x1, x2) ≥ 1 ⇒ α(Tx1, Tx2) = α(x2, x3) ≥ 1.

Continuing this way, we obtain that

α(x2n, x2n+1) ≥ 1 and β(x2n+1, x2n+2) ≥ 1, ∀n ∈ N.

Using similar approach, we obtain

β(x2n, x2n+1) ≥ 1 and α(x2n+1, x2n+2) ≥ 1,∀n ∈ N.

In similar sense, we obtain the same result for all m ∈ N. That is

α(x2m, x2m+1) ≥ 1 and β(x2m+1, x2m+2) ≥ 1

and

β(x2m, x2m+1) ≥ 1 and α(x2m+1, x2m+2) ≥ 1,∀m ∈ N.

In addition, since

α(xm, xm+1) ≥ 1 ⇒ β(xm+1, xm+2) ≥ 1 ⇒ α(xm+2, xm+3) ≥ 1 · · ·

with m < n, we deduce that

α(xm, xm+1) ≥ 1 ⇒ β(xn, xn+1) ≥ 1.

Using similar approach, we have that

β(xm, xm+1) ≥ 1 ⇒ α(xn, xn+1) ≥ 1.

□



On (α, β)-Berinde-φ-Contraction mapppings11 (2020) No.2,363-378 369

Theorem 2.7. Let (X, d) be a complete metric space and T : X → X be an (α, β)-Berinde-φ-
contraction mapping. Suppose the following conditions hold:

1. T is an (α, β)-cyclic admissible mapping,

2. there exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and β(x0, Tx0) ≥ 1,

3. T is continuous.

Then T has a fixed point.

Proof . We define a sequence {xn} by xn+1 = Txn for all n ∈ N∪{0}. If we suppose that xn+1 = xn,
we obtain the desired result. Now, suppose that xn+1 ̸= xn for all n ∈ N ∪ {0}. Since T is an
(α, β)-cyclic admissible mapping and α(x0, x1) ≥ 1, we have β(Tx0, Tx1) = β(x1, x2) ≥ 1 and this
implies that α(x2, x3) = α(Tx1, Tx2) ≥ 1, continuing the process, we have

α(x2k, x2k+1) ≥ 1 and β(x2k+1, x2k+2) ≥ 1 ∀ k ∈ N ∪ {0}. (2.3)

Using similar argument, we have that

β(x2k, x2k+1) ≥ 1 and α(x2k+1, x2k+2) ≥ 1 ∀ k ∈ N ∪ {0}. (2.4)

It follows from (2.3) and (2.4) that α(xn, xn+1) ≥ 1 and β(xn, xn+1) ≥ 1 for all n ∈ N ∪ {0}.
Since α(xn, xn+1)β(xn+1, xn+2) ≥ 1, we obtain from (2.1)

d(xn+1, xn+2) = d(Txn, Txn+1)

≤ φ(d(xn, xn+1) + Lmin{d(xn, xn+1), d(xn+1, xn+2), d(xn, xn+2), d(xn+1, xn+1)} (2.5)

= φ(d(xn, xn+1)) + L.0

< d(xn, xn+1),

which imples that
d(xn+1, xn+2) < d(xn, xn+1).

Using similar approach, it is easy to see that

d(xn, xn+1) < d(xn−1, xn).

Hence the sequence {d(xn, xn+1)} is strictly decreasing and bounded below. Thus there exists r ≥ 0
such that limn→∞ d(xn, xn+1) = r. Using the continuity of φ and the fact that φ(t) < t for all t > 0
with φ(0) = 0, we obtain from (2.5) that

r = lim
n→∞

d(xn, xn+1) ≤ lim
n→∞

φ(d(xn−1, xn)) < r,

which is a contradiction. Thus, we must have that r = 0 and hence

lim
n→∞

d(xn, xn+1) = 0. (2.6)

In what follows, we show that {xn} is a Cauchy sequence. Suppose that {xn} is not a Cauchy
sequence, then by Lemma 1.15, there exists an ϵ > 0 and sequences of positive integers {xnk

} and
{xmk

} with nk > mk ≥ k such that d(xmk
, xnk

) ≥ ϵ. For each k > 0, corresponding to mk, we can
choose nk to be the smallest positive integer such that d(xmk

, xnk
) ≥ ϵ, d(xmk

, xnk−1
) < ϵ and (1)−(4)
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of Lemma 1.15 hold. Since α(x0, Tx0) ≥ 1 and β(x0, Tx0) ≥ 1, using Lemma 2.6, we obtain that
α(xmk

, xmk+1
)β(xnk

, xnk+1
) ≥ 1. Hence, for all k ≥ n0, we have

d(xmk+1
, xnk+1

) ≤ d(Txmk
, Txnk

)

≤ φ(d(xmk
, xnk

)) + Lmin{d(xmk
, xmk+1

), d(xnk
, xnk+1

), d(xmk
, xnk+1

), d(xnk
, xmk+1

)}.
(2.7)

Using Lemma 1.15, (2.6), φ(t) < t for all t > 0 and the continuity of φ(t), we have that

ϵ = lim
k→∞

d(Txmk
, Txnk

)

≤ lim
k→∞

[φ(d(xmk
, xnk

)) + Lmin{d(xmk
, xmk+1

), d(xnk
, xnk+1

), d(xmk
, xnk+1

), d(xnk
, xmk+1

)}].

< ϵ,

which is a contradiction. We therefore have that {xn} is Cauchy. Since (X, d) is complete, it follows
that there exists x ∈ X such that limn→∞ xn = x. Since T is continuous, we have that

x = lim
n→∞

xn = lim
n→∞

xn+1 = lim
n→∞

Txn = T lim
n→∞

xn = Tx.

Thus, T has a fixed point. □

Theorem 2.8. Let (X, d) be a complete metric space and T : X → X be an (α, β)-Berinde-φ-
contraction mapping. Suppose the following conditions hold:

1. T is a (α, β)-cyclic admissible mapping,

2. there exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and β(x0, Tx0) ≥ 1,

3. if for any sequence {xn} in X such that xn → x as n→ ∞, then β(x, Tx) ≥ 1 and α(x, Tx) ≥ 1.

Then T has a fixed point.

Proof . We define a sequence {xn} by xn+1 = Txn for all n ∈ N ∪ {0}. In Theorem 2.7, we have
establish that {xn} is Cauchy and since (X, d) is complete, it follows that there exists x ∈ X such
that limn→∞ xn = x. Now suppose hypothesis (3) holds, we show that T has a fixed point. Since
α(xn, xn+1) ≥ 1 and β(x, Tx) ≥ 1, we have that α(xn, xn+1)β(x, Tx) ≥ 1 we obtain from (2.1) that

d(xn+1, Tx) = d(Txn, Tx)

≤ φ(d(xn, x)) + Lmin{d(xn, xn+1), d(x, Tx), d(xn, Tx), d(x, Txn)}. (2.8)

Taking limit as n→ ∞ and using (2.6) and the assumptions on φ, it is easy to see that

d(x, Tx) = lim
n→∞

d(xn+1, Tx) = lim
n→∞

d(Txn, Tx) = 0,

which implies that Tx = x. Hence, T has a fixed point. □ We present an example to support the
above results.

Example 2.9. Let X = [0,∞) and d : X × X → [0,∞) be defined as d(x, y) = |x − y| for all
x, y ∈ X. It is clear that (X, d) is a complete metric space. We define T : X → X by

Tx =

{
x
9

if x ∈ [0, 2)

2x− 35
4

if x ∈ [2,∞),
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α, β : X ×X → [0,∞) by

α(x, y) =

{
1.5 if x, y ∈ [0, 1]

0 if x, y ∈ (1,∞),

β(x, y) =

{
1 if x, y ∈ [0, 1]

0 if x, y ∈ (1,∞),

and α, β : [0,∞) → [0,∞) by φ(t) = t
5
.

Proof . For any x, y ∈ [0, 1], we have that α(x, y) = 1.5 and β(x, y) = 1. Also Tx = x
9
and

Ty = y
9
are in [0, 1], as such, we have that α(x, y) = 1.5 > 1 ⇒ β(Tx, Ty) = 1 and β(x, y) =

1 ⇒ α(Tx, Ty) = 1.5 > 1. Therefore, T is (α, β)-cyclic admissible mapping. It is easy to see
that for any x0 ∈ [0, 1], we have that α(x0, T0) > 1 and β(x0, Tx0) = 1. Also all the hypothesis
of Theorem 2.7 and Theorem 2.8 are satisfied. We now establish that T is an (α, β)-Berinde-φ-
contraction. Since α(x, Tx)β(y, Ty) = 1.5 > 1 if x, y ∈ [0, 1], we need to show that d(Tx, Ty) ≤
φ(d(x, y))+Lmin{d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)} for any x, y ∈ [0, 1]. Observe that, for L ≥ 0,
it is easy to see that

d(Tx, Ty) = |x
9
− y

9
|

=
1

9
|x− y| ≤ 1

5
|x− y|+ Lmin{|x− x

9
|, |y − y

9
|, |x− y

9
|, |y − x

9
|

= φ(d(x, y)) + Lmin{d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}.

Thus T is an (α, β)-Berinde-φ-contraction with x = 0 and x = 35
4
as the two fixed points of T. □

Remark 2.10. As established in the above example, T has two fixed points x = 0 and x = 35
4
. Thus,

for the uniqueness of fixed point of T, we need additional condition.

Theorem 2.11. Suppose that the hypothesis of Theorem 2.8 holds and in addition suppose α(x, Tx) ≥
1 and β(y, Ty) ≥ 1 for all x, y ∈ F (T ), where F (T ) is the set of fixed points of T. Then T has a
unique fixed point.

Proof . Let x, y ∈ F (T ), that is Tx = x and Ty = y such that x ̸= y. Since α(x, Tx) ≥ 1 and
β(y, Ty) ≥ 1, we have α(x, Tx)β(y, Ty) ≥ 1. Thus, we obtain

d(x, y) = d(Tx, Ty)

≤ φ(d(x, y)) + Lmin{d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)},
≤ φ(d(x, y)) < d(x, y),

which is a contradiction. Thus, T has a unique fixed point. □
We present an examples to support Theorem 2.11.

Example 2.12. Let X = [0,∞) and d : X × X → [0,∞) be defined as d(x, y) = |x − y| for all
x, y ∈ X. We define T : X → X by

Tx =

{
x
16

if x ∈ [0, 1]

4x+ 5 if x ∈ (1,∞),
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α, β : X ×X → [0,∞) by

α(x, y) =

{
1.5 if x, y ∈ [0, 1]

0 if x, y ∈ (1,∞),

β(x, y) =

{
2 if x, y ∈ [0, 1]

0 if x, y ∈ (1,∞),

and and α, β : [0,∞) → [0,∞) by φ(t) = t
10
.

Proof . For any x, y ∈ [0, 1], we have that α(x, y) = 1.5, β(x, y) = 1. Also Tx = x
9
and Ty = y

9
are in

[0, 1], as such we have that α(x, y) = 1.5 > 1 ⇒ β(Tx, Ty) = 2 and β(x, y) = 2 > 1 ⇒ α(Tx, Ty) =
1.5 > 1. Therefore, T is (α, β)-cyclic admissible mapping. It is easy to see that for any x0 ∈ [0, 1],
we have that α(x0, T0) > 1 and β(x0, Tx0) = 1. Also all the hypothesis of Theorem 2.11 are satisfied.
We now establish that T is an (α, β)-Berinde-φ-contraction. Since α(x, Tx)β(y, Ty) = 2 > 1 if x, y ∈
[0, 1], we need to show that d(Tx, Ty) ≤ φ(d(x, y))+Lmin{d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)} for
any x, y ∈ [0, 1]. Observe that, for L ≥ 0, it is easy to see that

d(Tx, Ty) = | x
16

− y

16
|

=
1

16
|x− y|

≤ 1

10
|x− y|+ Lmin{d(x, x

16
), d(y,

y

16
), d(x,

y

16
), d(y,

x

16
)}

= φ(d(x, y)) + Lmin{d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}.

Thus T is an (α, β)-Berinde-φ-contraction with x = 0 the unique fixed points of T. However, we
show that Theorem 1.2 and Theorem 1.14 are not applicable. Suppose x = 0 and y = 5. Observe
that

d(Tx, Ty) = 25 >
1

2
= φ(d(x, y)).

Also, we have

1

2
d(x, Tx) = 0 < 5 = d(x, y),

but

d(Tx, Ty) = 25 > 2 = φ(d(y, Ty)) = φ(m(x, y)),

where m(x, y) = max{d(x, y), d(x, Tx), d(y, Ty)}. □

Corollary 2.13. Let (X, d) be a complete metric space and T : X → X be a mapping satisfying the
following inequality

α(x, Tx)β(y, Ty) ≥ 1 ⇒d(Tx, Ty) ≤ φ(d(x, y)),

for all x, y ∈ X, with d(Tx, Ty) > 0, L ≥ 0, where φ : [0,∞) → [0,∞) is a continuous function and
satisfies φ(t) < t for all t > 0 and φ(0) = 0. Suppose the following conditions hold:
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1. T is a (α, β)-cyclic admissible mapping,

2. there exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and β(x0, Tx0) ≥ 1,

3. T is continuous,

4. if for any sequence {xn} in X such that xn → x as n→ ∞, then β(x, Tx) ≥ 1 and α(x, Tx) ≥ 1.

Then T has a fixed point.

Corollary 2.14. Let (X, d) be a complete metric space and T : X → X be a mapping satisfying the
following inequality

α(x, Tx)β(y, Ty) ≥ 1 ⇒d(Tx, Ty) ≤ kd(x, y) + Lmin{d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}

for all x, y ∈ X, where k ∈ (0, 1), L ≥ 0, φ : [0,∞) → [0,∞) is a continuous function and satisfies
φ(t) < t for all t > 0 and φ(0) = 0. Suppose the following conditions hold:

1. T is a (α, β)-cyclic admissible mapping,

2. there exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and β(x0, Tx0) ≥ 1,

3. T is continuous,

4. if for any sequence {xn} in X such that xn → x as n→ ∞, then β(x, Tx) ≥ 1 and α(x, Tx) ≥ 1.

Then T has a fixed point.

Corollary 2.15. Let (X, d) be a complete metric space and T : X → X be a mapping satisfying the
following inequality

d(Tx, Ty) > 0 ⇒d(Tx, Ty) ≤ φ(d(x, y)) + Lmin{d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}

for all x, y ∈ X, with d(Tx, Ty) > 0, L ≥ 0 where φ : [0,∞) → [0,∞) is a continuous function and
satisfies φ(t) < t for all t > 0 and φ(0) = 0. Then T has a unique fixed point.

Corollary 2.16. Let (X, d) be a complete metric space and T : X → X be a mapping satisfying the
following inequality

d(Tx, Ty) ≤ φ(d(x, y))

for all x, y ∈ X, where φ : [0,∞) → [0,∞) is a continuous function and satisfies φ(t) < t for all
t > 0 and φ(0) = 0. Then T has a unique fixed point.

3. Application

In this section, we apply our main result to the existence of solution of the second order differential
equation and integral equation.

3.1. Second order differential equation

In this subsection, we give an application of Corollary 2.13 to the solution of second order differential
equation of the form

x′′(t) = −f(t, x(t)), t ∈ I (3.1)

x(0) = x(1) = 0,
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where I = [0, 1], f : I × R → R is a continuous function. Consider the space C(I) of continuous
function defined on I. It is well-known that C(I) with the metric d(x, y) = supt∈I |x(t)− y(t)| for all
x, y ∈ C(I) is a complete metric space. It is also well-known that the Problem (3.1) is equivalent to
the integral equation

x(t) =

∫ 1

0

G(t, s)f(s, x(s))ds, (3.2)

for t ∈ I, where G is the Green function defined by

G(t, s) =

{
(1− t)s if 0 ≤ s ≤ t ≤ 1,

(1− s)t if 0 ≤ t ≤ s ≤ 1.

If x ∈ C2(I), then x ∈ C(I) is also a solution of (3.1) if and only if it is a solution (3.2).

Theorem 3.1. Let X = C(I) and T : X → X be an operator given by

Tx(t) =

∫ 1

0

G(t, s)f(s, x(s))ds

for all x ∈ X and t ∈ I = [0, 1]. Suppose the following conditions hold:

1. there exists functions α, β : X × X → [0,∞) such that α(x, y) ≥ 1 ⇒ β(Tx, Ty) ≥ 1 and
β(x, y) ≥ 1 ⇒ α(Tx, Ty) ≥ 1, and for all x, y ∈ X, we have

|f(s, u)− f(s, v)| ≤ α(x, y)β(x, y)|u− v|

for some s ∈ I and u, v ∈ R;
2. there exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and β(x0, Tx0) ≥ 1;
3. for any sequence {xn} in X such that xn → x as n→ ∞, then β(x, Tx) ≥ 1.

Then the second order differential equation (3.1) has a solution.

Proof . We define

α(x, y) =

{
2 if x ⪯ y

0 otherwise

β(x, y) =

{
1 if x ⪯ y

0 otherwise

and φ(t) = t
4
. We define x, y ∈ X, x ⪯ y if and only if x(t) ≤ y(t) for all t ∈ [0, 1]. It is clear that if

x ⪯ y, then α(x, Tx)β(y, Ty) > 1. Thus, we have that

|Ty(t)− Tx(t)| ≤
∫ 1

0

G(t, s)|f(s, y(s))− f(s, x(s))|ds

≤
∫ 1

0

G(t, s)α(x, y)β(x, y)|y(s)− x(s)|ds (3.3)

= α(x, y)β(x, y)∥y − x∥ sup
t∈[0,1]

∫ 1

0

G(t, s)ds

= 2∥x− y∥ sup
t∈[0,1]

∫ 1

0

G(t, s)ds.
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It is well-known that for each t ∈ I, we have
∫ 1

0
G(t, s)ds = t(1−t)

2
, as such, we obtain that

supt∈[0,1]

∫ 1

0

G(t, s)ds =
1

8
.

Thus, (3.3) becomes

d(Tx, Ty) ≤ 1

4
d(x, y)

= φ(d(x, y)).

Clearly, all the conditions of Corollary 2.13 are satisfied, and so T has a fixed point. Thus the second
order differential equation (3.1) has a solution. □

3.2. Integral Equation

In this subsection, we give an application of Corollary 2.13 to solve the nonlinear integral equation:

x(t) = g(t) +

∫ b

a

M(t, s)K(t, x(s))ds, (3.4)

where M : [a, b] × [a, b] → R+, K : [a, b] × R → R and g : [a, b] → R are continuous functions. Let
X = C([a, b],R) be the space of all continuous real valued functions defined on [a, b]. We defined
d : X ×X → [0,∞) by d(x, y) = supt∈[a,b] |x(t)− y(t)|. Clearly, (X, d) is a complete metric space.

Theorem 3.2. Let X = C([a, b],R) and T : X → X be an operator given by

Tx(t) = g(t) +

∫ b

a

M(t, s)K(t, x(s))ds

for all t, s ∈ [a, b], where M : [a, b]× [a, b] → R+, K : [a, b]×R → R and g : [a, b] → R are continuous
functions. Let X = C([a, b],R) be the space of all continuous real valued functions defined on [a, b].
Suppose the following conditions hold:

1. there exists a continuous mapping µ : X ×X → [0,∞) such that

|K(s, x(s))−K(s, y(s))| ≤ µ(x, y)|x(s)− y(s)|

for all s ∈ [a, b] and x, y ∈ X;

2. there exists δ ∈ (0, 1) and α, β : X ×X → [0,∞) such that α(x, y) ≥ 1 ⇒ β(Tx, Ty) ≥ 1 and
β(x, y) ≥ 1 ⇒ α(Tx, Ty) ≥ 1 for all x, y ∈ X and∫ b

a

M(t, s)µ(x, y) ≤ δ;

3. there exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and β(x0, Tx0) ≥ 1;

4. for any sequence {xn} in X such that xn → x as n→ ∞, then β(x, Tx) ≥ 1 and α(x, Tx) ≥ 1.

Then the integral equation (3.4) has a solution.
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Proof . We define

α(x, y) =

{
1 if x ⪯ y

0 otherwise

β(x, y) =

{
2 if x ⪯ y

0 otherwise

and φ(t) = δt. We define x, y ∈ X, x ⪯ y if and only if x(t) ≤ y(t) for all t ∈ [0, 1]. It is clear that if
x ⪯ y, we have that α(x, Tx)β(y, Ty) > 1. Thus, we have that

|Ty(s)− Tx(s)| ≤
∫ b

a

|M(t, s)[K(t, y(s))−K(t, x(s))]|ds

≤
∫ b

a

M(t, s)µ(x, y)|y(s)− x(s)|ds

≤ sup
s∈[a,b]

|y(s)− x(s)|
∫ b

a

M(t, s)µ(x, y)ds

≤ δd(y, x)

= φ(d(x, y)).

Thus, we have that
d(Tx, Ty) ≤ φ(d(x, y)).

Clearly, all the conditions of Corollary 2.13 are satisfied, and so T has a fixed point. Thus the integral
equation (3.4) has a solution. □
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