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Abstract

In this paper, we investigate the equilibrium points, stability of two equilibrium points, convergences
of negative equilibrium point, periodic solutions, and existence of bounded or unbounded solutions
of a system of nonlinear difference equations

xn+1 = xn−1yn − 1, yn+1 = yn−1xn − 1

n = 0, 1, ..., where the initial values are real numbers. Additionally we present some numerical
examples to verify our theoretical results.
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1. Introduction

During the last years, difference equations or discrete dynamical systems are a fertile research
area, not only in mathematics but also in many applied science such as economics, genetics. Moreover,
difference equations or discrete dynamic systems apply to different fields of science as mathematical
models. From this, many scientists, mathematicians or not, have frequently studied this topic.
In particular, these researchers are interested in the stability of solutions, periodic solutions, and
bounded or unbounded solutions. There are many papers to dynamical systems for example,

In [8], Camouzis et al studied global behaviour of solutions of the system of difference equations

xn+1 = 1 +
xn
yn−m

, yn+1 = 1 +
yn
xn−m

.

∗Corresponding author
Email address: erkantasdemir@hotmail.com (Erkan Taşdemir)
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In [26], Stevic studied the system of difference equations

xn+1 =
un

1 + vn
, yn+1 =

wn

1 + sn

where un, vn, wn, sn are some subsequences xn or yn.
In [2], Kurbanlı et al studied behaviour of positive solutions of system of difference equations

xn+1 =
xn−1

ynxn−1 + 1
, yn+1 =

yn−1
xnyn−1 + 1

.

In [3], Kent et al studied long-term behaviour of solutions of difference equation

xn+1 = xnxn−1 − 1.

Further, in [28], Wang et al and in [16], Liu et al obtained some significant results about related
difference equation. Furthermore, there are many books and papers related to difference equations
see [1] - [28].

In this study, we investigate the dynamics of following the system of difference equations

xn+1 = xn−1yn − 1, yn+1 = yn−1xn − 1, n = 0, 1, ..., (1.1)

where all initial values are real numbers. Especially, we study equilibrium points, stability of so-
lutions, existence of periodic solutions and bounded or unbounded solutions of related system of
difference equations.

Now, we present some definitions and theorems which are used throughout this study.
Let us introduce a four-dimensional discrete dynamical system of the form

xn+1 = f (xn, xn−1, yn, yn−1) , yn+1 = g (xn, xn−1, yn, yn−1) , (1.2)

n = 0, 1, ..., where f : I4 × J4 → I and g : I4 × J4 → J are continuously differentiable functions
and I, J are some intervals of real numbers. Moreover, a solution {(xn, yn)}∞n=−1 of system (1.2) is
uniquely determined by initial values (xi, yi) ∈ I × J for i ∈ {−1, 0}.

Definition 1.1. Along with the system (1.2), we consider the corresponding vector map F =
{f, xn, xn−1, g, yn, yn−1}. A point (x̄, ȳ) is called an equilibrium point of the system (1.2) if

x̄ = f (x̄, x̄, ȳ, ȳ) , ȳ = g (x̄, x̄, ȳ, ȳ) .

The point (x̄, ȳ) is also called a fixed point of the vector map F.

Definition 1.2. Let (x̄, ȳ) be an equilibrium point of the system (1.2).

(i) An equilibrium point (x̄, ȳ) of system (1.2) is called stable if, for every ε > 0, there exists δ > 0
such that, for every initial value (x−i, y−i) ∈ I × J , with

0∑
i=−1

|xi − x̄| < δ,

0∑
i=−1

|yi − ȳ| < δ,

implying |xn − x̄| < ε and |yn − ȳ| < ε for n ∈ N.

(ii) An equilibrium point (x̄, ȳ) of system (1.2) is called unstable, if it is not stable.
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(iii) An equilibrium point (x̄, ȳ) of system (1.2) is called locally asymptotically stable if it is stable
and if, in addition, there exists γ > 0 such that

0∑
i=−1

|xi − x̄| < γ,

0∑
i=−1

|yi − ȳ| < γ,

and (xn, yn)→ (x̄, ȳ) as n→∞.

(iv) An equilibrium point (x̄, ȳ) of system (1.2) is called a global attractor if (xn, yn) → (x̄, ȳ) as
n→∞.

(v) An equilibrium point (x̄, ȳ) of system (1.2) is called globally asymptotically stable if it is stable
and a global attractor.

Definition 1.3. Let (x̄, ȳ) be an equilibrium point of the map F where f and g are continuously
differentiable functions at (x̄, ȳ). The linearized system of system (1.2) about the equilibrium point
(x̄, ȳ) is

Xn+1 = F (Xn) = BXn,

where

Xn =


xn
xn−1
yn
yn−1


and B is a Jacobian matrix of system (1.2) about the equilibrium point (x̄, ȳ).

Definition 1.4. Assume that Xn+1 = F (Xn) , n = 0, 1, · · · , is a system of difference equations
such that X̄ is a fixed point of F . If no eigenvalues of the Jacobian matrix B about X̄ have absolute
value equal to one, then X̄ is called hyperbolic. Otherwise, X̄ is said to be nonhyperbolic.

Theorem 1.5 (Linearized Stability Theorem [27], p.11). Assume that

Xn+1 = F (Xn) , n = 0, 1, · · · ,

is a system of difference equations such that X̄ is a fixed point of F .

(i) If all eigenvalues of the Jacobian matrix B about X̄ lie inside the open unit disk |λ| < 1, that is,
if all of them have absolute value less than one, then X̄ is locally asymptotically stable.

(ii) If at least one of them has a modulus greater than one, then X̄ is unstable.

Definition 1.6. A solution {(xn, yn)}∞n=−1 of system (1.2) is bounded and persists if there exist
constants M , N such that M < N and

M < xn, yn < N , n = −m,−m+ 1, · · ·

Definition 1.7. A positive solution {(xn, yn)}∞n=−1 of system (1.2) is periodic with period p if

xn+p = xn, yn+p = yp for all n ≥ −1.
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2. Equilibrium Points of System (1.1)

In this here, we study equilibrium points of system (1.1).

Theorem 2.1. System (1.1) has two equilibrium points which are

(x̄1, ȳ1) =

(
1−
√

5

2
,
1−
√

5

2

)
,

(x̄2, ȳ2) =

(
1 +
√

5

2
,
1 +
√

5

2

)
.

Owing to 1+
√
5

2
≈ 1.618, the elements of second equilibrium point is the Golden Ratio.

Proof . We can easily seen for the equilibrium points of system (1.1):

x̄ = x̄ · ȳ − 1,

ȳ = ȳ · x̄− 1.

From this system, we obtain

x̄ = x̄ · ȳ − 1 = ȳ.

Thus

x̄ = x̄ · x̄− 1,

x̄ = x̄2 − 1,

x̄ =
1±
√

5

2
.

So we finished the proof as desired. �

3. Periodic Solutions of System (1.1)

In this section, we investigate the periodic solutions of system (1.1) which are two periodic, three
periodic and eventually three periodic.

Theorem 3.1. System (1.1) has periodic solutions with period two, if and only if x−1 = x̄1, x0 =
x̄2, y−1 = ȳ2, y0 = ȳ1 or x−1 = x̄2, x0 = x̄1, y−1 = ȳ1, y0 = ȳ2, they will be taken following forms:

{(x̄1, ȳ2) , (x̄2, ȳ1) , (x̄1, ȳ2) , · · · }

or
{(x̄2, ȳ1) , (x̄1, ȳ2) , (x̄2, ȳ1) , · · · } .

Proof . If the initial values are as given, then by some calculations it is clear to see that these
solutions are of period two. Let {(xn, yn)}∞n=−1 be a periodic solution of system (1.1) with period
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two. Therefore, x2n = a, x2n−1 = b, y2n = c and y2n−1 = d for every n ∈ N0 and there exist some
a, b, c, d such that a 6= b and c 6= d. Thus we have from system (1.1):

x1 = x−1y0 − 1 = b · c− 1 = b (3.1)

y1 = y−1x0 − 1 = d · a− 1 = d (3.2)

x2 = x0y1 − 1 = a · d− 1 = a (3.3)

y2 = y0x1 − 1 = c · b− 1 = c. (3.4)

From (3.1)-(3.4), we get that:

a = x̄1, b = x̄2, c = ȳ2, d = ȳ1, (3.5)

a = x̄2, b = x̄1, c = ȳ1, d = ȳ2, (3.6)

a = b = x̄1, c = d = ȳ1, (3.7)

a = b = x̄2, c = d = ȳ2. (3.8)

As a result, (3.5) and (3.6) are periodic solutions of system (1.1) with period two but (3.7) and
(3.8) are not periodic solutions of system (1.1) with period two. Because they are trivial solutions
of system (1.1). The proof completed. �

Remark 3.2. From (3.5) and (3.6), system (1.1) has a two periodic cycle as:

{· · · , (x̄1, ȳ2) , (x̄2, ȳ1) , (x̄1, ȳ2) , · · · }

Proof . Let x−1 = x̄1, x0 = x̄2, y−1 = ȳ2, y0 = ȳ1. Hence, we have from system (1.1):

x1 = x−1y0 − 1 = x̄1 · ȳ1 − 1 = x̄1

y1 = y−1x0 − 1 = ȳ2 · x̄2 − 1 = ȳ2

x2 = x0y1 − 1 = x̄2 · ȳ2 − 1 = x̄2

y2 = y0x1 − 1 = ȳ1 · x̄1 − 1 = ȳ1.

Consequently, two periodic cycle of system (1.1) has been completed as desired. �

Theorem 3.3. System (1.1) has periodic solutions with period three, if and only if the initial values
are

x−1 = 0, x0 = −1, y−1 = 0, y0 = −1, (3.9)

x−1 = −1, x0 = −1, y−1 = −1, y0 = −1, (3.10)

x−1 = −1, x0 = 0, y−1 = −1, y0 = 0. (3.11)

Proof . If the initial values are as given, then by some calculations it is clear to see that these
solutions are of period three. Let {(xn, yn)}∞n=−1 be a periodic solution of system (1.1) with period
three. Thus, we take x−1 = a, x0 = b, y−1 = c, y0 = d. Therefore, we have from system (1.1),

x1 = x−1y0 − 1 = a · d− 1,

y1 = y−1x0 − 1 = c · b− 1,

x2 = x0y1 − 1 = b · (c · b− 1)− 1 = a, (3.12)

y2 = y0x1 − 1 = d · (a · d− 1)− 1 = c, (3.13)

x3 = x1y2 − 1 = (a · d− 1) · c− 1 = b, (3.14)

y3 = y1x2 − 1 = (c · b− 1) · a− 1 = d. (3.15)
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From (3.12)-(3.15) we obtain that

cb2 − b− 1 = a, (3.16)

ad2 − d− 1 = c, (3.17)

acd− c− 1 = b, (3.18)

abc− a− 1 = d. (3.19)

From (3.16)-(3.19), we get

a = 0, b = −1, c = 0, d = −1,

a = −1, b = −1, c = −1, d = −1,

a = −1, b = 0, c = −1, d = 0.

So, the proof completed. �

Remark 3.4. From (3.9)-(3.11), system (1.1) has a three periodic cycle as:

{· · · , (−1,−1) , (0, 0) , (−1,−1) , (−1,−1) , · · · } .

Proof . Suppose that the initial values are x−1 = 0, x0 = −1, y−1 = 0, y0 = −1. Thus, we get from
system (1.1):

x1 = x−1y0 − 1 = 0 · (−1)− 1 = −1,

y1 = y−1x0 − 1 = 0 · (−1)− 1 = −1,

x2 = x0y1 − 1 = (−1) · (−1)− 1 = 0,

y2 = y0x1 − 1 = (−1) · (−1)− 1 = 0,

x3 = x1y2 − 1 = (−1) · 0− 1 = −1,

y3 = y1x2 − 1 = (−1) · 0− 1 = −1,

x4 = x2y3 − 1 = 0 · (−1)− 1 = −1,

y4 = y2x3 − 1 = 0 · (−1)− 1 = −1.

From these we obtain three periodic cycle of system (1.1) as:

{(−1,−1) , (0, 0) , (−1,−1) , (−1,−1) , · · · } .

Hence, the proof completed. �

Theorem 3.5. There is eventually periodic solution of system (1.1) with period three as:

{(x−1, y−1) , (x0, y0) , · · · , (xn−1, yn−1) , (xn, yn) , (0, 0) , (−1,−1) , (−1,−1) , · · · }

where xn−1yn = 1 and yn−1xn = 1 for n ∈ N0.

Proof . Let {(xn, yn)}∞n=−1 be a eventually periodic solution of system (1.1) with period three. By
means of Theorem 3.3, we take

(xn+1, yn+1) = (0, 0),

(xn+2, yn+2) = (−1,−1).
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From these, we obtain that

xn+1 = xn−1yn − 1 = 0,

yn+1 = yn−1xn − 1 = 0,

xn+2 = xnyn+1 − 1 = −1,

yn+2 = ynxn+1 − 1 = −1.

Therefore, we have xn−1yn = 1 and yn−1xn = 1. Moreover, due to xn+1 = 0 and yn+1 = 0, the
following equailities satisfy under all conditions: xn+2 = −1 and yn+2 = −1. Thus, the proof
finished. �

4. Unbounded Solutions of System (1.1)

In this section, we study the unbounded solutions of system (1.1).

Lemma 4.1. Let {(xn, yn)}∞n=−1 be a solution of system (1.1). Let

x−1 < −1, x0 < −1, y−1 < −1 and y0 < −1.

Then
x1 > 0, y1 > 0,
x2 < −1, y2 < −1,
x3 < −1, y3 < −1.

Proof . Let {(xn, yn)}∞n=−1 be a solution of system (1.1). Suppose that x−1 < −1, x0 < −1, y−1 < −1
and y0 < −1. From these and system (1.1) we have,

x1 = x−1y0 − 1 > 0,

y1 = y−1x0 − 1 > 0,

x2 = x0y1 − 1 < −1,

y2 = y0x1 − 1 < −1,

x3 = x1y2 − 1 < −1,

y3 = y1x2 − 1 < −1.

�
The next theorem has an important role for Theorem 4.3.

Theorem 4.2. Let {(xn, yn)}∞n=−1 be a solution of system (1.1). Then,

xn+3 − yn = (xn+1 + 1) (yn+2 − yn) , (4.1)

yn+3 − xn = (yn+1 + 1) (xn+2 − xn) . (4.2)

Proof . Let {(xn, yn)}∞n=−1 be a solution of system (1.1). We have from system (1.1),

xn+3 − yn = (xn+1yn+2 − 1)− yn
= xn+1 (ynxn+1 − 1)− 1− yn
= x2n+1yn − xn+1 − 1− yn
= yn

(
x2n+1 − 1

)
− (xn+1 + 1)

= (xn+1 + 1) (ynxn+1 − yn − 1)

= (xn+1 + 1) (yn+2 − yn) .

Likewise, (4.2) can be proved. Therefore, the proof completed. �
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Theorem 4.3. Let {(xn, yn)}∞n=−1 be a solution of system (1.1). Let

x−1 < −1, x0 < −1, y−1 < −1 and y0 < −1.

Then the following two statements hold, for n = 0, 1, 2, · · · , :

(i)

0 < x1 < y4 < x7 < · · · < x6n+1 < y6n+4 < · · · ,
0 < y1 < x4 < y7 < · · · < y6n+1 < x6n+4 < · · · ,
−1 > x2 > y5 > x8 > · · · > x6n+2 > y6n+5 > · · · ,
−1 > y2 > x5 > y8 > · · · > y6n+2 > x6n+5 > · · · ,
−1 > x3 > y6 > x9 > · · · > x6n+3 > y6n+6 > · · · ,
−1 > y3 > x6 > y9 > · · · > y6n+3 > x6n+6 > · · · .

(ii)
lim
n→∞

x6n+1 =∞, lim
n→∞

y6n+1 =∞,
lim
n→∞

x6n+2 = −∞, lim
n→∞

y6n+2 = −∞,
lim
n→∞

x6n+3 = −∞, lim
n→∞

y6n+3 = −∞,
lim
n→∞

x6n+4 =∞, lim
n→∞

y6n+4 =∞,
lim
n→∞

x6n+5 = −∞, lim
n→∞

y6n+5 = −∞,
lim
n→∞

x6n = −∞, lim
n→∞

y6n = −∞.

Proof . Let {(xn, yn)}∞n=−1 be a solution of system (1.1). Let x−1 < −1, x0 < −1, y−1 < −1 and
y0 < −1.

(i) From Lemma 4.1, we know that x1, y1 > 0, x2, y2 < −1 and x3, y3 < −1. From Theorem 4.2
for n = 1, we obtain,

x4 − y1 = (x2 + 1) (y3 − y1) .

From x2, y3 < −1 and y1 > 0, we get that

x4 − y1 > 0.

So, x4 > y1 > 0 and similarly y4 > x1 > 0.
From Theorem 4.2 for n = 2, we have that,

x5 − y2 = (x3 + 1) (y4 − y2) .

From y2, x3 < −1 and y4 > 0, we obtain,

x5 − y2 < 0.

Thus, x5 < y2 < −1 and further y5 < x2 < −1.
From Theorem 4.2 for n = 3, we obtain,

x6 − y3 = (x4 + 1) (y5 − y3) .
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From system (1.1), we get,

x6 − y3 = (x4 + 1) (y5 − y3)
= (x4 + 1) (y3x4 − 1− y3)
= (x4 + 1) (y3 (x2y3 − 1)− 1− y3)
= (x4 + 1)

(
x2y

2
3 − 2y3 − 1

)
From x2 < −1,

x6 − y3 = (x4 + 1)
(
x2y

2
3 − 2y3 − 1

)
< (x4 + 1)

(
−y23 − 2y3 − 1

)
= (x4 + 1)

(
− (y3 + 1)2

)
From x4 > 0 and y3 < −1 we have

x6 − y3 < 0.

Hence, x6 < y3 < −1 and likewise y6 < x3 < −1.
From Theorem 4.2 for n = 4, we have,

x7 − y4 = (x5 + 1) (y6 − y4) .

From y6, x5 < −1 and y4 > 0, we obtain,

x7 − y4 > 0.

So, x7 > y4 > x1 > 0 and similarly y7 > x4 > y1 > 0.
In addition, we have by induction:

0 < x1 < y4 < x7 < · · · ,
0 < y1 < x4 < y7 < · · · ,
−1 > x2 > y5 > x8 > · · · ,
−1 > y2 > x5 > y8 > · · · ,
−1 > x3 > y6 > x9 > · · · ,
−1 > y3 > x6 > y9 > · · · .

Thus, proof of (i) finished.
(ii)

x6n+1 = x6n−1y6n − 1

= (x6n−3y6n−2 − 1) (y6n−2x6n−1 − 1)− 1

= x6n−3y
2
6n−2x6n−1 − y6n−2x6n−1 − x6n−3y6n−2 + 1− 1

From x6n−3y
2
6n−2x6n−1 > 0 and y6n−2x6n−1 < 0, we obtain

x6n+1 > −x6n−3y6n−2

From x6n−3 < −1, we have

x6n+1 > y6n−2 = y6n−4x6n−3 − 1

= y6n−4 (x6n−5y6n−4 − 1)− 1

= x6n−5y
2
6n−4 − y6n−4 − 1



400 Taşdemir

From y6n−4 < −1, we get

x6n+1 > x6n−5. (4.3)

So,
lim
n→∞

x6n+1 =∞.

The proof of the other cases is similar to this, therefore we leave it to readers. �

Theorem 4.4. Let {(xn, yn)}∞n=−1 be a solution of system (1.1). Let x−1, x0 > x̄2 and y−1, y0 > ȳ2.
Then the following two statements hold for n = 0, 1, 2, · · · , :

(i)

x̄2 < x0 < x2 < x4 < · · · < x2n < · · · ,
x̄2 < x1 < x3 < x5 < · · · < x2n−1 < · · · ,
ȳ2 < y0 < y2 < y4 < · · · < y2n < · · · ,
ȳ2 < y1 < y3 < y5 < · · · < y2n−1 < · · · .

(ii) The subsequences {x2n}∞n=0 , {x2n−1}
∞
n=0 , {y2n}

∞
n=0 and {y2n−1}∞n=0 tend to +∞.

Proof . Let {(xn, yn)}∞n=−1 be a solution of system (1.1). Then we have,

x0 >
1 +
√

5

2
,

y0 >
1 +
√

5

2
.

Therefore,

1

x0
<

2

1 +
√

5
=

√
5− 1

2
.

Hence we get,

1 +
1

x0
< 1 +

√
5− 1

2
=

1 +
√

5

2
< y−1,

1 +
1

x0
< y−1.

Thus,

x0 + 1 < y−1x0,

x0 < y−1x0 − 1.

So, x̄2 < x0 < y1 and similarly ȳ2 < y0 < x1.
From these,

1

x1
<

2

1 +
√

5
=

√
5− 1

2
,

1 +
1

x1
< 1 +

√
5− 1

2
=

1 +
√

5

2
< y0.
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Therefore we have

1 +
1

x1
< y0,

x1 + 1 < y0x1,

x1 < y0x1 − 1.

Hence, x1 < y2 and similarly y1 < x2.
So, we have by induction

x̄2 = ȳ2 < y0 < x1 < y2 < x3 < · · · ,
x̄2 = ȳ2 < x0 < y1 < x2 < y3 < · · · .

Thus proof of (i) finished. Now we begin to proof of (ii).
We have from (i), the subsequences {x2n}∞n=0 , {x2n−1}

∞
n=0 , {y2n}

∞
n=0 and {y2n−1}∞n=0 are strictly

increasing. For the sake of contradiction, these susequences have finite limits. Since the subsequences
are increasing, they must be bounded from above. But the system (1.1) has two equilibrium points
such that they are less than initial values. That is a contradiction as desired. �

5. Invariant of System (1.1)

Theorem 5.1. Let all initial values of system (1.1) in (−1, 0). Then the solution of system (1.1) is
such that xn ∈ (−1, 0) and yn ∈ (−1, 0) for all n ≥ −1.

Proof . Let x−1, x0, y−1, y0 ∈ (−1, 0). We can clearly seen from system (1.1):

x1 = x−1y0 − 1 ∈ (−1, 0), (5.1)

y1 = y−1x0 − 1 ∈ (−1, 0). (5.2)

Thus we have following:

x2 = x0y1 − 1 ∈ (−1, 0), (5.3)

y2 = y0x1 − 1 ∈ (−1, 0). (5.4)

So, by using (5.1)-(5.4) and induction, we get xn ∈ (−1, 0) and yn ∈ (−1, 0) for all n ≥ −1. �

6. Stability Analysis of System (1.1)

In this section, we investigate the stability of system (1.1). Further, we find out negative equi-
librium point of system (1.1) is locally asymptotically stable and if initial values are in (−1, 0),
then solutions of system (1.1) converge to negative equilibrium point. But we discover the positive
equilibrium point of system (1.1) is unstable.

Theorem 6.1. Negative equilibrium point (x̄1, ȳ1) of system (1.1) is locally asymptotically stable.

Proof . System (1.1) is equivalent to following system of difference equations:

tn+1 = 1− tn−1wn, wn+1 = 1− wn−1tn, n = 0, 1, 2, ..., (6.1)
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with change to variables xn = −tn and yn = −wn. From this, negative equilibrium point (x̄1, ȳ1) of
system turn to positive equilibrium point (t̄, w̄) of system (6.1). We can clearly seen that

(t̄, w̄) =

(√
5− 1

2
,

√
5− 1

2

)
.

Now we study linearized form of system (6.1). For this, we consider the transformation:

(tn, tn−1, wn, wn−1)→ (h, h1, k, k1) ,

where

h = 1− tn−1wn,

h1 = tn,

k = 1− wn−1tn,

k1 = wn.

Therefore we have the Jacobian matrix about equilibrium point (t̄, w̄):

B(t̄, w̄) =


0 −w̄ −t̄ 0
1 0 0 0
−w̄ 0 0 −t̄
0 0 1 0

 .

Thus, the linearized system about the equilibrium point (t̄, w̄) =
(√

5−1
2
,
√
5−1
2

)
is XN+1 = B(t̄, w̄)Xn,

where Xn = ((tn, tn−1, wn, wn−1))
T and

B(t̄, w̄) =


0 1−

√
5

2
1−
√
5

2
0

1 0 0 0
1−
√
5

2
0 0 1−

√
5

2

0 0 1 0

 .

So, the characteristic equation of B(t̄, w̄) is

λ4 −

(
5− 3

√
5

2

)
λ2 +

3−
√

5

2
= 0. (6.2)

Hence, we have four roots of Eq.(6.2):

λ1 =
1

2

√
5− 3

√
5− 2

√
23

2
− 11

2

√
5 = 0.309 02− 0.722 87i,

λ2 = −1

2

√
5− 3

√
5− 2

√
23

2
− 11

2

√
5 = −0.309 02 + 0.722 87i,

λ3 =
1

2

√
2

√
23

2
− 11

2

√
5− 3

√
5 + 5 = 0.309 02 + 0.722 87i,
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λ4 = −1

2

√
2

√
23

2
− 11

2

√
5− 3

√
5 + 5 = −0.309 02− 0.722 87i.

Due to

|λ1| = |λ2| = |λ3| = |λ4| = 0.786 15 < 1,

and from linearized stability theorem, all roots of the characteristic equation lie inside the unit disk.
So, the positive equilibrium of system (6.1) is locally asymptotically stable. Therefore, the negative
equilibrium of system (1.1) is locally asymptotically stable as desired. �

Theorem 6.2. Let x−1, x0, y−1, y0 ∈ (−1, 0). Then every solutions of system (1.1) converge to
negative equilibrium point (x̄1, ȳ1) of related system.

Proof . Let x−1, x0, y−1, y0 ∈ (−1, 0). Then, from Theorem 5.1, every solutions of system (1.1) is
bounded. Additionally, we consider system (6.1) from Theorem 6.1’s proof. Hence, we have that
if x−1, x0, y−1, y0 ∈ (−1, 0) then t−1, t0, w−1, w0 ∈ (0, 1). Therefore, tn ∈ (0, 1) and wn ∈ (0, 1) for
n ≥ −1. Thus, we take

L1 = lim
n→∞

sup tn, L2 = lim
n→∞

supwn,

l1 = lim
n→∞

inf tn, l2 = lim
n→∞

inf wn.
(6.3)

Thus, we obtain from system (1.1) and (6.3):

L1 ≤ 1− L1 · l2, (6.4)

l1 ≥ 1− l1 · L2, (6.5)

L2 ≤ 1− L2 · l1, (6.6)

l2 ≥ 1− l2 · L1. (6.7)

Hence we have from (6.4) and (6.7)

1− l2 ≤ L1 · l2 ≤ 1− L1,

so
L1 ≤ l2. (6.8)

Similarly, we have from (6.5) and (6.6)
L2 ≤ l1. (6.9)

In addition, we know that,
l1 ≤ L1 and l2 ≤ L2. (6.10)

Therefore, we get from (6.8), (6.9) and (6.10)

l1 ≤ L1 ≤ l2 ≤ L2 ≤ l1.

So, we obtain that
l1 = L1 = l2 = L2.

Thus, if the initial values lie in (0, 1) then the every solution {(tn, wn)} of system (6.1) tends to
positive equilibrium point (t̄, w̄) of system (6.1). Due to the fact that positive equilibrium point
(t̄, w̄) of system (6.1) is negative equilibrium point (x̄1, ȳ1) of system (1.1), every solution of system
(1.1) tends to negative equilibrium point (x̄1, ȳ1) which the initial values in (−1, 0). So, the proof
completed as desired. �
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Theorem 6.3. Equilibrium point (x̄2, ȳ2) of system (1.1) is locally unstable.

Proof . Firstly we study linearized form of system (1.1). For this, we consider the transformation:

(xn, xn−1, yn, yn−1)→ (f, f1, g, g1) ,

where

f = xn−1yn − 1,

f1 = xn,

g = yn−1xn − 1,

g1 = yn.

Therefore we have the Jacobian matrix about equilibrium point (x̄, ȳ):

B(x̄, ȳ) =


0 ȳ x̄ 0
1 0 0 0
ȳ 0 0 x̄
0 0 1 0

 .

Thus, the linearized system about the equilibrium point (x̄, ȳ) =
(

1+
√
5

2
, 1+

√
5

2

)
is XN+1 = B(x̄, ȳ)Xn

where Xn = ((xn, xn−1, yn, yn−1))
T and

B(x̄, ȳ) =


0 1+

√
5

2
1+
√
5

2
0

1 0 0 0
1+
√
5

2
0 0 1+

√
5

2

0 0 1 0

 .

So, the characteristic equation of B(x̄, ȳ) is

λ4 −

(
5 + 3

√
5

2

)
λ2 +

3 +
√

5

2
= 0. (6.11)

Hence, we have four roots of Eq.(6.11):

λ1 =
1

2

√
3
√

5− 2

√
11

2

√
5 +

23

2
+ 5 = 0.698 48,

λ2 = −1

2

√
3
√

5− 2

√
11

2

√
5 +

23

2
+ 5 = −0.698 48,

λ3 =
1

2

√
2

√
11

2

√
5 +

23

2
+ 3
√

5 + 5 = 2. 316 5,

λ4 =
1

2

√
2

√
11

2

√
5 +

23

2
+ 3
√

5 + 5 = −2. 316 5.

Because of

|λ1,2| < 1 < |λ3,4| ,
and from linearized stability theorem, two roots of the characteristic equation lie inside the unit disk
but the other roots lie outside the unit disk. So, the positive equilibrium of system (1.1) is locally
unstable. �
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7. Numerical Examples

Now, we present some numerical examples for verify our theoretical results of previous sections.

Example 7.1. Consider the system (1.1) with initial values x−1 = x̄1, x0 = x̄2, y−1 = ȳ2, y0 =
ȳ1. Then, the system (1.1) has periodic solution with prime period two. The Figure 1 verifies our
theoretical results (See Theorem 3.1).

Figure 1: Plot of system (1.1) for initial values x−1 = x̄1, x0 = x̄2, y−1 = ȳ2, y0 = ȳ1.

Example 7.2. Consider the system (1.1) with initial values x−1 = 0, x0 = −1, y−1 = 0, y0 = −1.
Then, the system (1.1) has periodic solution with period three. The Figure 2 and Figure 3 verify our
theoretical results (See Theorem 3.3).

Figure 2: Plot of xn for initial values x−1 = 0, x0 = −1, y−1 = 0, y0 = −1.

Figure 3: Plot of yn for initial values x−1 = 0, x0 = −1, y−1 = 0, y0 = −1.



406 Taşdemir

Figure 4: Plot of xn for initial values initial values x−1 = 3248
5 , x0 = 208

1539 , y−1 = 287793
3328 , y0 = 5

112 .

Figure 5: Plot of yn for initial values initial values x−1 = 3248
5 , x0 = 208

1539 , y−1 = 287793
3328 , y0 = 5

112 .

Example 7.3. Consider the system (1.1) with initial values x−1 = 3248
5
, x0 = 208

1539
, y−1 = 287793

3328
, y0 =

5
112

. Then, the system (1.1) has eventually periodic solution with period three. The Figure 4 and
Figure 5 verify our theoretical results (See Theorem 3.5).

Example 7.4. Consider the system (1.1) with initial values x−1 = −0.1, x0 = −0.8, y−1 = −0.9, y0 =
−0.2. Then, solution of system (1.1) converges to negative equilibrium point (x̄1, ȳ1). The Figure 6
verifies our theoretical results (See Theorem 6.2).

Figure 6: Plot of system (1.1) for initial values x−1 = −0.1, x0 = −0.8, y−1 = −0.9, y0 = −0.2.
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