Product of derivations on C^{*}-algebras

Sayed Khalil Ekramia,*, Madjid Mirzavazirib, Hamid Reza Ebrahimi Vishki ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran
${ }^{b}$ Department of Pure Mathematics and Center of Excellence in Analysis on Algebraic Structures (CEAAS), Ferdowsi University of Mashhad, P.O. Box 1159, Mashhad 91775, Iran

(Communicated by M. Eshaghi)

Abstract

Let \mathfrak{A} be an algebra. A linear mapping $\delta: \mathfrak{A} \rightarrow \mathfrak{A}$ is called a derivation if $\delta(a b)=\delta(a) b+a \delta(b)$ for each $a, b \in \mathfrak{A}$. Given two derivations δ and δ^{\prime} on a C^{*}-algebra \mathfrak{A}, we prove that there exists a derivation Δ on \mathfrak{A} such that $\delta \delta^{\prime}=\Delta^{2}$ if and only if either $\delta^{\prime}=0$ or $\delta=s \delta^{\prime}$ for some $s \in \mathbb{C}$.

Keywords: Derivation; C*-algebra. 2010 MSC: Primary 46L57; Secondary 47B47, 16W25.

1. Introduction

Let \mathfrak{A} be an algebra. A linear mapping $\delta: \mathfrak{A} \rightarrow \mathfrak{A}$ is called a derivation if it satisfies the Leibniz rule $\delta(a b)=\delta(a) b+a \delta(b)$ for each $a, b \in \mathfrak{A}$. When \mathfrak{A} is a $*$-algebra, δ is called a $*$-derivation if $\delta\left(a^{*}\right)=\delta(a)^{*}$ for each $a \in \mathfrak{A}$.

Let δ be a $*$-derivation on a C^{*}-algebra \mathfrak{A}, then δ^{2} is a derivation if and only if $\delta=0$. To see this, note that δ^{2} is a derivation if and only if

$$
\delta^{2}(x) y+2 \delta(x) \delta(y)+x \delta^{2}(y)=\delta^{2}(x y)=\delta^{2}(x) y+x \delta^{2}(y) .
$$

The latter is equivalent to the fact that $\delta(x) \delta(y)=0$ for each $x, y \in \mathfrak{A}$. Thus $\delta(x) \delta(x)^{*}=\delta(x) \delta\left(x^{*}\right)=$ 0 for each $x \in \mathfrak{A}$. Hence $\|\delta(x)\|^{2}=\left\|\delta(x) \delta(x)^{*}\right\|=0$. This shows that $\delta(x)=0$ for each $x \in \mathfrak{A}$.

As a typical example of a non-zero derivation in a non-commutative algebra, we can consider the inner derivation δ_{a} implemented by an element $a \in \mathfrak{A}$ which is defined as $\delta_{a}(x)=x a-a x$ for each $x \in \mathfrak{A}$. Even for an inner derivation δ_{a} on an algebra \mathfrak{A}, it is very probable that δ_{a}^{2} is not a derivation.

[^0]These considerations show that the set of derivations on an algebra \mathfrak{A} is not in general closed under product. There are various researches seeking for some conditions under which the product of two derivations will be again a derivation. Posner [9] was the first one who studied the product of two derivations on a prime ring. He showed that if the product of two derivations on a prime ring, with characteristic not equal to 2 , is a derivation then one of them must be equal to zero. The same question has been investigated by several authors on various algebras, see for example [1, 2, ,3, 5, 6, 7, 8] and references therein. In the realm of C^{*}-algebras, Mathieu [5] showed that, if the product of two derivations δ and δ^{\prime} on a C^{*}-algebra is a derivation then $\delta \delta^{\prime}=0$. The same result was proved by Pedersen [8] for unbounded densely defined derivations on a C^{*}-algebra.

There are known algebras \mathfrak{A} such that each derivation on \mathfrak{A} is inner which is implemented by an element of the algebra \mathfrak{A} or an algebra \mathfrak{B} containing \mathfrak{A}. For example, each derivation on a von Neumann algebra \mathfrak{M} is inner and is implemented by an element of \mathfrak{M}. Moreover, each derivation on a C ${ }^{*}$-algebra \mathfrak{A} acting on a Hilbert space \mathfrak{H} is inner and implemented by an element of the weak closure \mathfrak{M} of \mathfrak{A} in $\mathbf{B}(\mathfrak{H})$ (See [4, [10]).

In the present paper, we are concerned with the following problem: "Given two derivations δ and δ^{\prime} on a C^{*}-algebra \mathfrak{A}, find necessary and sufficient condition under which there exists a derivation Δ on \mathfrak{A} satisfying $\delta \delta^{\prime}=\Delta^{2}$."

We affirm that the condition is: either $\delta^{\prime}=0$ or $\delta=s \delta^{\prime}$ for some $s \in \mathbb{C}$. We do this in two steps; for the matrix algebra $M_{n}(\mathbb{C})$ and for an arbitrary C^{*}-algebra.

2. The equation for the case of matrix algebras

In this section we are mainly concerned with the structure of derivations on the matrix algebra $M_{n}(\mathbb{C})$. Let $A=\left[a_{i j}\right] \in M_{n}(\mathbb{C})$. We denote the diagonal matrix whose diagonal entries are $a_{i i}$ by A^{D}.

Proposition 2.1. Let $A=\left[a_{i j}\right], B=\left[b_{i j}\right] \in M_{n}(\mathbb{C})$. Then there exists a $C=\left[c_{i j}\right] \in M_{n}(\mathbb{C})$ such that $\delta_{A} \delta_{B}=\delta_{C}{ }^{2}$ if and only if either $\delta_{B}=0$ or $\delta_{A}=s \delta_{B}$ for some $s \in \mathbb{C}$.

Proof . Let $\left\{E_{i j}\right\}_{1 \leqslant i, j \leqslant n}$ be the standard system of matrix units for $M_{n}(\mathbb{C})$. First we show that $a_{i k} b_{\ell j}=b_{i k} a_{\ell j}$ for all $1 \leqslant i, k, \ell, j \leqslant n$ if and only if $A X B=B X A$ for all $X \in M_{n}(\mathbb{C})$.

To see this, suppose that $a_{i k} b_{\ell j}=b_{i k} a_{\ell j}$ for all $1 \leqslant i, k, \ell, j \leqslant n$ then we can write

$$
\left(E_{i i} A E_{k \ell}\right)\left(E_{\ell \ell} B E_{j j}\right)=a_{i k} b_{\ell j} E_{i j}=b_{i k} a_{\ell j} E_{i j}=\left(E_{i i} B E_{k \ell}\right)\left(E_{\ell \ell} A E_{j j}\right)
$$

We thus have

$$
\left(\sum_{i=1}^{n} E_{i i}\right) A E_{k \ell} B\left(\sum_{j=1}^{n} E_{j j}\right)=\left(\sum_{i=1}^{n} E_{i i}\right) B E_{k \ell} A\left(\sum_{j=1}^{n} E_{j j}\right) .
$$

This shows that $A E_{k \ell} B=B E_{k \ell} A$ for each $1 \leqslant k, \ell \leqslant n$. We can therefore deduce that $A X B=B X A$ for all $X \in M_{n}(\mathbb{C})$. On the other hand, if $A X B=B X A$ for all $X \in M_{n}(\mathbb{C})$, then

$$
a_{i j} b_{k \ell} E_{i \ell}=\left(E_{i i} A E_{j k}\right)\left(E_{k k} B E_{\ell \ell}\right)=\left(E_{i i} B E_{j k}\right)\left(E_{k k} A E_{\ell \ell}\right)=b_{i j} a_{k \ell} E_{i \ell} .
$$

We can assume that $a_{11}=b_{11}=c_{11}=0$. This is due to the fact that $\delta_{A-a_{11} I}=\delta_{A}, \delta_{B-b_{11} I}=\delta_{B}$ and $\delta_{C-c_{11} I}=\delta_{C}$. Then $\delta_{A} \delta_{B}=\delta_{C}{ }^{2}$ if and only if

$$
A B E_{k \ell}-A E_{k \ell} B-B E_{k \ell} A+E_{k \ell} B A=C^{2} E_{k \ell}-2 C E_{k \ell} C+E_{k \ell} C^{2},
$$

for each $1 \leqslant k, \ell \leqslant n$. This is equivalent to the fact that

$$
E_{i i}\left(A B E_{k \ell}-A E_{k \ell} B-B E_{k \ell} A+E_{k \ell} B A\right) E_{j j}=E_{i i}\left(C^{2} E_{k \ell}-2 C E_{k \ell} C+E_{k \ell} C^{2}\right) E_{j j},
$$

for each $1 \leqslant i, j, k, \ell \leqslant n$. Now for $i \neq k$ and $j \neq \ell$ we have

$$
\begin{equation*}
\left(0-a_{i k} b_{\ell j}-b_{i k} a_{\ell j}+0\right) E_{i j}=\left(0-2 c_{i k} c_{\ell j}+0\right) E_{i j} . \tag{2.1}
\end{equation*}
$$

For $i \neq k$ and $j=\ell$ we have

$$
\begin{equation*}
\left(\sum_{m=1}^{n} a_{i m} b_{m k}-a_{i k} b_{\ell \ell}-b_{i k} a_{\ell \ell}+0\right) E_{i \ell}=\left(\sum_{m=1}^{n} c_{i m} c_{m k}-2 c_{i k} c_{\ell \ell}+0\right) E_{i \ell} . \tag{2.2}
\end{equation*}
$$

For $i=k$ and $j \neq \ell$ we have

$$
\begin{equation*}
\left(0-a_{k k} b_{\ell j}-b_{k k} a_{\ell j}+\sum_{m=1}^{n} b_{\ell m} a_{m j}\right) E_{k j}=\left(0-2 c_{k k} c_{\ell j}+\sum_{m=1}^{n} c_{\ell m} c_{m j}\right) E_{k j} . \tag{2.3}
\end{equation*}
$$

And finally for $i=k$ and $j=\ell$ we have

$$
\begin{equation*}
\left(\sum_{m=1}^{n} a_{k m} b_{m k}-a_{k k} b_{\ell \ell}-b_{k k} a_{\ell \ell}+\sum_{m=1}^{n} b_{\ell m} a_{m \ell}\right) E_{k \ell}=\left(\sum_{m=1}^{n} c_{k m} c_{m k}-2 c_{k k} c_{\ell \ell}+\sum_{m=1}^{n} c_{\ell m} c_{m \ell}\right) E_{k \ell} . \tag{2.4}
\end{equation*}
$$

If $k \neq \ell$ then putting $i=\ell$ and $j=k$ in the equation (2.1) we have $c_{\ell k}^{2}=a_{\ell k} b_{\ell k}$. Thus for $i \neq k$ and $j \neq \ell$ we have $\left(a_{i k} b_{\ell j}+b_{i k} a_{\ell j}\right)^{2}=4 c_{i k}^{2} c_{\ell j}^{2}=4 a_{i k} b_{i k} a_{\ell j} b_{\ell j}$. This implies that

$$
\begin{equation*}
a_{i k} b_{\ell j}=b_{i k} a_{\ell j}, \text { for } i \neq k, j \neq \ell \tag{2.5}
\end{equation*}
$$

Now, if $b_{\ell j} \neq 0$ for some $1 \leq \ell, j \leq n$ with $\ell \neq j$, then the equation

$$
a_{i k}=\frac{a_{\ell j}}{b_{\ell j}} b_{i k}, \text { for } i \neq k,
$$

implies the existence of some α and β with $|\alpha|+|\beta| \neq 0$ such that

$$
\begin{equation*}
\alpha\left(A-A^{D}\right)=\beta\left(B-B^{D}\right) \tag{2.6}
\end{equation*}
$$

If $b_{\ell j}=0$ for all $1 \leq \ell, j \leq n$ with $\ell \neq j$, then $B=B^{D}$ and so the equation (2.6) holds for $\alpha=0$ and any nonzero $\beta \in \mathbb{C}$.

Interchanging $\ell \leftrightarrow i, j \leftrightarrow k$ and $k \leftrightarrow \ell$ in (2.3) we have

$$
\begin{equation*}
\sum_{m=1}^{n} b_{i m} a_{m k}-a_{\ell \ell} b_{i k}-b_{\ell \ell} a_{i k}=\sum_{m=1}^{n} c_{i m} c_{m k}-2 c_{\ell \ell} c_{i k}, \text { for } i \neq k . \tag{2.7}
\end{equation*}
$$

It follows from (2.2) and (2.7) that

$$
\sum_{m=1}^{n} a_{i m} b_{m k}=\sum_{m=1}^{n} b_{i m} a_{m k}, \text { for } i \neq k
$$

Returning to the fact that $a_{i m} b_{m k}=b_{i m} a_{m k}$ for $m \neq i, k$, we have

$$
a_{i i} b_{i k}+a_{i k} b_{k k}=b_{i i} a_{i k}+b_{i k} a_{k k}, \text { for } i \neq k .
$$

This implies that

$$
\begin{equation*}
a_{i k}\left(b_{i i}-b_{k k}\right)=b_{i k}\left(a_{i i}-a_{k k}\right) \tag{2.8}
\end{equation*}
$$

Putting $k=\ell$ in (2.4) we get

$$
\sum_{m=1}^{n} a_{k m} b_{m k}-a_{k k} b_{k k}=\sum_{m=1}^{n} c_{k m} c_{m k}-c_{k k} c_{k k}
$$

Thus it follows from (2.4) that

$$
a_{k k} b_{k k}-a_{k k} b_{\ell \ell}-b_{k k} a_{\ell \ell}+b_{\ell \ell} a_{\ell \ell}=c_{k k} c_{k k}-2 c_{k k} c_{\ell \ell}+c_{\ell \ell} c_{\ell \ell} .
$$

For $\ell=1$ we have

$$
c_{k k}^{2}=a_{k k} b_{k k},
$$

and then $a_{k k} b_{\ell \ell}+b_{k k} a_{\ell \ell}=2 c_{k k} c_{\ell \ell}$. Thus for all $1 \leq k, \ell \leq n$ we have $\left(a_{k k} b_{\ell \ell}+b_{k k} a_{\ell \ell}\right)^{2}=4 c_{k k}^{2} c_{\ell \ell}^{2}=$ $4 a_{k k} b_{k k} a_{\ell \ell} b_{\ell \ell}$. This implies that

$$
a_{k k} b_{\ell \ell}=b_{k k} a_{\ell \ell}, \text { for all } k, \ell
$$

A similar argument as about the equation (2.5) implies the existence of some α^{\prime} and β^{\prime} with $\left|\alpha^{\prime}\right|+$ $\left|\beta^{\prime}\right| \neq 0$ such that

$$
\alpha^{\prime} A^{D}=\beta^{\prime} B^{D} .
$$

Using (2.8) we have

$$
b_{j j} a_{i k}\left(b_{i i}-b_{k k}\right)=b_{i k} b_{j j}\left(a_{i i}-a_{k k}\right)=b_{i k} a_{j j}\left(b_{i i}-b_{k k}\right) .
$$

Now let $B^{D} \notin \mathbb{C} I$. Then $b_{i i} \neq b_{k k}$ for some i and k. This shows that $b_{j j} a_{i k}=a_{j j} b_{i k}$. So we have $\alpha=\alpha^{\prime}$ and $\beta=\beta^{\prime}$. By a similar argument we can say that if $A^{D} \notin \mathbb{C} I$ then $\alpha=\alpha^{\prime}$ and $\beta=\beta^{\prime}$. We therefore have

$$
\text { if } A^{D} \notin \mathbb{C} I \text { or } B^{D} \notin \mathbb{C} I \text { then } \alpha A=\beta B \text { for some } \alpha \text { and } \beta \text { with }|\alpha|+|\beta| \neq 0 \text {. }
$$

On the other hand, if $A^{D}=s I$ and $B^{D}=t I$ for some $s, t \in \mathbb{C}$ then

$$
\alpha^{\prime} A^{D}+\alpha\left(A-A^{D}\right)=s\left(\alpha^{\prime}-\alpha\right) I+\alpha A,
$$

and

$$
\beta^{\prime} B^{D}+\beta\left(B-B^{D}\right)=t\left(\beta^{\prime}-\beta\right) I+\beta B
$$

Therefore $s\left(\alpha^{\prime}-\alpha\right) I+\alpha A=t\left(\beta^{\prime}-\beta\right) I+\beta B$. Summarizing these we can say that $\delta_{A} \delta_{B}=\delta_{C}{ }^{2}$ if and only if $\alpha A=\beta B+r I$ for some $\alpha, \beta, r \in \mathbb{C}$ with $|\alpha|+|\beta| \neq 0$. This is equivalent to the fact that either $\delta_{B}=0$ or $\delta_{A}=s \delta_{B}$ for some $s \in \mathbb{C}$.

A natural question is the following: Is it true in general that $\delta \delta^{\prime}=\Delta^{2}$ on an algebra \mathcal{A} is equivalent to either $\delta^{\prime}=0$ or $\delta=s \delta^{\prime}$ for some $s \in \mathbb{C}$? In this case we of course have $\Delta=\sqrt{s} \delta^{\prime}$. The following example shows that the answer is not affirmative in general.

Example 2.2. Let \mathcal{A} be the subalgebra of $M_{2}(\mathbb{C})$ generated by E_{11} and E_{12}. If $\delta=\delta_{E_{12}}$ and $\delta^{\prime}=\delta_{E_{11}}$ then for each $X=x E_{11}+y E_{12} \in \mathcal{A}$ we have

$$
\delta \delta^{\prime}(X)=\delta\left(x E_{11}+y E_{12}-x E_{11}\right)=\delta\left(y E_{12}\right)=0 .
$$

Thus $\delta \delta^{\prime}=\delta_{0}^{2}$. But $\delta^{\prime} \neq 0$ and δ is not a multiple of δ^{\prime}.

Lemma 2.3. Let \mathcal{A} be the subalgebra of $M_{2}(\mathbb{C})$ generated by E_{11} and E_{12}. Then each derivation on \mathcal{A} is of the form $\delta=\delta_{c E_{12}-d E_{11}}$ for some $c, d \in \mathbb{C}$.

Proof. Let $\delta: \mathcal{A} \rightarrow \mathcal{A}$ be a derivation defined by $\delta\left(x E_{11}+y E_{12}\right)=f(x, y) E_{11}+g(x, y) E_{12}$. Since δ is linear,

$$
f(x, y)=f(x, 0)+f(0, y)=x f(1,0)+y f(0,1) .
$$

We therefore have $f(x, y)=a x+b y$ and $g(x, y)=c x+d y$ for some $a, b, c, d \in \mathbb{C}$. Moreover,

$$
\begin{aligned}
& \delta\left(\left(x E_{11}+y E_{12}\right)\left(x^{\prime} E_{11}+y^{\prime} E_{12}\right)\right) \\
= & \delta\left(x E_{11}+y E_{12}\right)\left(x^{\prime} E_{11}+y^{\prime} E_{12}\right)+\left(x E_{11}+y E_{12}\right) \delta\left(x^{\prime} E_{11}+y^{\prime} E_{12}\right)
\end{aligned}
$$

implies

$$
f\left(x x^{\prime}, x y^{\prime}\right) E_{11}+g\left(x x^{\prime}, x y^{\prime}\right) E_{12}=f(x, y) x^{\prime} E_{11}+f(x, y) y^{\prime} E_{12}+x f\left(x^{\prime}, y^{\prime}\right) E_{11}+x g\left(x^{\prime}, y^{\prime}\right) E_{12}
$$

We thus have

$$
\begin{aligned}
f\left(x x^{\prime}, x y^{\prime}\right) & =f(x, y) x^{\prime}+x f\left(x^{\prime}, y^{\prime}\right) \\
g\left(x x^{\prime}, x y^{\prime}\right) & =f(x, y) y^{\prime}+x g\left(x^{\prime}, y^{\prime}\right)
\end{aligned}
$$

By using the fact that $f(x, y)=a x+b y$ and $g(x, y)=c x+d y$, we have $f(x, y)=0$. Whence $\delta=\delta_{c E_{12}-d E_{11}}$.

Proposition 2.4. Let \mathcal{A} be the subalgebra of $M_{2}(\mathbb{C})$ generated by E_{11} and E_{12} and δ, δ^{\prime} be two derivations on \mathcal{A}. Then $\delta \delta^{\prime}=\Delta^{2}$ if and only if $\delta^{\prime}=0$ or $\delta^{\prime}=\delta_{\alpha^{\prime} E_{12}}$ for some $\alpha^{\prime} \in \mathbb{C}$ implies $\delta=\delta_{\alpha E_{12}}$ for some $\alpha \in \mathbb{C}$, or equivalently $\delta^{\prime}=0$ or $\delta^{\prime 2}=0$ implies $\delta^{2}=0$.

Proof . Let $\delta=\delta_{\alpha E_{12}-\beta E_{11}}, \delta^{\prime}=\delta_{\alpha^{\prime} E_{12}-\beta^{\prime} E_{11}}$ and $\Delta=\delta_{r E_{12}-s E_{11}}$. Then $\delta \delta^{\prime}=\Delta^{2}$ if and only if $r s=\beta \alpha^{\prime}$ and $s^{2}=\beta \beta^{\prime}$. The latter is equivalent to the fact that $\delta^{\prime}=0$ or $\delta^{\prime}=\delta_{\alpha^{\prime} E_{12}}$ for some $\alpha^{\prime} \in \mathbb{C}$ implies $\delta=\delta_{\alpha E_{12}}$ for some $\alpha \in \mathbb{C}$. On the other hand, a derivation δ on \mathcal{A} is of the form $\delta_{\lambda E_{12}}$ for some $\lambda \in \mathbb{C}$ if and only if $\delta^{2}=0$.

3. Derivations on C^{*}-algebras

Theorem 3.1. Let \mathfrak{A} be a C^{*}-algebra and δ, δ^{\prime} be two derivations on \mathfrak{A}. Then there exists a derivation Δ on \mathfrak{A} such that $\delta \delta^{\prime}=\Delta^{2}$ if and only if either $\delta^{\prime}=0$ or $\delta=s \delta^{\prime}$ for some $s \in \mathbb{C}$.

Proof . Let \mathfrak{A} act faithfully on the Hilbert space \mathfrak{H} with the orthonormal basis $\left\{\xi_{i}\right\}_{i \in \mathbb{I}}$. For a bounded operator $T \in B(\mathfrak{H})$, let $t_{i j}=\left\langle T \xi_{j}, \xi_{i}\right\rangle$ for $i, j \in \mathbb{I}$. We thus have $T \xi_{j}=\sum_{i \in \mathbb{I}} t_{i j} \xi_{i}$ and we can write $T=\left[t_{i j}\right]_{i, j \in \mathbb{I}}$. The latter is called the matrix representation of T. For $i, j \in \mathbb{I}$, let $E_{i j} \in B(\mathfrak{H})$ be the operator defined by $E_{i j} \xi_{j}=\xi_{i}$ and $E_{i j} \xi_{k}=0$ for $k \neq j$. Then we have $T=\sum_{p \in \mathbb{I}} \sum_{q \in \mathbb{I}} t_{q p} E_{q p}$ for every $T \in B(\mathfrak{H})$.

By the Kadison-Sakai theorem [4, 10], $\delta=\delta_{R}, \delta^{\prime}=\delta_{S}$ and $\Delta=\delta_{T}$ for some R, S and T in $B(\mathfrak{H})$. Thus $\delta \delta^{\prime}=\Delta^{2}$ if and only if

$$
R S E_{k \ell}-R E_{k \ell} S-S E_{k \ell} R+E_{k \ell} S R=T^{2} E_{k \ell}-2 T E_{k \ell} T+E_{k \ell} T^{2},
$$

for each $k, \ell \in \mathbb{I}$. This is equivalent to the fact that

$$
E_{i i}\left(R S E_{k \ell}-R E_{k \ell} S-S E_{k \ell} R+E_{k \ell} S R\right) E_{j j}=E_{i i}\left(T^{2} E_{k \ell}-2 T E_{k \ell} T+E_{k \ell} T^{2}\right) E_{j j},
$$

for each $i, j, k, \ell \in \mathbb{I}$. For $i \neq k$ and $j \neq \ell$ we have

$$
r_{i k} s_{\ell j}+s_{i k} r_{\ell j}=2 t_{i k} t_{\ell j} .
$$

Similarly, for $i \neq k$ and $j=\ell$ we have

$$
\sum_{m \in \mathbb{I}} r_{i m} s_{m k}-r_{i k} s_{\ell \ell}-s_{i k} r_{\ell \ell}=\sum_{m \in \mathbb{I}} t_{i m} t_{m k}-2 t_{i k} t_{\ell \ell} .
$$

Also, for $i=k$ and $j \neq \ell$ we have

$$
-r_{k k} s_{\ell j}-s_{k k} r_{\ell j}+\sum_{m \in \mathbb{I}} s_{\ell m} r_{m j}=-2 t_{k k} t_{\ell j}+\sum_{m \in \mathbb{I}} t_{\ell m} t_{m j} .
$$

And finally for $i=k$ and $j=\ell$ we have

$$
\sum_{m \in \mathbb{I}} r_{k m} s_{m k}-r_{k k} s_{\ell \ell}-s_{k k} r_{\ell \ell}+\sum_{m \in \mathbb{I}} s_{\ell m} r_{m \ell}=\sum_{m \in \mathbb{I}} t_{k m} t_{m k}-2 t_{k k} t_{\ell \ell}+\sum_{m \in \mathbb{I}} t_{\ell m} t_{m \ell} .
$$

Now a similar verification as in Proposition 2.1 implies the result.

References

[1] M. Barraa and S. Pedersen, On the product of two generalized derivations, Proc. Amer. Math. Soc. 127 (1999) 2679-2683.
[2] T. Creedon, Products of derivations, Proc. Edinburgh Math. Soc. 41 (1998) 407-410.
[3] C.K. Fong and A.R. Sourour, On the operator identity $\sum_{k} A_{k} X B_{k} \equiv 0$, Canad. J. Math. 31 (1979) 845-857.
[4] R.V. Kadison, Derivations of operator algebras, Ann. Math. 83 (1966) 280-293.
[5] M. Mathieu, Properties of the product of two derivations of a C ${ }^{*}$-algebra, Canad. Math. Bull. 32 (1989) 490-497.
[6] M. Mathieu, More properties of the product of two derivations of a C C^{*}-algebra, Bull. Austral. Math. Soc. 42 (1990) 115-120.
[7] M. Mathieu, Posner's second theorem deduced from the first, Proc. Amer. Math. Soc. 114 (1992) 601-602.
[8] S. Pedersen, The product of two unbounded derivations, Canad. Math. Bull. 33 (1990) 354-348.
[9] E.C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957) 1093-1100.
[10] S. Sakai, Derivations of W^{*}-algebras, Ann. Math. 83 (1966) 273-279.

[^0]: *Corresponding author
 Email addresses: ekrami@pnu.ac.ir, khalil.ekrami@gmail.com (Sayed Khalil Ekrami), mirzavaziri@um.ac.ir, mirzavaziri@gmail.com (Madjid Mirzavaziri), vishki@um.ac.ir (Hamid Reza Ebrahimi Vishki)

