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Abstract

Let A be an algebra. A linear mapping δ : A → A is called a derivation if δ(ab) = δ(a)b + aδ(b)
for each a, b ∈ A. Given two derivations δ and δ′ on a C∗-algebra A, we prove that there exists a
derivation ∆ on A such that δδ′ = ∆2 if and only if either δ′ = 0 or δ = sδ′ for some s ∈ C.
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1. Introduction

Let A be an algebra. A linear mapping δ : A → A is called a derivation if it satisfies the Leibniz
rule δ(ab) = δ(a)b + aδ(b) for each a, b ∈ A. When A is a ∗-algebra, δ is called a ∗-derivation if
δ(a∗) = δ(a)∗ for each a ∈ A.

Let δ be a ∗-derivation on a C∗-algebra A, then δ2 is a derivation if and only if δ = 0. To see
this, note that δ2 is a derivation if and only if

δ2(x)y + 2δ(x)δ(y) + xδ2(y) = δ2(xy) = δ2(x)y + xδ2(y).

The latter is equivalent to the fact that δ(x)δ(y) = 0 for each x, y ∈ A. Thus δ(x)δ(x)∗ = δ(x)δ(x∗) =
0 for each x ∈ A. Hence ‖δ(x)‖2 = ‖δ(x)δ(x)∗‖ = 0. This shows that δ(x) = 0 for each x ∈ A.

As a typical example of a non-zero derivation in a non-commutative algebra, we can consider the
inner derivation δa implemented by an element a ∈ A which is defined as δa(x) = xa − ax for each
x ∈ A. Even for an inner derivation δa on an algebra A, it is very probable that δ2a is not a derivation.
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These considerations show that the set of derivations on an algebra A is not in general closed
under product. There are various researches seeking for some conditions under which the product
of two derivations will be again a derivation. Posner [9] was the first one who studied the product
of two derivations on a prime ring. He showed that if the product of two derivations on a prime
ring, with characteristic not equal to 2, is a derivation then one of them must be equal to zero.
The same question has been investigated by several authors on various algebras, see for example
[1, 2, 3, 5, 6, 7, 8] and references therein. In the realm of C∗-algebras, Mathieu [5] showed that, if
the product of two derivations δ and δ′ on a C∗-algebra is a derivation then δδ′ = 0. The same result
was proved by Pedersen [8] for unbounded densely defined derivations on a C∗-algebra.

There are known algebras A such that each derivation on A is inner which is implemented by
an element of the algebra A or an algebra B containing A. For example, each derivation on a von
Neumann algebra M is inner and is implemented by an element of M. Moreover, each derivation
on a C∗-algebra A acting on a Hilbert space H is inner and implemented by an element of the weak
closure M of A in B(H) (See [4, 10]).

In the present paper, we are concerned with the following problem: “Given two derivations δ and
δ′ on a C∗-algebra A, find necessary and sufficient condition under which there exists a derivation ∆
on A satisfying δδ′ = ∆2.”

We affirm that the condition is: either δ′ = 0 or δ = sδ′ for some s ∈ C. We do this in two steps;
for the matrix algebra Mn(C) and for an arbitrary C∗-algebra.

2. The equation for the case of matrix algebras

In this section we are mainly concerned with the structure of derivations on the matrix algebra
Mn(C). Let A = [aij] ∈ Mn(C). We denote the diagonal matrix whose diagonal entries are aii by
AD.

Proposition 2.1. Let A = [aij], B = [bij] ∈ Mn(C). Then there exists a C = [cij] ∈ Mn(C) such
that δAδB = δC

2 if and only if either δB = 0 or δA = sδB for some s ∈ C.

Proof . Let {Eij}16i,j6n be the standard system of matrix units for Mn(C). First we show that
aikb`j = bika`j for all 1 6 i, k, `, j 6 n if and only if AXB = BXA for all X ∈Mn(C).

To see this, suppose that aikb`j = bika`j for all 1 6 i, k, `, j 6 n then we can write

(EiiAEk`)(E``BEjj) = aikb`jEij = bika`jEij = (EiiBEk`)(E``AEjj).

We thus have

(
n∑
i=1

Eii)AEk`B(
n∑
j=1

Ejj) = (
n∑
i=1

Eii)BEk`A(
n∑
j=1

Ejj).

This shows that AEk`B = BEk`A for each 1 6 k, ` 6 n. We can therefore deduce that AXB = BXA
for all X ∈Mn(C). On the other hand, if AXB = BXA for all X ∈Mn(C), then

aijbk`Ei` = (EiiAEjk)(EkkBE``) = (EiiBEjk)(EkkAE``) = bijak`Ei`.

We can assume that a11 = b11 = c11 = 0. This is due to the fact that δA−a11I = δA, δB−b11I = δB
and δC−c11I = δC . Then δAδB = δC

2 if and only if

ABEk` − AEk`B −BEk`A+ Ek`BA = C2Ek` − 2CEk`C + Ek`C
2,



Product of derivations on C∗-algebras 7 (2016) No. 2, 109-114 111

for each 1 6 k, ` 6 n. This is equivalent to the fact that

Eii(ABEk` − AEk`B −BEk`A+ Ek`BA)Ejj = Eii(C
2Ek` − 2CEk`C + Ek`C

2)Ejj,

for each 1 6 i, j, k, ` 6 n. Now for i 6= k and j 6= ` we have

(0− aikb`j − bika`j + 0)Eij = (0− 2cikc`j + 0)Eij. (2.1)

For i 6= k and j = ` we have

(
n∑

m=1

aimbmk − aikb`` − bika`` + 0)Ei` = (
n∑

m=1

cimcmk − 2cikc`` + 0)Ei`. (2.2)

For i = k and j 6= ` we have

(0− akkb`j − bkka`j +
n∑

m=1

b`mamj)Ekj = (0− 2ckkc`j +
n∑

m=1

c`mcmj)Ekj. (2.3)

And finally for i = k and j = ` we have

(
n∑

m=1

akmbmk − akkb`` − bkka`` +
n∑

m=1

b`mam`)Ek` = (
n∑

m=1

ckmcmk − 2ckkc`` +
n∑

m=1

c`mcm`)Ek`. (2.4)

If k 6= ` then putting i = ` and j = k in the equation (2.1) we have c2`k = a`kb`k. Thus for i 6= k
and j 6= ` we have (aikb`j + bika`j)

2 = 4c2ikc
2
`j = 4aikbika`jb`j. This implies that

aikb`j = bika`j, for i 6= k, j 6= `. (2.5)

Now, if b`j 6= 0 for some 1 ≤ `, j ≤ n with ` 6= j, then the equation

aik =
a`j
b`j
bik, for i 6= k,

implies the existence of some α and β with |α|+ |β| 6= 0 such that

α(A− AD) = β(B −BD). (2.6)

If b`j = 0 for all 1 ≤ `, j ≤ n with ` 6= j, then B = BD and so the equation (2.6) holds for α = 0 and
any nonzero β ∈ C.

Interchanging `↔ i, j ↔ k and k ↔ ` in (2.3) we have

n∑
m=1

bimamk − a``bik − b``aik =
n∑

m=1

cimcmk − 2c``cik, for i 6= k. (2.7)

It follows from (2.2) and (2.7) that

n∑
m=1

aimbmk =
n∑

m=1

bimamk, for i 6= k.

Returning to the fact that aimbmk = bimamk for m 6= i, k, we have

aiibik + aikbkk = biiaik + bikakk, for i 6= k.
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This implies that
aik(bii − bkk) = bik(aii − akk). (2.8)

Putting k = ` in (2.4) we get

n∑
m=1

akmbmk − akkbkk =
n∑

m=1

ckmcmk − ckkckk.

Thus it follows from (2.4) that

akkbkk − akkb`` − bkka`` + b``a`` = ckkckk − 2ckkc`` + c``c``.

For ` = 1 we have
c2kk = akkbkk,

and then akkb`` + bkka`` = 2ckkc``. Thus for all 1 ≤ k, ` ≤ n we have (akkb`` + bkka``)
2 = 4c2kkc

2
`` =

4akkbkka``b``. This implies that
akkb`` = bkka``, for all k, `.

A similar argument as about the equation (2.5) implies the existence of some α′ and β′ with |α′| +
|β′| 6= 0 such that

α′AD = β′BD.

Using (2.8) we have

bjjaik(bii − bkk) = bikbjj(aii − akk) = bikajj(bii − bkk).

Now let BD /∈ CI. Then bii 6= bkk for some i and k. This shows that bjjaik = ajjbik. So we have
α = α′ and β = β′. By a similar argument we can say that if AD /∈ CI then α = α′ and β = β′. We
therefore have

if AD /∈ CI or BD /∈ CI then αA = βB for some α and β with |α|+ |β| 6= 0.

On the other hand, if AD = sI and BD = tI for some s, t ∈ C then

α′AD + α(A− AD) = s(α′ − α)I + αA,

and
β′BD + β(B −BD) = t(β′ − β)I + βB.

Therefore s(α′ − α)I + αA = t(β′ − β)I + βB. Summarizing these we can say that δAδB = δC
2 if

and only if αA = βB + rI for some α, β, r ∈ C with |α|+ |β| 6= 0. This is equivalent to the fact that
either δB = 0 or δA = sδB for some s ∈ C. �

A natural question is the following: Is it true in general that δδ′ = ∆2 on an algebra A is
equivalent to either δ′ = 0 or δ = sδ′ for some s ∈ C? In this case we of course have ∆ =

√
sδ′. The

following example shows that the answer is not affirmative in general.

Example 2.2. LetA be the subalgebra of M2(C) generated by E11 and E12. If δ = δE12 and δ′ = δE11

then for each X = xE11 + yE12 ∈ A we have

δδ′(X) = δ(xE11 + yE12 − xE11) = δ(yE12) = 0.

Thus δδ′ = δ20. But δ′ 6= 0 and δ is not a multiple of δ′.
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Lemma 2.3. Let A be the subalgebra of M2(C) generated by E11 and E12. Then each derivation on
A is of the form δ = δcE12−dE11 for some c, d ∈ C.

Proof . Let δ : A → A be a derivation defined by δ(xE11 + yE12) = f(x, y)E11 + g(x, y)E12. Since
δ is linear,

f(x, y) = f(x, 0) + f(0, y) = xf(1, 0) + yf(0, 1).

We therefore have f(x, y) = ax+ by and g(x, y) = cx+ dy for some a, b, c, d ∈ C. Moreover,

δ((xE11 + yE12)(x
′E11 + y′E12))

= δ(xE11 + yE12)(x
′E11 + y′E12) + (xE11 + yE12)δ(x

′E11 + y′E12)

implies

f(xx′, xy′)E11 + g(xx′, xy′)E12 = f(x, y)x′E11 + f(x, y)y′E12 + xf(x′, y′)E11 + xg(x′, y′)E12.

We thus have

f(xx′, xy′) = f(x, y)x′ + xf(x′, y′),

g(xx′, xy′) = f(x, y)y′ + xg(x′, y′).

By using the fact that f(x, y) = ax + by and g(x, y) = cx + dy, we have f(x, y) = 0. Whence
δ = δcE12−dE11 . �

Proposition 2.4. Let A be the subalgebra of M2(C) generated by E11 and E12 and δ, δ′ be two
derivations on A. Then δδ′ = ∆2 if and only if δ′ = 0 or δ′ = δα′E12 for some α′ ∈ C implies
δ = δαE12 for some α ∈ C, or equivalently δ′ = 0 or δ′2 = 0 implies δ2 = 0.

Proof . Let δ = δαE12−βE11 , δ
′ = δα′E12−β′E11 and ∆ = δrE12−sE11 . Then δδ′ = ∆2 if and only if

rs = βα′ and s2 = ββ′. The latter is equivalent to the fact that δ′ = 0 or δ′ = δα′E12 for some α′ ∈ C
implies δ = δαE12 for some α ∈ C. On the other hand, a derivation δ on A is of the form δλE12 for
some λ ∈ C if and only if δ2 = 0. �

3. Derivations on C∗-algebras

Theorem 3.1. Let A be a C∗-algebra and δ, δ′ be two derivations on A. Then there exists a derivation
∆ on A such that δδ′ = ∆2 if and only if either δ′ = 0 or δ = sδ′ for some s ∈ C.

Proof . Let A act faithfully on the Hilbert space H with the orthonormal basis {ξi}i∈I. For a
bounded operator T ∈ B(H), let tij = 〈Tξj, ξi〉 for i, j ∈ I. We thus have Tξj =

∑
i∈I tijξi and we can

write T = [tij]i,j∈I. The latter is called the matrix representation of T . For i, j ∈ I, let Eij ∈ B(H)
be the operator defined by Eijξj = ξi and Eijξk = 0 for k 6= j. Then we have T =

∑
p∈I

∑
q∈I tqpEqp

for every T ∈ B(H).
By the Kadison-Sakai theorem [4, 10], δ = δR, δ

′ = δS and ∆ = δT for some R, S and T in B(H).
Thus δδ′ = ∆2 if and only if

RSEk` −REk`S − SEk`R + Ek`SR = T 2Ek` − 2TEk`T + Ek`T
2,

for each k, ` ∈ I. This is equivalent to the fact that

Eii(RSEk` −REk`S − SEk`R + Ek`SR)Ejj = Eii(T
2Ek` − 2TEk`T + Ek`T

2)Ejj,
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for each i, j, k, ` ∈ I. For i 6= k and j 6= ` we have

riks`j + sikr`j = 2tikt`j.

Similarly, for i 6= k and j = ` we have∑
m∈I

rimsmk − riks`` − sikr`` =
∑
m∈I

timtmk − 2tikt``.

Also, for i = k and j 6= ` we have

− rkks`j − skkr`j +
∑
m∈I

s`mrmj = −2tkkt`j +
∑
m∈I

t`mtmj.

And finally for i = k and j = ` we have∑
m∈I

rkmsmk − rkks`` − skkr`` +
∑
m∈I

s`mrm` =
∑
m∈I

tkmtmk − 2tkkt`` +
∑
m∈I

t`mtm`.

Now a similar verification as in Proposition 2.1 implies the result. �
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