Strong Convergence Theorems for Weighted Resolvent Average of a Finite Family of Monotone Operators

Malihe Bagheri, Mehdi Roohi*
Department of Mathematics, Faculty of Sciences, Golestan University, P.O.Box. 155, Gorgan, Iran

Abstract

This paper is devoted to finding a zero point of a weighted resolvent average of a finite family of monotone operators. A new proximal point algorithm and its convergence analysis is given. It is shown that the sequence generated by this new algorithm, for a finite family of monotone operators converges strongly to the zero point of their weighted resolvent average. Finally, our results are illustrated by some numerical examples.

Keywords: Weighted resolvent average, proximal point algorithm, projection algorithm, monotone operators.
2010 MSC: Primary 47H05; Secondary 49J40.

1. Introduction

Let H be a real Hilbert space with norm $\|$.$\| and inner product \langle.,$.$\rangle . For each x, y \in H$, we have 9$]$

$$
\begin{equation*}
\|x+y\|^{2} \leq\|x\|^{2}+2\langle y, x+y\rangle . \tag{1.1}
\end{equation*}
$$

The operator $T: H \rightarrow H$ is called nonexpansive (resp. firmly nonexpansive) if $\|T x-T y\| \leq$ $\|x-y\|$ (resp. $\left.\|T x-T y\|^{2}+\|(\operatorname{Id}-T) x-(\operatorname{Id}-T) y\|^{2} \leq\|x-y\|^{2}\right)$ for all $x, y \in H$, where Id is the identity mapping on H. The set of all fixed points of T is denoted by $\operatorname{Fix}(T)$, i.e., $\operatorname{Fix}(T)=\{x \in H: T x=x\}$.

Let A be a set-valued mapping with the domain $\operatorname{Dom} A=\{x \in H: A(x) \neq \emptyset\}$ and the range $\operatorname{ran} A=\{u \in H: \exists x \in \operatorname{Dom} A$ such that $u \in A(x)\}$. The graph of A is the set gra $A=\{(x, u) \in$ $H \times H: u \in A(x)\}$.

[^0]An operator $A: H \multimap H$ is said to be monotone if

$$
\langle x-y, u-v\rangle \geq 0, \quad \forall(x, u),(y, v) \in \operatorname{gra} A .
$$

A monotone operator A is called maximal monotone if there exists no monotone operator B such that $\operatorname{gra} A$ is a proper subset of $\operatorname{gra} B$.

The resolvent of A is the mapping $J_{A}=(A+\mathrm{Id})^{-1}$. It is well known that (see Proposition 23.7 in [2]) J_{A} is single-valued and firmly nonexpansive if A is monotone. In addition, if A is maximal monotone, then J_{A} is also maximal monotone and, in this case we have $\operatorname{Dom} J_{A}=H$. Moreover, $0 \in A(x)$ if and only if $x \in \operatorname{Fix}\left(J_{A}\right)$. For each $x, y \in \operatorname{ran}(\operatorname{Id}+A)$ we have (see [11])

$$
\begin{equation*}
\left\|J_{\lambda A} x-J_{\lambda A} y\right\|^{2} \leq\|x-y\|^{2}-\left\|\left(x-J_{\lambda A} x\right)-\left(y-J_{\lambda A} y\right)\right\|^{2} . \tag{1.2}
\end{equation*}
$$

Let us consider the zero point problem for monotone operator A on a real Hilbert space H, i.e., finding a point $x \in \operatorname{Dom} A$ such that $0 \in A(x)$. It was first introduced by Martinet [8] in 1970. Rockafellar [10] defined the proximal point algorithm of Martinet by generalizing a sequence $\left\{x_{n}\right\}$ such that

$$
\begin{equation*}
x_{n+1}=J_{s_{n} A} x_{n}+e_{n}, n \in \mathbb{N}, \tag{1.3}
\end{equation*}
$$

for arbitrary point $x_{0} \in H$, where $\left\{e_{n}\right\}$ is a sequence of errors and $\left\{s_{n}\right\} \subseteq(0, \infty)$. The sequence $\left\{x_{n}\right\}$ is known to converge weakly to a zero of A, if $\liminf _{n \rightarrow \infty} s_{n}>0$ and $\sum_{n=0}^{\infty}\left\|e_{n}\right\|<\infty$, see [10], but fails in general to converge strongly [6]. Recently, Xu [12] investigated a modified version of the initial proximal point algorithm studied by Rockafellar with $x_{0} \in H$ chosen arbitrary,

$$
\begin{equation*}
x_{n+1}=\beta_{n} x_{0}+\left(1-\beta_{n}\right) J_{s_{n} A} x_{n}+e_{n}, n \in \mathbb{N}, \tag{1.4}
\end{equation*}
$$

where $\left\{e_{n}\right\}$ is the error sequence. For $\left\{e_{n}\right\}$ summable, it was proved that (see [12]) $\left\{x_{n}\right\}$ is strongly convergent if $s_{n} \rightarrow \infty$ and $\beta_{n} \subseteq(0,1)$ with $\sum_{n=0}^{\infty} \beta_{n}=\infty$ and $\lim _{n \rightarrow \infty} \beta_{n}=0$.

In this paper, we prove strong convergence of a proximal point algorithm to a zero point of weighted resolvent average of a finite family of monotone operators.

2. The main results

In this section, we present a new proximal point algorithm for a finite family of monotone operators and its convergence analysis.

First, we recall (see [1]) the definition of the proximal average and resolvent average. To this end, we assume that $m \in \mathbb{N}$ and $I=\{1,2, \ldots, m\}$. For every $i \in I$, let $A_{i}: H \multimap H$ be a set-valued mapping and let $\lambda_{i}>0, \sum_{i \in I} \lambda_{i}=1$. We set $\boldsymbol{A}=\left(A_{1}, \ldots, A_{m}\right)$ and $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$.

The $\boldsymbol{\lambda}$-weighted resolvent average of \boldsymbol{A} is defined by

$$
\begin{equation*}
R(\boldsymbol{A}, \boldsymbol{\lambda})=\left(\sum_{i \in I} \lambda_{i}\left(A_{i}+\mathrm{Id}\right)^{-1}\right)^{-1}-\mathrm{Id} \tag{2.1}
\end{equation*}
$$

The equation (2.1) is equivalent to the following equation:

$$
\begin{equation*}
J_{R(\boldsymbol{A}, \boldsymbol{\lambda})}=\sum_{i \in I} \lambda_{i} J_{A_{i}} . \tag{2.2}
\end{equation*}
$$

Here, we consider some useful lemmas.
Lemma 2.1. Let for each $i \in I, A_{i}: H \multimap H$ be a monotone operator. Then $(R(\boldsymbol{A}, \boldsymbol{\lambda}))^{-1}(0)=$ $\operatorname{Fix}\left(J_{R(\boldsymbol{A}, \boldsymbol{\lambda})}\right)$.

Proof . It follows from (2.1) and (2.2) that

$$
\begin{aligned}
x \in(R(\boldsymbol{A}, \boldsymbol{\lambda}))^{-1}(0) & \Leftrightarrow 0 \in R(\boldsymbol{A}, \boldsymbol{\lambda})(x) \\
& \Leftrightarrow 0 \in\left(\left(\sum_{i \in I} \lambda_{i}\left(A_{i}+\mathrm{Id}\right)^{-1}\right)^{-1}-\mathrm{Id}\right)(x) \\
& \Leftrightarrow x \in\left(\sum_{i \in I} \lambda_{i}\left(A_{i}+\mathrm{Id}\right)^{-1}\right)^{-1}(x) \\
& \Leftrightarrow x \in\left(\sum_{i \in I} \lambda_{i}\left(A_{i}+\mathrm{Id}\right)^{-1}\right)(x) \\
& \Leftrightarrow x \in \sum_{i \in I} \lambda_{i} J_{A_{i}}(x) \Leftrightarrow x \in J_{R(\boldsymbol{A}, \boldsymbol{\lambda})}(x) \\
& \Leftrightarrow x \in \operatorname{Fix}\left(J_{R(\boldsymbol{A}, \boldsymbol{\lambda})}\right) .
\end{aligned}
$$

Lemma 2.2. Let $\left\{A_{i}: H \multimap H\right\}_{i \in I}$ be a finite family of monotone operators with $(R(\boldsymbol{A}, \boldsymbol{\lambda}))^{-1}(0) \neq$ \emptyset, where $\lambda_{i}>0$ and $\sum_{i \in I} \lambda_{i}=1$. Let K ba a nonempty closed and convex subset of H such that

$$
\begin{equation*}
\overline{\operatorname{Dom} R(\boldsymbol{A}, \boldsymbol{\lambda})} \subseteq K \subseteq \operatorname{ran}(\operatorname{Id}+R(\boldsymbol{A}, \boldsymbol{\lambda})) \tag{2.3}
\end{equation*}
$$

Assume that f is a k-contraction mapping on K into itself. Let $\left\{x_{n}\right\}$ be the sequence generated by $x_{1} \in K$ and

$$
\begin{equation*}
x_{n+1}=\beta_{n} f\left(x_{n}\right)+\left(1-\beta_{n}\right) J_{R(\boldsymbol{A}, \lambda)} x_{n}+e_{n}, n \in \mathbb{N}, \tag{2.4}
\end{equation*}
$$

where $\left\{\beta_{n}\right\} \subseteq(0,1)$ and $\left\{e_{n}\right\}$ is a sequence of errors such that $e_{n} \in H$ and $\sum_{n \in \mathbb{N}}\left\|e_{n}\right\|<\infty$. Then $\left\{\left\|x_{n}-z\right\|: n \in \mathbb{N}\right\}$ is bounded for each $z \in(R(\boldsymbol{A}, \boldsymbol{\lambda}))^{-1}(0)$. Consequently, $\left\{x_{n}\right\}$ is bounded.

Proof . By using our assumption, nonexpansivity of the resolvent and Lemma 2.1, we have

$$
\begin{aligned}
\left\|x_{n+1}-z\right\| & =\left\|\beta_{n} f\left(x_{n}\right)+\left(1-\beta_{n}\right) J_{R(\boldsymbol{A}, \boldsymbol{\lambda})} x_{n}+e_{n}-z\right\| \\
& =\left\|\beta_{n}\left(f\left(x_{n}\right)-z\right)+\left(1-\beta_{n}\right)\left(J_{R(\boldsymbol{A}, \boldsymbol{\lambda})} x_{n}-z\right)+e_{n}\right\| \\
& \leq \beta_{n}\left\|f\left(x_{n}\right)-z\right\|+\left(1-\beta_{n}\right)\left\|J_{R(\boldsymbol{A}, \boldsymbol{\lambda})} x_{n}-J_{R(\boldsymbol{A}, \boldsymbol{\lambda})} z\right\|+\left\|e_{n}\right\| \\
& \leq \beta_{n}\left\|f\left(x_{n}\right)-z\right\|+\left(1-\beta_{n}\right)\left\|x_{n}-z\right\|+\left\|e_{n}\right\| \\
& \leq \beta_{n}\left\|f\left(x_{n}\right)-f(z)\right\|+\beta_{n}\|f(z)-z\|+\left(1-\beta_{n}\right)\left\|x_{n}-z\right\|+\left\|e_{n}\right\| \\
& \leq k \beta_{n}\left\|x_{n}-z\right\|+\beta_{n}\|f(z)-z\|+\left(1-\beta_{n}\right)\left\|x_{n}-z\right\|+\left\|e_{n}\right\| \\
& \leq\left(1-(1-k) \beta_{n}\right)\left\|x_{n}-z\right\|+\beta_{n}(1-k) \frac{1}{1-k}\|f(z)-z\|+\left\|e_{n}\right\| \\
& \leq \max \left\{\left\|x_{n}-z\right\|, \frac{1}{1-k}\|f(z)-z\|\right\}+\left\|e_{n}\right\| .
\end{aligned}
$$

This shows by induction that

$$
\left\|x_{n+1}-z\right\| \leq \max \left\{\left\|x_{1}-z\right\|, \frac{1}{1-k}\|f(z)-z\|\right\}+\sum_{i=1}^{n}\left\|e_{i}\right\| .
$$

Therefore, $\left\{\left\|x_{n}-z\right\|: n \in \mathbb{N}\right\}$ is bounded for each $z \in R(\boldsymbol{A}, \boldsymbol{\lambda})^{-1}(0)$. Hence $\left\{x_{n}\right\}$ is bounded.
Lemma 2.3. [7] Let $\left\{t_{n}\right\}$ be a sequence of real numbers such that there exists a subsequence $\left\{n_{i}\right\}$ of $\{n\}$ with $t_{n_{i}}<t_{n_{i}+1}$ for all $i \in \mathbb{N}$. Then there exists a nondecreasing sequence $\{s(n)\} \subseteq \mathbb{N}$ such that $s(n) \rightarrow \infty$ and the following properties are satisfied by all (sufficiently large) numbers $n \in \mathbb{N}$:

$$
t_{s(n)} \leq t_{s(n)+1}
$$

In fact

$$
s(n)=\max \left\{k \leq n: t_{k}<t_{k+1}\right\}
$$

Lemma 2.4. Let $x \in H$ and $\left\{\alpha_{n}\right\}$ be a bounded sequence in H. Then there exists a constant $L>0$ such that $\left\|x+\alpha_{n}\right\|^{2} \leq\|x\|^{2}+L\left\|\alpha_{n}\right\|$.

Proof . By Cauchy-Schwarz inequality and for $L \geq 2\|x\|+\sup _{n \in \mathbb{N}}\left\|\alpha_{n}\right\|$, we have

$$
\begin{aligned}
\left\|x+\alpha_{n}\right\|^{2} & =\|x\|^{2}+2\left\langle x, \alpha_{n}\right\rangle+\left\|\alpha_{n}\right\|^{2} \\
& \leq\|x\|^{2}+2\|x\|\left\|\alpha_{n}\right\|+\left\|\alpha_{n}\right\|^{2} \\
& \leq\|x\|^{2}+\left\|\alpha_{n}\right\|\left(2\|x\|+\left\|\alpha_{n}\right\|\right) \\
& \leq\|x\|^{2}+L\left\|\alpha_{n}\right\| .
\end{aligned}
$$

Lemma 2.5. Let $\left\{A_{i}: H \multimap H\right\}_{i \in I}$ be a finite family of monotone operators with $(R(\boldsymbol{A}, \boldsymbol{\lambda}))^{-1}(0) \neq$ \emptyset, where $\lambda_{i}>0$ and $\sum_{i \in I} \lambda_{i}=1$. Let K be the same as in Lemma 2.2. Assume that f is a k-contraction mapping on K into itself. Let $\left\{x_{n}\right\}$ be the sequence generated by (2.4) satisfy the following conditions:
(i) $e_{n} \in H$ and $\sum_{n \in \mathbb{N}}\left\|e_{n}\right\|<\infty$,
(ii) $\lim _{n \rightarrow \infty} \beta_{n}=0$.

Then $\lim _{n \rightarrow \infty}\left\|x_{n}-J_{R(\boldsymbol{A}, \boldsymbol{\lambda})} x_{n}\right\|=0$.
Proof. Let $z \in R(\boldsymbol{A}, \boldsymbol{\lambda}))^{-1}(0)$ be arbitrary. By using Lemma 2.1 and (1.2), for some appropriate constant $L>0$ obtained from Lemma 2.4, we get

$$
\begin{aligned}
\left\|x_{n+1}-z\right\|^{2} & =\left\|\beta_{n} f\left(x_{n}\right)+\left(1-\beta_{n}\right) J_{R(\boldsymbol{A}, \boldsymbol{\lambda})} x_{n}+e_{n}-z\right\|^{2} \\
& \leq\left\|\beta_{n} f\left(x_{n}\right)+\left(1-\beta_{n}\right) J_{R(\boldsymbol{A}, \boldsymbol{\lambda}} x_{n}-z\right\|^{2}+L\left\|e_{n}\right\| \\
& \leq \beta_{n}\left\|f\left(x_{n}\right)-z\right\|^{2}+\left(1-\beta_{n}\right)\left\|J_{R(\boldsymbol{A}, \boldsymbol{\lambda})} x_{n}-J_{R(\boldsymbol{A}, \boldsymbol{\lambda})} z\right\|^{2}+L\left\|e_{n}\right\| \\
& \leq \beta_{n}\left\|f\left(x_{n}\right)-z\right\|^{2}+\left(1-\beta_{n}\right)\left(\left\|x_{n}-z\right\|^{2}-\left\|x_{n}-J_{R(\boldsymbol{A}, \boldsymbol{\lambda})} x_{n}\right\|^{2}\right)+L\left\|e_{n}\right\| .
\end{aligned}
$$

Therefore,

$$
\begin{align*}
\left(1-\beta_{n}\right)\left\|x_{n}-J_{R(\boldsymbol{A}, \boldsymbol{\lambda})} x_{n}\right\|^{2} & \leq\left(1-\beta_{n}\right)\left\|x_{n}-z\right\|^{2}-\left\|x_{n+1}-z\right\|^{2}+\beta_{n}\left\|f\left(x_{n}\right)-z\right\|^{2}+L\left\|e_{n}\right\| \\
& \leq\left\|x_{n}-z\right\|^{2}-\left\|x_{n+1}-z\right\|^{2}+\beta_{n}\left\|f\left(x_{n}\right)-z\right\|^{2}+L\left\|e_{n}\right\| . \tag{2.5}
\end{align*}
$$

We consider two cases:
Case 1. Suppose that $\left\{\left\|x_{n}-z\right\|\right\}$ is a monotone sequence. It follows from Lemma 2.2 that $\left\{\left\|x_{n}-z\right\|\right\}$ is bounded and hence $\left\{\left\|x_{n}-z\right\|\right\}$ is convergent. Clearly,

$$
\left\|x_{n+1}-z\right\|^{2}-\left\|x_{n}-z\right\|^{2} \rightarrow 0
$$

Since $\lim _{n \rightarrow \infty} \beta_{n}=\lim _{n \rightarrow \infty}\left\|e_{n}\right\|=0$ and $\left\{f\left(x_{n}\right)\right\}$ is a bounded sequence, from (2.5) we obtain that $\lim _{n \rightarrow \infty}\left(1-\beta_{n}\right)\left\|x_{n}-J_{R(\boldsymbol{A}, \boldsymbol{\lambda})} x_{n}\right\|^{2}=0$. Then

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-J_{R(\boldsymbol{A}, \boldsymbol{\lambda})} x_{n}\right\|=0
$$

Case 2. Assume that $\left\{\left\|x_{n}-z\right\|\right\}$ is not a monotone sequence. Then, we can define an integer sequence $\{\tau(n)\}$ for all $n \geq n_{0}$ (for some n_{0} large enough) by

$$
\tau(n)=\max \left\{k \in \mathbb{N}: k \leq n,\left\|x_{k}-z\right\|<\left\|x_{k+1}-z\right\|\right\} .
$$

Clearly, $\tau(n)$ is a nondecreasing sequence such that $\tau(n) \rightarrow \infty$ as $n \rightarrow \infty$ and for all $n \geq n_{0}$,

$$
\left\|x_{\tau(n)}-z\right\|<\left\|x_{\tau(n)+1}-z\right\| .
$$

From Case 1, we obtain that $\lim _{n \rightarrow \infty}\left\|x_{\tau(n)}-J_{R(\boldsymbol{A}, \boldsymbol{\lambda})} x_{\tau(n)}\right\|=0$. Now, from Lemma 2.3, we have

$$
\begin{aligned}
0 \leq\left\|x_{n}-J_{R(\boldsymbol{A}, \boldsymbol{\lambda})} x_{n}\right\| & \leq \max \left\{\left\|x_{\tau(n)}-J_{R(\boldsymbol{A}, \boldsymbol{\lambda})} x_{\tau(n)}\right\|,\left\|x_{n}-J_{R(\boldsymbol{A}, \boldsymbol{\lambda})} x_{n}\right\|\right\} \\
& \leq\left\|x_{\tau(n)+1}-J_{R(\boldsymbol{A}, \boldsymbol{\lambda})} x_{\tau(n)+1}\right\| .
\end{aligned}
$$

Hence $\lim _{n \rightarrow \infty}\left\|x_{n}-J_{R(\boldsymbol{A}, \boldsymbol{\lambda})} x_{n}\right\|=0$.
Lemma 2.6. [12, Lemma 2.5] Assume that $\left\{a_{n}\right\}$ is a sequence of nonnegative real numbers such that

$$
a_{n+1} \leq\left(1-\gamma_{n}\right) a_{n}+\gamma_{n} \delta_{n}+\beta_{n}, \quad n \geq 0
$$

where $\left\{\gamma_{n}\right\},\left\{\beta_{n}\right\}$ and $\left\{\delta_{n}\right\}$ satisfy the conditions:
(i) $\gamma_{n} \subset[0,1], \sum_{n=1}^{\infty} \gamma_{n}=\infty$,
(ii) $\lim \sup _{n \rightarrow \infty} \delta_{n} \leq 0$ or $\sum_{n=1}^{\infty}\left|\gamma_{n} \delta_{n}\right|<\infty$,
(iii) $\beta_{n} \geq 0$ for all $n \geq 0$ with $\sum_{n=0}^{\infty} \beta_{n}<\infty$.

Then $\lim _{n \rightarrow \infty} a_{n}=0$.
Let K be a closed convex subset of H. Then for every point $x \in H$, there exists a unique nearest point in K, denoted by $P_{K}(x)$, such that

$$
\left\|x-P_{K}(x)\right\| \leq\|x-y\|, \forall y \in K
$$

The operator P_{K} is called metric projection of H onto K. It is well known that $P_{K}(x)$ is nonexpansive. The metric projection $P_{K}(x)$ is characterized by $P_{K}(x) \in K$ and

$$
\left\langle u-P_{K}(x), x-P_{K}(x)\right\rangle \leq 0, \forall u \in K
$$

Theorem 2.7. Suppose that $\left\{A_{i}: H \multimap H\right\}_{i \in I}$ is a finite family of monotone operators with $Z=$ $(R(\boldsymbol{A}, \boldsymbol{\lambda}))^{-1}(0) \neq \emptyset$, where $\lambda_{i}>0$ and $\sum_{i \in I} \lambda_{i}=1$. Let K be the same as in Lemma 2.2. Assume that f is k-contraction on K into itself. Let $\left\{\beta_{n}\right\}$ be a real sequence in $(0,1)$ and $\left\{e_{n}\right\}$ be a sequence of errors. Let $\left\{x_{n}\right\}$ be the sequence generated by (2.4). Assume that the following conditions are satisfied:
(i) $e_{n} \in K$, satisfies $\sum_{n \in \mathbb{N}}\left\|e_{n}\right\|<\infty$,
(ii) $\lim _{n \rightarrow \infty} \beta_{n}=0$ and $\sum_{n=1}^{\infty} \beta_{n}=\infty$.

Then $\left\{x_{n}\right\}$ converges strongly to $z=P_{Z} f(z)$.
Proof . First, we show that there exists a unique $z \in Z$ such that $z=P_{Z} f(z)$. Since $Z=$ $R(\boldsymbol{A}, \boldsymbol{\lambda})^{-1}(0)$ is closed and convex, the projection P_{Z} is well defined. It is enough to show that $P_{Z} f$ is contraction on K. Since P_{Z} is nonexpansive and f is k-contraction, we get

$$
\left\|P_{Z} f(x)-P_{Z} f(y)\right\| \leq\|f(x)-f(y)\| \leq k\|x-y\|, x, y \in H
$$

It follows from Banach Contraction Theorem that there exists a unique element $z \in Z$ such that $z=P_{Z} f(z)$. Lemma 2.5 implies that $\lim _{n \rightarrow \infty}\left\|x_{n}-J_{R(\boldsymbol{A}, \boldsymbol{\lambda})} x_{n}\right\|=0$.

Next, we show that there exists a unique $z \in Z$ such that $\limsup _{n \rightarrow \infty}\left\langle f(z)-z, x_{n}-z\right\rangle \leq 0$, where $z=P_{Z} f(z)$. To show this inequality, we choose a subsequence $\left\{x_{n_{\alpha}}\right\}$ of $\left\{x_{n}\right\}$ such that

$$
\lim _{\alpha \rightarrow \infty}\left\langle f(z)-z, x_{n_{\alpha}}-z\right\rangle=\limsup _{n \rightarrow \infty}\left\langle f(z)-z, x_{n}-z\right\rangle .
$$

By Lemma 2.2, the sequence $\left\{x_{n_{\alpha}}\right\}$ is bounded, so there exists a subsequence $\left\{x_{n_{\alpha_{j}}}\right\}$ of $\left\{x_{n_{\alpha}}\right\}$ which converges weakly to u. Without loss of generality, we can assume that $\left\{x_{n_{\alpha}}\right\} \rightharpoonup u$. We show that $u \in Z$. To see this,

$$
\begin{aligned}
\left\|x_{n_{\alpha}}-J_{R(\boldsymbol{A}, \boldsymbol{\lambda})} u\right\| & \leq\left\|x_{n_{\alpha}}-J_{R(\boldsymbol{A}, \boldsymbol{\lambda})} x_{n_{\alpha}}\right\|+\left\|J_{R(\boldsymbol{A}, \boldsymbol{\lambda}} x_{n_{\alpha}}-J_{R(\boldsymbol{A}, \boldsymbol{\lambda})} u\right\| \\
& \leq\left\|x_{n_{\alpha}}-J_{R(\boldsymbol{A}, \boldsymbol{\lambda})} x_{n_{\alpha}}\right\|+\left\|x_{n_{\alpha}}-u\right\|,
\end{aligned}
$$

which implies that

$$
\limsup _{\alpha \rightarrow \infty}\left\|x_{n_{\alpha}}-J_{R(\boldsymbol{A}, \boldsymbol{\lambda})} u\right\| \leq \limsup _{\alpha \rightarrow \infty}\left\|x_{n_{\alpha}}-u\right\| .
$$

By the Opial property of Hilbert space H, we obtain $u=J_{R(\boldsymbol{A}, \boldsymbol{\lambda})} u$. Hence $u \in Z$.
Therefore, we have

$$
\limsup _{n \rightarrow \infty}\left\langle f(z)-z, x_{n}-z\right\rangle=\lim _{\alpha \rightarrow \infty}\left\langle f(z)-z, x_{n_{\alpha}}-z\right\rangle=\langle f(z)-z, u-z\rangle \leq 0
$$

Finally, we show that $x_{n} \rightarrow P_{Z} f(z)$. In fact, using Lemma 2.4, (1.1) and Lemma 2.2 of [5], for some appropriate constant $L>0$, we have

$$
\left\|x_{n+1}-z\right\|^{2}=\left\|\beta_{n} f\left(x_{n}\right)+\left(1-\beta_{n}\right) J_{R(\boldsymbol{A}, \boldsymbol{\lambda})} x_{n}+e_{n}-z\right\|^{2}
$$

$$
\begin{aligned}
& =\left\|\beta_{n} f\left(x_{n}\right)+\left(1-\beta_{n}\right) J_{R(\boldsymbol{A}, \boldsymbol{\lambda})} x_{n}+e_{n}-\beta_{n} z-\left(1-\beta_{n}\right) z\right\|^{2} \\
& \leq\left\|\left(1-\beta_{n}\right) J_{R(\boldsymbol{A}, \boldsymbol{\lambda})} x_{n}+e_{n}-\left(1-\beta_{n}\right) z\right\|^{2}+2 \beta_{n}\left\langle f\left(x_{n}\right)-z, x_{n+1}-z\right\rangle \\
& \leq\left\|\left(1-\beta_{n}\right) J_{R(\boldsymbol{A}, \boldsymbol{\lambda})} x_{n}-\left(1-\beta_{n}\right) z\right\|^{2}+2 \beta_{n}\left\langle f\left(x_{n}\right)-z, x_{n+1}-z\right\rangle+L\left\|e_{n}\right\| \\
& \leq\left(1-\beta_{n}\right)^{2}\left\|x_{n}-z\right\|^{2}+2 \beta_{n}\left\langle f\left(x_{n}\right)-z, x_{n+1}-z\right\rangle+L\left\|e_{n}\right\| \\
& \leq\left(1-\beta_{n}\right)^{2}\left\|x_{n}-z\right\|^{2}+2 \beta_{n}\left\langle f\left(x_{n}\right)-f(z), x_{n+1}-z\right\rangle+2 \beta_{n}\left\langle f(z)-z, x_{n+1}-z\right\rangle+L\left\|e_{n}\right\| \\
& \leq\left(1-\beta_{n}\right)^{2}\left\|x_{n}-z\right\|^{2}+2 k \beta_{n}\left\|x_{n}-z\right\|\left\|x_{n+1}-z\right\|+2 \beta_{n}\left\langle f(z)-z, x_{n+1}-z\right\rangle+L\left\|e_{n}\right\| \\
& \leq\left(1-\beta_{n}\right)^{2}\left\|x_{n}-z\right\|^{2}+k \beta_{n}\left(\left\|x_{n}-z\right\|^{2}+\left\|x_{n+1}-z\right\|^{2}\right)+2 \beta_{n}\left\langle f(z)-z, x_{n+1}-z\right\rangle+L\left\|e_{n}\right\|,
\end{aligned}
$$

This implies that

$$
\begin{aligned}
\left\|x_{n+1}-z\right\|^{2} \leq & \frac{\left(1-\beta_{n}\right)^{2}+k \beta_{n}}{1-k \beta_{n}}\left\|x_{n}-z\right\|^{2}+\frac{2 \beta_{n}}{1-k \beta_{n}}\left\langle f(z)-z, x_{n+1}-z\right\rangle+\frac{L}{1-k \beta_{n}}\left\|e_{n}\right\| \\
\leq & \frac{1-2 \beta_{n}+k \beta_{n}}{1-k \beta_{n}}\left\|x_{n}-z\right\|^{2}+\frac{\beta_{n}^{2}}{1-k \beta_{n}}\left\|x_{n}-z\right\|^{2}+\frac{2 \beta_{n}}{1-k \beta_{n}}\left\langle f(z)-z, x_{n+1}-z\right\rangle \\
& +\frac{L}{1-k \beta_{n}}\left\|e_{n}\right\| \\
\leq & \left(1-\frac{2(1-k) \beta_{n}}{1-k \beta_{n}}\right)\left\|x_{n}-z\right\|^{2}+\frac{2(1-k) \beta_{n}}{1-k \beta_{n}}\left(\frac{\beta_{n} N}{2(1-k)}+\frac{1}{1-k}\left\langle f(z)-z, x_{n+1}-z\right\rangle\right) \\
& +\frac{L}{1-k \beta_{n}}\left\|e_{n}\right\| \\
\leq & \left(1-\gamma_{n}\right)\left\|x_{n}-z\right\|^{2}+\gamma_{n} \delta_{n}+\eta_{n}
\end{aligned}
$$

where $N=\sup \left\{\left\|x_{n}-z\right\|^{2}: n \in \mathbb{N}\right\}, \gamma_{n}=\frac{2(1-k) \beta_{n}}{1-k \beta_{n}}, \delta_{n}=\frac{\beta_{n} N}{2(1-k)}+\frac{1}{1-k}\left\langle f(z)-z, x_{n+1}-z\right\rangle$ and $\eta_{n}=\frac{L}{1-k \beta_{n}}\left\|e_{n}\right\|$. By assumption $\gamma_{n} \rightarrow 0, \sum_{n=1}^{\infty} \gamma_{n}=\infty$ and we have $\limsup _{n \rightarrow 0} \delta_{n} \leq 0$ and $\sum_{n=1}^{\infty} \eta_{n}<\infty$. Hence, applying Lemma 2.6, we immediately deduce that $x_{n} \rightarrow z$ where $z=P_{Z} f(z)$.
Remark 2.8. In general, $\bigcap_{i \in I} A_{i}(\{x\}) \subseteq R(\boldsymbol{A}, \boldsymbol{\lambda})(\{x\})$. From Theorem 2.5 of [1] we know that, if A_{i} 's are monotone and $\bigcap_{i \in I} A_{i}^{-1}(0) \neq \emptyset$, then $(R(\boldsymbol{A}, \boldsymbol{\lambda}))^{-1}(0)=\bigcap_{i \in I} A_{i}^{-1}(0)$. On the other hand, we have

$$
\begin{equation*}
(R(\boldsymbol{A}, \boldsymbol{\lambda}))^{-1}=R\left(\boldsymbol{A}^{-1}, \boldsymbol{\lambda}\right) \tag{2.6}
\end{equation*}
$$

see Theorem 2.2 in [1] for more details. Therefore, one can replace $R(\boldsymbol{A}, \boldsymbol{\lambda})^{-1}(0) \neq \emptyset$ by $\bigcap_{i \in I} A_{i}^{-1}(0) \neq$ \emptyset in Theorem 2.7. The following example shows that there is a finite family of monotone operators $\left\{A_{i}: H \multimap H\right\}_{i \in I}$ such that $\bigcap_{i \in I} A_{i}^{-1}(0)=\emptyset$, but $(R(\boldsymbol{A}, \boldsymbol{\lambda}))^{-1}(0) \neq \emptyset$.
Example 2.9. Let $\boldsymbol{A}=\left(A_{1}, A_{2}\right), \boldsymbol{A}^{-1}=\left(A_{1}^{-1}, A_{2}^{-1}\right)$ and $\lambda_{i}=\frac{1}{2}$ for each $i=1,2$.. Let for each $i=1,2, A_{i}: H \multimap H$ be defined by

$$
A_{i}(x)= \begin{cases}H & x=a_{i}, \\ \emptyset & x \neq a_{i},\end{cases}
$$

where $a_{1}, a_{2} \in H$ with $a_{1} \neq a_{2}$. We have $A_{i}^{-1}: H \multimap H, A_{i}^{-1}(x)=\left\{a_{i}\right\}$ for each $i=1,2$. Clearly, $\bigcap_{i=1}^{2} A_{i}^{-1}(0)=\emptyset$.

On the other hand, for each $i=1,2$, we have

$$
\begin{equation*}
\left(A_{i}^{-1}+\mathrm{Id}\right)^{-1}(x)=\left\{x-a_{i}\right\} . \tag{2.7}
\end{equation*}
$$

By using (2.6) and (2.7), we get

$$
\begin{aligned}
(R(\boldsymbol{A}, \lambda))^{-1}(0) & =R\left(\boldsymbol{A}^{-1}, \boldsymbol{\lambda}\right)(0) \\
& =\left(\left(\frac{1}{2}\left(A_{1}^{-1}+\mathrm{Id}\right)^{-1}+\frac{1}{2}\left(A_{2}^{-1}+\mathrm{Id}\right)^{-1}\right)^{-1}-\mathrm{Id}\right)(0) \\
& =\left\{x \in H: 0 \in \frac{1}{2}\left\{x-a_{1}\right\}+\frac{1}{2}\left\{x-a_{2}\right\}\right\} \\
& =\left\{\frac{a_{1}+a_{2}}{2}\right\} .
\end{aligned}
$$

Therefore, $(R(\boldsymbol{A}, \boldsymbol{\lambda}))^{-1}(0) \neq \emptyset$.
Theorem 2.10. Let $\left\{A_{i}: H \multimap H\right\}_{i \in I}$ be a finite family of maximal monotone operators with $Z=R(\boldsymbol{A}, \boldsymbol{\lambda})^{-1}(0) \neq \emptyset$, where $\lambda_{i}>0$ and $\sum_{i \in I} \lambda_{i}=1$. Assume that f is k-contraction of H into itself. Let $\left\{\beta_{n}\right\}$ be a real sequence in $(0,1)$ and $\left\{e_{n}\right\}$ be a sequence of errors. Let $\left\{x_{n}\right\}$ be the sequence generated by (2.4). Assume that the following conditions are satisfied:
(i) $e_{n} \in K$, satisfies $\sum_{n \in \mathbb{N}}\left\|e_{n}\right\|<\infty$,
(ii) $\lim _{n \rightarrow \infty} \beta_{n}=0$ and $\sum_{n=0}^{\infty} \beta_{n}=\infty$,
then the sequence $\left\{x_{n}\right\}$ converges strongly to $z \in Z$, where $z=P_{Z} f(z)$.
Proof . Since A_{i} 's are maximal monotone, then A_{i} 's are monotone and satisfy the following condition:

$$
\overline{\operatorname{Dom} R(\boldsymbol{A}, \boldsymbol{\lambda}))} \subset K \subset \operatorname{ran}(\operatorname{Id}+R(\boldsymbol{A}, \boldsymbol{\lambda}))
$$

Putting $K=H$, the desired result holds.
Theorem 2.11. For every $n \in \mathbb{N}$ and $i \in I$, let $A_{i}: H \multimap H$ be a finite family of maximal monotone operators with $Z=R(\boldsymbol{A}, \boldsymbol{\lambda})^{-1}(0) \neq \emptyset$, where $\lambda_{i}>0$ and $\sum_{i \in I} \lambda_{i}=1$. Let $\left\{\beta_{n}\right\}$ be a real sequence in $(0,1)$ and $\left\{e_{n}\right\}$ be a sequence of errors. Let $\left\{x_{n}\right\}$ be the sequence generated by $u, x_{1} \in H$ and

$$
\begin{equation*}
x_{n+1}=J_{R(\boldsymbol{A}, \boldsymbol{\lambda})}\left(\beta_{n} u+\left(1-\beta_{n}\right) x_{n}+e_{n}\right), n \in \mathbb{N} . \tag{2.8}
\end{equation*}
$$

Assume that the following conditions are satisfied:
(i) $e_{n} \in K$, satisfies $\sum_{n \in \mathbb{N}}\left\|e_{n}\right\|<\infty$,
(ii) $\lim _{n \rightarrow \infty} \beta_{n}=0$ and $\sum_{n=0}^{\infty} \beta_{n}=\infty$,
then the sequence $\left\{x_{n}\right\}$ converges strongly to $z \in Z$, where $z=P_{Z} u$.
Proof. First, we show that equation (2.8) is equivalent to the following equation:

$$
x_{n+1}=\left(1-\beta_{n}\right) J_{R(\boldsymbol{A}, \boldsymbol{\lambda})}\left(x_{n}\right)+\beta_{n} u+e_{n}, n \in \mathbb{N} .
$$

Set $y_{n}:=\beta_{n} u+\left(1-\beta_{n}\right) x_{n}+e_{n}$. We can rewrite (2.8) as

$$
\begin{equation*}
y_{n+1}=\left(1-\beta_{n+1}\right) J_{R(\boldsymbol{A}, \boldsymbol{\lambda})}\left(y_{n}\right)+\beta_{n+1} u+e_{n+1}, n \in \mathbb{N}, \tag{2.9}
\end{equation*}
$$

Re-denoting $x_{n}:=y_{n}, \beta_{n}:=\beta_{n+1}$ and $e_{n}:=e_{n+1}$ in (2.9), algorithm (2.8) reads

$$
\begin{equation*}
x_{n+1}=\left(1-\beta_{n}\right) J_{R(\boldsymbol{A}, \boldsymbol{\lambda})}\left(x_{n}\right)+\beta_{n} u+e_{n}, n \in \mathbb{N}, \tag{2.10}
\end{equation*}
$$

which is exactly the algorithm that is proposed in Theorem 2.10.

```
Algorithm 1 Iterative algorithms for resolvent average
Input: \(x_{1} \in H,\left\{\beta_{n}\right\}_{n \in \mathbb{N}} \subset(0,1),\left\{\lambda_{i}\right\}_{1 \leq i \leq m} \subset(0,1),\left\{e_{n}\right\} \in H, \quad \mathbf{A}=\left(A_{1}, \ldots, A_{m}\right)\)
Output: \(x_{n}\)
    for \(i=1\) to \(m\) do
        \(J_{A_{i}}\left(x_{n}\right):=\left(A_{i}+\mathrm{Id}\right)^{-1}\left(x_{n}\right)\)
    end for
    Set \(J_{R(\mathbf{A}, \lambda)}\left(x_{n}\right)=\sum_{i=1}^{m} \lambda_{i} J_{A_{i}}\left(x_{n}\right)\)
    for \(n=1\) to \(\ldots\) do
        \(x_{n+1}=\beta_{n} f\left(x_{n}\right)+\left(1-\beta_{n}\right) J_{R(\mathbf{A}, \lambda)}\left(x_{n}\right)+e_{n}\)
    end for
```


3. Numerical examples

In this section, we have supported our new iterative algorithm for monotone operators by numerical examples.

Example 3.1. Let $A_{1}(x)=x$ and $A_{2}(x)=x+1$. Set $\boldsymbol{A}=(x, x+1), \lambda_{1}=\lambda_{2}=\frac{1}{2}$ and $f(x)=\frac{x}{2}$. Assume that $e_{n}=\left\{\frac{1}{n^{n}}\right\}$ is the sequence of errors and $\beta_{n}=\left\{\frac{1}{n}\right\}$ for $n \in \mathbb{N}$.

First note that $A_{1}^{-1}(x)=x$ and $A_{2}^{-1}(x)=x-1$. So, $\boldsymbol{A}^{-1}=(x, x-1)$. Then by easy calculation, we get

$$
\begin{equation*}
J_{A_{1}^{-1}}\left(x_{n}\right)=\left(A_{1}^{-1}+\mathrm{Id}\right)^{-1}\left(x_{n}\right)=\left\{\frac{1}{2} x_{n}\right\}, \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
J_{A_{2}^{-1}}\left(x_{n}\right)=\left\{\frac{1}{2}\left(x_{n}+1\right)\right\} . \tag{3.2}
\end{equation*}
$$

By using (2.6) and (2.7), we obtain

$$
\begin{aligned}
(R(\boldsymbol{A}, \boldsymbol{\lambda}))^{-1}(0) & =\left(R\left(\boldsymbol{A}^{-1}, \boldsymbol{\lambda}\right)\right)(0) \\
& =\left(\left(\frac{1}{2}\left(A_{1}^{-1}+\mathrm{Id}\right)^{-1}+\frac{1}{2}\left(A_{2}^{-1}+\mathrm{Id}\right)^{-1}\right)^{-1}-\mathrm{Id}\right)(0) \\
& =\left\{x \in \mathbb{R}: 0 \in\left(\frac{1}{2}\left(A_{1}^{-1}+\mathrm{Id}\right)^{-1}(x)+\frac{1}{2}\left(A_{2}^{-1}+\mathrm{Id}\right)^{-1}(x)\right)\right\} \\
& =\left\{x \in \mathbb{R}: 0 \in \frac{1}{2}\left(\frac{1}{2} x\right)+\frac{1}{2}\left(\frac{1}{2}(x+1)\right)\right\} \\
& =\left\{-\frac{1}{2}\right\} .
\end{aligned}
$$

Therefore, $Z=(R(\boldsymbol{A}, \boldsymbol{\lambda}))^{-1}(0)=\left\{-\frac{1}{2}\right\}$. Hence,

$$
\begin{equation*}
P_{Z}(f(z))=P_{\left\{-\frac{1}{2}\right\}}\left(f\left(-\frac{1}{2}\right)\right)=P_{\left\{-\frac{1}{2}\right\}}(1)=-\frac{1}{2} \tag{3.3}
\end{equation*}
$$

Let $\left\{x_{n}\right\}$ be the sequence generated by

$$
\begin{equation*}
x_{n+1}=\beta_{n} f\left(x_{n}\right)+\left(1-\beta_{n}\right) J_{R(\boldsymbol{A}, \boldsymbol{\lambda})} x_{n}+e_{n}, n \in \mathbb{N}, \tag{3.4}
\end{equation*}
$$

with starting point $x_{1} \in \mathbb{R}$. Clearly,

$$
\begin{align*}
J_{A_{1}}\left(x_{n}\right) & =\left(A_{1}+\mathrm{Id}\right)^{-1}\left(x_{n}\right) \\
& =\left\{y \in \mathbb{R}: x_{n} \in\left(A_{1}+\mathrm{Id}\right)(y)\right\} \\
& =\left\{\frac{1}{2} x_{n}\right\} . \tag{3.5}
\end{align*}
$$

and similarly,

$$
\begin{equation*}
J_{A_{2}}\left(x_{n}\right)=\left\{\frac{1}{2}\left(x_{n}-1\right)\right\} . \tag{3.6}
\end{equation*}
$$

Substituting (3.5) and (3.6) into (3.4), we obtain

$$
\begin{aligned}
x_{n+1} & =\beta_{n} f\left(x_{n}\right)+\left(1-\beta_{n}\right) J_{R(\boldsymbol{A}, \boldsymbol{\lambda})} x_{n}+e_{n} \\
& =\beta_{n} f\left(x_{n}\right)+\left(1-\beta_{n}\right) \sum_{i=1}^{2} \lambda_{i} J_{A_{i}} x_{n}+e_{n} \\
& =\frac{1}{2 n} x_{n}+\frac{1}{2}\left(1-\frac{1}{n}\right)\left(\frac{1}{2} x_{n}+\frac{1}{2}\left(x_{n}-1\right)\right)+\frac{1}{n^{n}}, n \in \mathbb{N} .
\end{aligned}
$$

It follows from Theorem 2.7 that $\left\{x_{n}\right\}$ converges, say to x. Since $\left\{x_{n}\right\}$ is bounded, by letting $n \rightarrow \infty$ in the above equality we obtain

$$
x=0+\frac{1}{2}\left(\frac{1}{2} x+\frac{1}{2}(x-1)\right) .
$$

Therefore, $x=-\frac{1}{2}$. The numerical results with starting point $x_{1}=0$, which are shown in Table 1, shows that $x_{n} \rightarrow-\frac{1}{2}$.

Table 1: Results for given starting point $x_{1}=0$ in Example 3.1

n	1	10	100	1000	2000	3000	4000	5000	10000
x_{n}	0	-0.42656	-0.49489	-0.49949	-0.49975	-0.49983	-0.49987	-0.4999	-0.4999

Example 3.2. Let $A_{1}(x)=2 x-1, A_{2}(x)=x, A_{3}(x)=x+1$ and $A_{4}(x)=2 x+3$. Set $\boldsymbol{A}=$ $(2 x-1, x, x+1,2 x+3), f(x)=\frac{2 x}{3}$ and $\lambda_{i}=\frac{1}{4}$ for each $1 \leq i \leq 4$. Assume that $e_{n}=\left\{\frac{1}{n^{n}}\right\}$ is the sequence of errors and $\beta_{n}=\left\{\frac{1}{n}\right\}$ for $n \in \mathbb{N}$. We have $\boldsymbol{A}^{-1}=\left(\frac{1+x}{2}, x, x-1, \frac{x-3}{2}\right)$. Then by easy calculation, we get

$$
\begin{align*}
& J_{A_{1}^{-1}}\left(x_{n}\right)=\left\{\frac{1}{3}\left(2 x_{n}-1\right)\right\}, J_{A_{2}^{-1}}\left(x_{n}\right)=\left\{\frac{1}{2} x_{n}\right\}, \\
& J_{A_{3}^{-1}}\left(x_{n}\right)=\left\{\frac{1}{2}\left(x_{n}+1\right)\right\}, J_{A_{4}^{-1}}\left(x_{n}\right)=\left\{\frac{1}{3}\left(2 x_{n}+3\right)\right\} . \tag{3.7}
\end{align*}
$$

By using (2.6) and (3.7), we obtain

$$
(R(\boldsymbol{A}, \boldsymbol{\lambda}))^{-1}(0)=\left\{-\frac{1}{2}\right\} .
$$

Therefore, $Z=(R(\boldsymbol{A}, \boldsymbol{\lambda}))^{-1}(0)=\left\{\frac{-1}{2}\right\}$. Hence

$$
\begin{equation*}
P_{Z}(f(z))=P_{\left\{-\frac{1}{2}\right\}}\left(f\left(-\frac{1}{2}\right)\right)=P_{\left\{-\frac{1}{2}\right\}}\left(-\frac{1}{4}\right)=-\frac{1}{2} \tag{3.8}
\end{equation*}
$$

Let $\left\{x_{n}\right\}$ be the sequence generated by

$$
\begin{equation*}
x_{n+1}=\beta_{n} f\left(x_{n}\right)+\left(1-\beta_{n}\right) J_{R(\boldsymbol{A}, \boldsymbol{\lambda})} x_{n}+e_{n}, n \in \mathbb{N}, \tag{3.9}
\end{equation*}
$$

with starting point $x_{1} \in \mathbb{R}$. We have

$$
\begin{align*}
& J_{A_{1}}\left(x_{n}\right)=\left\{\frac{1}{3}\left(x_{n}+1\right)\right\}, J_{A_{2}}\left(x_{n}\right)=\left\{\frac{1}{2} x_{n}\right\}, \\
& J_{A_{3}}\left(x_{n}\right)=\left\{\frac{1}{2}\left(x_{n}-1\right)\right\}, J_{A_{4}}\left(x_{n}\right)=\left\{\frac{1}{3}\left(x_{n}-3\right)\right\} . \tag{3.10}
\end{align*}
$$

Substituting (3.10) into (3.9), we obtain

$$
\begin{aligned}
x_{n+1} & =\beta_{n} f\left(x_{n}\right)+\left(1-\beta_{n}\right) J_{R(\boldsymbol{A}, \boldsymbol{\lambda})} x_{n}+e_{n} \\
& =\frac{2}{3 n} x_{n}+\frac{1}{4}\left(1-\frac{1}{n}\right)\left(\frac{1}{6}\left(10 x_{n}-7\right)\right)+\frac{1}{n^{n}}, n \in \mathbb{N} .
\end{aligned}
$$

Now, Theorem 2.7 implies the convergence of $\left\{x_{n}\right\}$, say to x. By letting $n \rightarrow \infty$ in the above equality we obtain

$$
x=0+\frac{1}{24}(10 x-7) ;
$$

i.e., $x=-\frac{1}{2}$. The numerical results in Table 2 with starting point $x_{1}=0$ show that $x_{n} \rightarrow-\frac{1}{2}$.

Table 2: Results for given starting point $x_{1}=0$ in Example 3.2

n	1	10	100	1000	2000	3000	4000	5000	10000
x_{n}	0	-0.45656	-0.49708	-0.49971	-0.49985	-0.4999	-0.49992	-0.49994	-0.49997

Example 3.3. Let $\boldsymbol{A}=\left(x^{3}-1, x-1,(x-1)^{3}\right), f(x)=\frac{99 x}{100}$ and $\lambda_{i}=\frac{1}{3}$ for every $1 \leq i \leq 3$. Assume that $e_{n}=\left\{\frac{1}{n^{n}}\right\}$ and $\beta_{n}=\left\{\frac{1}{n+1}\right\}$. We have $\boldsymbol{A}^{-1}=\left((1+x)^{\frac{1}{3}}, 1+x, 1+x^{\frac{1}{3}}\right)$. Then

$$
\begin{gather*}
J_{A_{1}^{-1}}\left(x_{n}\right)=\left\{x_{n}+\frac{\left(\frac{2}{3}\right)^{\frac{1}{3}}}{h_{1}\left(x_{n}\right)}-\frac{h_{1}\left(x_{n}\right)}{(2)^{\frac{1}{3}}(3)^{\frac{2}{3}}}\right\}, J_{A_{2}^{-1}}\left(x_{n}\right)=\left\{\frac{1}{2}\left(x_{n}-1\right)\right\}, \\
J_{A_{3}^{-1}}\left(x_{n}\right)=\left\{x_{n}-\frac{\left(\frac{2}{3}\right)^{\frac{1}{3}}}{h_{2}\left(x_{n}\right)}+\frac{h_{2}\left(x_{n}\right)}{(2)^{\frac{1}{3}}(3)^{\frac{2}{3}}}-1\right\}, \tag{3.11}
\end{gather*}
$$

where $h_{1}\left(x_{n}\right)=\left(9+9 x_{n}-\sqrt{3} \sqrt{31+54 x_{n}+27 x_{n}^{2}}\right)^{\frac{1}{3}}$ and $h_{2}\left(x_{n}\right)=\left(9-9 x_{n}+\sqrt{3} \sqrt{31-54 x_{n}+27 x_{n}^{2}}\right)^{\frac{1}{3}}$. Let $\left\{x_{n}\right\}$ be the sequence generated by

$$
\begin{equation*}
x_{n+1}=\beta_{n} f\left(x_{n}\right)+\left(1-\beta_{n}\right) J_{R(\boldsymbol{A}, \boldsymbol{\lambda})} x_{n}+e_{n}, n \in \mathbb{N}, \tag{3.12}
\end{equation*}
$$

with starting point $x_{1} \in \mathbb{R}$. We have

$$
\begin{gather*}
J_{A_{1}}\left(x_{n}\right)=\left\{\frac{h_{1}\left(x_{n}\right)}{(2)^{\frac{1}{3}}(3)^{\frac{2}{3}}}-\frac{\left(\frac{2}{3}\right)^{\frac{1}{3}}}{h_{1}\left(x_{n}\right)}\right\}, J_{A_{2}}\left(x_{n}\right)=\left\{\frac{1}{2}\left(1+x_{n}\right)\right\}, \\
J_{A_{3}}\left(x_{n}\right)=\left\{\frac{\left(\frac{2}{3}\right)^{\frac{1}{3}}}{h_{2}\left(x_{n}\right)}-\frac{h_{2}\left(x_{n}\right)}{(2)^{\frac{1}{3}}(3)^{\frac{2}{3}}}+1\right\} . \tag{3.13}
\end{gather*}
$$

Substituting (3.13) into (3.12), we obtain

$$
\begin{align*}
x_{n+1}= & \beta_{n} f\left(x_{n}\right)+\left(1-\beta_{n}\right) J_{R(\boldsymbol{A}, \boldsymbol{\lambda})} x_{n}+e_{n} \\
= & \frac{99}{100(n+1)} x_{n}+\frac{1}{3}\left(1-\frac{1}{n+1}\right)\left(\frac{3}{2}+\frac{1}{2} x_{n}+\frac{\left(\frac{2}{3}\right)^{\frac{1}{3}}}{h_{2}\left(x_{n}\right)}-\frac{h_{2}\left(x_{n}\right)}{(2)^{\frac{1}{3}}(3)^{\frac{2}{3}}}\right. \tag{2}\\
& \left.+\frac{h_{1}\left(x_{n}\right)}{(2)^{\frac{1}{3}}(3)^{\frac{2}{3}}}-\frac{\left(\frac{2}{3}\right)^{\frac{1}{3}}}{h_{1}\left(x_{n}\right)}\right)+\frac{1}{n^{n}}, n \in \mathbb{N} .
\end{align*}
$$

The numerical results in Table 3 with starting point $x_{1}=0$ show that $x_{n} \rightarrow 1$.

Table 3: Results for given starting point $x_{1}=0$ in Example 3.3

n	1	10	100	1000	2000	5000	10000	\ldots
x_{n}	0	1.01732	0.999754	0.999976	0.999988	0.999995	0.999998	\ldots

References

[1] S. Bartz, H.H. Bauschke, S. M. Moffat, and X. Wang, The resolvent average of monotone operators: dominant and recessive properties, SIAM J. Optimiz. 26(2016), 602-634.
[2] H.H.Bauschke and P.L.Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer, 2011.
[3] H.H.Bauschke, R. Goebel, Y.Lucet and X. Wang, The proximal average: basic theory, SIAM J. Optimiz. 19(2008), 766-785.
[4] H. Brezis, Operateurs Maximaux Monotones et Semi-Groups de Contractions dans les Espaces de Hilbert, NorthHolland, Amsterdam, 1973.
[5] M.Eslamian, Rockafellar's proximal point algorithm for a finite family of monotone operators, Sci. Bull. 76(2014), 43-50.
[6] O. Guler, On the convergence of proximal point algorithm for convex minimization, SIAM J. Control Optim. 29(1991), 403-419.
[7] P. E. Mainge, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal. 16(2008), 899-912.
[8] B. Martinet, Régularisation dinéquations variationnelles par approximations successives, Recherche Opérationnelle. 4(1970), 154158.
[9] A. Moudafi, Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl. 241(2000), 46-55.
[10] R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim. 14(1976), 877-898.
[11] C.A.Tian and Y. Song, Strong convergence of a regularization method for Rockafellar's proximal point algorithm, J. Global Optim. 55(4)(2013), 831-837.
[12] H. K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc. 66(2002), 240-256.
[13] H.K.Xu, Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl. 298(2004), 279-291.
[14] H. K. Xu, A regularization method for the proximal point algorithm, J. Global Optim. 36(2006), 115-125.

[^0]: *Corresponding author
 Email addresses: m.bagherima@stu.gu.ac.ir (Malihe Bagheri), m.roohi@gu.ac.ir (Mehdi Roohi)

