Int. J. Nonlinear Anal. Appl. 11 (2020) No. 2, 469-481 ISSN: 2008-6822 (electronic) http://www.ijnaa.semnan.ac.ir

Strong Convergence Theorems for Weighted Resolvent Average of a Finite Family of Monotone Operators

Malihe Bagheri, Mehdi Roohi*

Department of Mathematics, Faculty of Sciences, Golestan University, P.O.Box. 155, Gorgan, Iran

Abstract

This paper is devoted to finding a zero point of a weighted resolvent average of a finite family of monotone operators. A new proximal point algorithm and its convergence analysis is given. It is shown that the sequence generated by this new algorithm, for a finite family of monotone operators converges strongly to the zero point of their weighted resolvent average. Finally, our results are illustrated by some numerical examples.

Keywords: Weighted resolvent average, proximal point algorithm, projection algorithm, monotone operators.

2010 MSC: Primary 47H05; Secondary 49J40.

1. Introduction

Let H be a real Hilbert space with norm $\|.\|$ and inner product $\langle ., . \rangle$. For each $x, y \in H$, we have [9]

$$\|x+y\|^{2} \le \|x\|^{2} + 2\langle y, x+y \rangle.$$
(1.1)

The operator $T: H \to H$ is called *nonexpansive* (resp. *firmly nonexpansive*) if $||Tx - Ty|| \le ||x-y||$ (resp. $||Tx-Ty||^2 + ||(\mathrm{Id}-T)x - (\mathrm{Id}-T)y||^2 \le ||x-y||^2$) for all $x, y \in H$, where Id is the identity mapping on H. The set of all fixed points of T is denoted by $\mathrm{Fix}(T)$, i.e., $\mathrm{Fix}(T) = \{x \in H : Tx = x\}$.

Let A be a set-valued mapping with the domain $\text{Dom}A = \{x \in H : A(x) \neq \emptyset\}$ and the range $\operatorname{ran}A = \{u \in H : \exists x \in \text{Dom}A \text{ such that } u \in A(x)\}$. The graph of A is the set $\operatorname{gra}A = \{(x, u) \in H \times H : u \in A(x)\}$.

^{*}Corresponding author

Email addresses: m.bagherima@stu.gu.ac.ir (Malihe Bagheri), m.roohi@gu.ac.ir (Mehdi Roohi)

An operator $A: H \multimap H$ is said to be *monotone* if

$$\langle x - y, u - v \rangle \ge 0, \quad \forall (x, u), (y, v) \in \operatorname{gra} A.$$

A monotone operator A is called *maximal monotone* if there exists no monotone operator B such that $\operatorname{gra} A$ is a proper subset of $\operatorname{gra} B$.

The resolvent of A is the mapping $J_A = (A + \mathrm{Id})^{-1}$. It is well known that (see Proposition 23.7 in [2]) J_A is single-valued and firmly nonexpansive if A is monotone. In addition, if A is maximal monotone, then J_A is also maximal monotone and, in this case we have $\mathrm{Dom} J_A = H$. Moreover, $0 \in A(x)$ if and only if $x \in \mathrm{Fix}(J_A)$. For each $x, y \in \mathrm{ran}(\mathrm{Id} + A)$ we have (see [11])

$$||J_{\lambda A}x - J_{\lambda A}y||^2 \le ||x - y||^2 - ||(x - J_{\lambda A}x) - (y - J_{\lambda A}y)||^2.$$
(1.2)

Let us consider the zero point problem for monotone operator A on a real Hilbert space H, i.e., finding a point $x \in \text{Dom}A$ such that $0 \in A(x)$. It was first introduced by Martinet [8] in 1970. Rockafellar [10] defined the proximal point algorithm of Martinet by generalizing a sequence $\{x_n\}$ such that

$$x_{n+1} = J_{s_n A} x_n + e_n, \ n \in \mathbb{N},\tag{1.3}$$

for arbitrary point $x_0 \in H$, where $\{e_n\}$ is a sequence of errors and $\{s_n\} \subseteq (0, \infty)$. The sequence $\{x_n\}$ is known to converge weakly to a zero of A, if $\liminf_{n\to\infty} s_n > 0$ and $\sum_{n=0}^{\infty} ||e_n|| < \infty$, see [10], but fails in general to converge strongly [6]. Recently, Xu [12] investigated a modified version of the initial proximal point algorithm studied by Rockafellar with $x_0 \in H$ chosen arbitrary,

$$x_{n+1} = \beta_n x_0 + (1 - \beta_n) J_{s_n A} x_n + e_n, \ n \in \mathbb{N},$$
(1.4)

where $\{e_n\}$ is the error sequence. For $\{e_n\}$ summable, it was proved that (see [12]) $\{x_n\}$ is strongly convergent if $s_n \to \infty$ and $\beta_n \subseteq (0, 1)$ with $\sum_{n=0}^{\infty} \beta_n = \infty$ and $\lim_{n \to \infty} \beta_n = 0$.

In this paper, we prove strong convergence of a proximal point algorithm to a zero point of weighted resolvent average of a finite family of monotone operators.

2. The main results

In this section, we present a new proximal point algorithm for a finite family of monotone operators and its convergence analysis.

First, we recall (see [1]) the definition of the proximal average and resolvent average. To this end, we assume that $m \in \mathbb{N}$ and $I = \{1, 2, \ldots, m\}$. For every $i \in I$, let $A_i : H \multimap H$ be a set-valued mapping and let $\lambda_i > 0$, $\sum_{i \in I} \lambda_i = 1$. We set $\mathbf{A} = (A_1, \ldots, A_m)$ and $\mathbf{\lambda} = (\lambda_1, \ldots, \lambda_m)$.

The λ -weighted resolvent average of A is defined by

$$R(\boldsymbol{A},\boldsymbol{\lambda}) = \left(\sum_{i \in I} \lambda_i (A_i + \mathrm{Id})^{-1}\right)^{-1} - \mathrm{Id}.$$
(2.1)

The equation (2.1) is equivalent to the following equation:

$$J_{R(\boldsymbol{A},\boldsymbol{\lambda})} = \sum_{i \in I} \lambda_i J_{A_i}.$$
(2.2)

Here, we consider some useful lemmas.

Lemma 2.1. Let for each $i \in I$, $A_i : H \multimap H$ be a monotone operator. Then $(R(\mathbf{A}, \boldsymbol{\lambda}))^{-1}(0) = \operatorname{Fix}(J_{R(\mathbf{A},\boldsymbol{\lambda})})$.

Proof. It follows from (2.1) and (2.2) that

$$x \in (R(\mathbf{A}, \boldsymbol{\lambda}))^{-1}(0) \Leftrightarrow 0 \in R(\mathbf{A}, \boldsymbol{\lambda})(x)$$

$$\Leftrightarrow 0 \in \left(\left(\sum_{i \in I} \lambda_i (A_i + \mathrm{Id})^{-1} \right)^{-1} - \mathrm{Id} \right)(x)$$

$$\Leftrightarrow x \in \left(\sum_{i \in I} \lambda_i (A_i + \mathrm{Id})^{-1} \right)^{-1}(x)$$

$$\Leftrightarrow x \in \left(\sum_{i \in I} \lambda_i (A_i + \mathrm{Id})^{-1} \right)(x)$$

$$\Leftrightarrow x \in \sum_{i \in I} \lambda_i J_{A_i}(x) \Leftrightarrow x \in J_{R(\mathbf{A}, \boldsymbol{\lambda})}(x)$$

$$\Leftrightarrow x \in \mathrm{Fix}(J_{R(\mathbf{A}, \boldsymbol{\lambda})}).$$

Lemma 2.2. Let $\{A_i : H \multimap H\}_{i \in I}$ be a finite family of monotone operators with $(R(\mathbf{A}, \boldsymbol{\lambda}))^{-1}(0) \neq \emptyset$, where $\lambda_i > 0$ and $\sum_{i \in I} \lambda_i = 1$. Let K be a nonempty closed and convex subset of H such that

$$\overline{\text{Dom}R(\boldsymbol{A},\boldsymbol{\lambda})} \subseteq K \subseteq \text{ran}(\text{Id} + R(\boldsymbol{A},\boldsymbol{\lambda})).$$
(2.3)

Assume that f is a k-contraction mapping on K into itself. Let $\{x_n\}$ be the sequence generated by $x_1 \in K$ and

$$x_{n+1} = \beta_n f(x_n) + (1 - \beta_n) J_{R(\boldsymbol{A},\boldsymbol{\lambda})} x_n + e_n, \ n \in \mathbb{N},$$

$$(2.4)$$

where $\{\beta_n\} \subseteq (0,1)$ and $\{e_n\}$ is a sequence of errors such that $e_n \in H$ and $\sum_{n \in \mathbb{N}} ||e_n|| < \infty$. Then $\{||x_n - z|| : n \in \mathbb{N}\}$ is bounded for each $z \in (R(\mathbf{A}, \boldsymbol{\lambda}))^{-1}(0)$. Consequently, $\{x_n\}$ is bounded.

Proof. By using our assumption, nonexpansivity of the resolvent and Lemma 2.1, we have

$$\begin{aligned} \|x_{n+1} - z\| &= \|\beta_n f(x_n) + (1 - \beta_n) J_{R(\boldsymbol{A},\boldsymbol{\lambda})} x_n + e_n - z\| \\ &= \|\beta_n (f(x_n) - z) + (1 - \beta_n) (J_{R(\boldsymbol{A},\boldsymbol{\lambda})} x_n - z) + e_n\| \\ &\leq \beta_n \|f(x_n) - z\| + (1 - \beta_n) \|J_{R(\boldsymbol{A},\boldsymbol{\lambda})} x_n - J_{R(\boldsymbol{A},\boldsymbol{\lambda})} z\| + \|e_n\| \\ &\leq \beta_n \|f(x_n) - z\| + (1 - \beta_n) \|x_n - z\| + \|e_n\| \\ &\leq \beta_n \|f(x_n) - f(z)\| + \beta_n \|f(z) - z\| + (1 - \beta_n) \|x_n - z\| + \|e_n\| \\ &\leq k\beta_n \|x_n - z\| + \beta_n \|f(z) - z\| + (1 - \beta_n) \|x_n - z\| + \|e_n\| \\ &\leq (1 - (1 - k)\beta_n) \|x_n - z\| + \beta_n (1 - k) \frac{1}{1 - k} \|f(z) - z\| + \|e_n\| \\ &\leq \max\left\{\|x_n - z\|, \frac{1}{1 - k} \|f(z) - z\|\right\} + \|e_n\|. \end{aligned}$$

This shows by induction that

$$||x_{n+1} - z|| \le \max\{||x_1 - z||, \frac{1}{1-k}||f(z) - z||\} + \sum_{i=1}^n ||e_i||.$$

Therefore, $\{\|x_n - z\| : n \in \mathbb{N}\}$ is bounded for each $z \in R(\mathbf{A}, \boldsymbol{\lambda})^{-1}(0)$. Hence $\{x_n\}$ is bounded. \Box

Lemma 2.3. [7] Let $\{t_n\}$ be a sequence of real numbers such that there exists a subsequence $\{n_i\}$ of $\{n\}$ with $t_{n_i} < t_{n_i+1}$ for all $i \in \mathbb{N}$. Then there exists a nondecreasing sequence $\{s(n)\} \subseteq \mathbb{N}$ such that $s(n) \to \infty$ and the following properties are satisfied by all (sufficiently large) numbers $n \in \mathbb{N}$:

$$t_{s(n)} \le t_{s(n)+1}.$$

In fact

$$s(n) = \max\{k \le n : t_k < t_{k+1}\}.$$

Lemma 2.4. Let $x \in H$ and $\{\alpha_n\}$ be a bounded sequence in H. Then there exists a constant L > 0 such that $||x + \alpha_n||^2 \le ||x||^2 + L||\alpha_n||$.

Proof. By Cauchy-Schwarz inequality and for $L \ge 2||x|| + \sup ||\alpha_n||$, we have

$$||x + \alpha_n||^2 = ||x||^2 + 2 \langle x, \alpha_n \rangle + ||\alpha_n||^2$$

$$\leq ||x||^2 + 2||x|| ||\alpha_n|| + ||\alpha_n||^2$$

$$\leq ||x||^2 + ||\alpha_n||(2||x|| + ||\alpha_n||)$$

$$\leq ||x||^2 + L||\alpha_n||.$$

Lemma 2.5. Let $\{A_i : H \multimap H\}_{i \in I}$ be a finite family of monotone operators with $(R(\mathbf{A}, \boldsymbol{\lambda}))^{-1}(0) \neq \emptyset$, where $\lambda_i > 0$ and $\sum_{i \in I} \lambda_i = 1$. Let K be the same as in Lemma 2.2. Assume that f is a k-contraction mapping on K into itself. Let $\{x_n\}$ be the sequence generated by (2.4) satisfy the following conditions:

(i) $e_n \in H$ and $\sum_{n \in \mathbb{N}} ||e_n|| < \infty$, (ii) $\lim_{n \to \infty} \beta_n = 0$. Then $\lim_{n \to \infty} ||x_n - J_{R(\mathbf{A}, \boldsymbol{\lambda})} x_n|| = 0$.

Proof. Let $z \in R(\mathbf{A}, \boldsymbol{\lambda}))^{-1}(0)$ be arbitrary. By using Lemma 2.1 and (1.2), for some appropriate constant L > 0 obtained from Lemma 2.4, we get

$$\begin{aligned} \|x_{n+1} - z\|^2 &= \|\beta_n f(x_n) + (1 - \beta_n) J_{R(\boldsymbol{A},\boldsymbol{\lambda})} x_n + e_n - z\|^2 \\ &\leq \|\beta_n f(x_n) + (1 - \beta_n) J_{R(\boldsymbol{A},\boldsymbol{\lambda})} x_n - z\|^2 + L \|e_n\| \\ &\leq \beta_n \|f(x_n) - z\|^2 + (1 - \beta_n) \|J_{R(\boldsymbol{A},\boldsymbol{\lambda})} x_n - J_{R(\boldsymbol{A},\boldsymbol{\lambda})} z\|^2 + L \|e_n\| \\ &\leq \beta_n \|f(x_n) - z\|^2 + (1 - \beta_n) (\|x_n - z\|^2 - \|x_n - J_{R(\boldsymbol{A},\boldsymbol{\lambda})} x_n\|^2) + L \|e_n\|. \end{aligned}$$

Therefore,

$$(1 - \beta_n) \|x_n - J_{R(\boldsymbol{A},\boldsymbol{\lambda})} x_n\|^2 \le (1 - \beta_n) \|x_n - z\|^2 - \|x_{n+1} - z\|^2 + \beta_n \|f(x_n) - z\|^2 + L \|e_n\| \le \|x_n - z\|^2 - \|x_{n+1} - z\|^2 + \beta_n \|f(x_n) - z\|^2 + L \|e_n\|.$$
(2.5)

We consider two cases:

Case 1. Suppose that $\{||x_n - z||\}$ is a monotone sequence. It follows from Lemma 2.2 that $\{||x_n - z||\}$ is bounded and hence $\{||x_n - z||\}$ is convergent. Clearly,

$$||x_{n+1} - z||^2 - ||x_n - z||^2 \to 0$$

Since $\lim_{n\to\infty} \beta_n = \lim_{n\to\infty} \|e_n\| = 0$ and $\{f(x_n)\}$ is a bounded sequence, from (2.5) we obtain that $\lim_{n\to\infty} (1-\beta_n) \|x_n - J_{R(\mathbf{A},\boldsymbol{\lambda})} x_n\|^2 = 0$. Then

$$\lim_{n \to \infty} \|x_n - J_{R(\boldsymbol{A},\boldsymbol{\lambda})} x_n\| = 0.$$

Case 2. Assume that $\{||x_n - z||\}$ is not a monotone sequence. Then, we can define an integer sequence $\{\tau(n)\}$ for all $n \ge n_0$ (for some n_0 large enough) by

$$\tau(n) = \max\{k \in \mathbb{N} : k \le n, \|x_k - z\| < \|x_{k+1} - z\|\}$$

Clearly, $\tau(n)$ is a nondecreasing sequence such that $\tau(n) \to \infty$ as $n \to \infty$ and for all $n \ge n_0$,

$$||x_{\tau(n)} - z|| < ||x_{\tau(n)+1} - z||$$

From Case 1, we obtain that $\lim_{n\to\infty} ||x_{\tau(n)} - J_{R(\mathbf{A},\boldsymbol{\lambda})}x_{\tau(n)}|| = 0$. Now, from Lemma 2.3, we have

$$0 \le ||x_n - J_{R(\boldsymbol{A},\boldsymbol{\lambda})}x_n|| \le \max\{||x_{\tau(n)} - J_{R(\boldsymbol{A},\boldsymbol{\lambda})}x_{\tau(n)}||, ||x_n - J_{R(\boldsymbol{A},\boldsymbol{\lambda})}x_n||\} \\ \le ||x_{\tau(n)+1} - J_{R(\boldsymbol{A},\boldsymbol{\lambda})}x_{\tau(n)+1}||.$$

Hence $\lim_{n\to\infty} ||x_n - J_{R(\boldsymbol{A},\boldsymbol{\lambda})}x_n|| = 0.$

Lemma 2.6. [12, Lemma 2.5] Assume that $\{a_n\}$ is a sequence of nonnegative real numbers such that

$$a_{n+1} \leq (1-\gamma_n)a_n + \gamma_n\delta_n + \beta_n, \ n \geq 0,$$

where $\{\gamma_n\}$, $\{\beta_n\}$ and $\{\delta_n\}$ satisfy the conditions:

(i) $\gamma_n \subset [0, 1], \sum_{n=1}^{\infty} \gamma_n = \infty,$ (ii) $\limsup_{n \to \infty} \delta_n \leq 0 \text{ or } \sum_{n=1}^{\infty} |\gamma_n \delta_n| < \infty,$ (iii) $\beta_n \geq 0 \text{ for all } n \geq 0 \text{ with } \sum_{n=0}^{\infty} \beta_n < \infty.$ Then $\lim_{n \to \infty} a_n = 0.$

Let K be a closed convex subset of H. Then for every point $x \in H$, there exists a unique *nearest* point in K, denoted by $P_K(x)$, such that

$$||x - P_K(x)|| \le ||x - y||, \ \forall y \in K.$$

The operator P_K is called *metric projection* of H onto K. It is well known that $P_K(x)$ is nonexpansive. The metric projection $P_K(x)$ is characterized by $P_K(x) \in K$ and

$$\langle u - P_K(x), x - P_K(x) \rangle \le 0, \ \forall u \in K.$$

Theorem 2.7. Suppose that $\{A_i : H \multimap H\}_{i \in I}$ is a finite family of monotone operators with $Z = (R(\mathbf{A}, \boldsymbol{\lambda}))^{-1}(0) \neq \emptyset$, where $\lambda_i > 0$ and $\sum_{i \in I} \lambda_i = 1$. Let K be the same as in Lemma 2.2. Assume that f is k-contraction on K into itself. Let $\{\beta_n\}$ be a real sequence in (0, 1) and $\{e_n\}$ be a sequence of errors. Let $\{x_n\}$ be the sequence generated by (2.4). Assume that the following conditions are satisfied:

- (i) $e_n \in K$, satisfies $\sum_{n \in \mathbb{N}} ||e_n|| < \infty$,
- (*ii*) $\lim_{n \to \infty} \beta_n = 0$ and $\sum_{n=1}^{\infty} \beta_n = \infty$.

Then $\{x_n\}$ converges strongly to $z = P_Z f(z)$.

Proof. First, we show that there exists a unique $z \in Z$ such that $z = P_Z f(z)$. Since $Z = R(\mathbf{A}, \mathbf{\lambda})^{-1}(0)$ is closed and convex, the projection P_Z is well defined. It is enough to show that $P_Z f$ is contraction on K. Since P_Z is nonexpansive and f is k-contraction, we get

$$||P_Z f(x) - P_Z f(y)|| \le ||f(x) - f(y)|| \le k ||x - y||, \ x, y \in H.$$

It follows from Banach Contraction Theorem that there exists a unique element $z \in Z$ such that $z = P_Z f(z)$. Lemma 2.5 implies that $\lim_{n \to \infty} ||x_n - J_{R(\boldsymbol{A},\boldsymbol{\lambda})}x_n|| = 0$.

Next, we show that there exists a unique $z \in Z$ such that $\limsup_{n\to\infty} \langle f(z) - z, x_n - z \rangle \leq 0$, where $z = P_Z f(z)$. To show this inequality, we choose a subsequence $\{x_{n_\alpha}\}$ of $\{x_n\}$ such that

$$\lim_{\alpha \to \infty} \langle f(z) - z, x_{n_{\alpha}} - z \rangle = \limsup_{n \to \infty} \langle f(z) - z, x_n - z \rangle$$

By Lemma 2.2, the sequence $\{x_{n_{\alpha}}\}$ is bounded, so there exists a subsequence $\{x_{n_{\alpha_j}}\}$ of $\{x_{n_{\alpha}}\}$ which converges weakly to u. Without loss of generality, we can assume that $\{x_{n_{\alpha}}\} \rightharpoonup u$. We show that $u \in \mathbb{Z}$. To see this,

$$\begin{aligned} \|x_{n_{\alpha}} - J_{R(\boldsymbol{A},\boldsymbol{\lambda})}u\| &\leq \|x_{n_{\alpha}} - J_{R(\boldsymbol{A},\boldsymbol{\lambda})}x_{n_{\alpha}}\| + \|J_{R(\boldsymbol{A},\boldsymbol{\lambda})}x_{n_{\alpha}} - J_{R(\boldsymbol{A},\boldsymbol{\lambda})}u\| \\ &\leq \|x_{n_{\alpha}} - J_{R(\boldsymbol{A},\boldsymbol{\lambda})}x_{n_{\alpha}}\| + \|x_{n_{\alpha}} - u\|, \end{aligned}$$

which implies that

$$\limsup_{\alpha \to \infty} \|x_{n_{\alpha}} - J_{R(\boldsymbol{A},\boldsymbol{\lambda})}u\| \le \limsup_{\alpha \to \infty} \|x_{n_{\alpha}} - u\|$$

By the Opial property of Hilbert space H, we obtain $u = J_{R(\mathbf{A}, \boldsymbol{\lambda})}u$. Hence $u \in \mathbb{Z}$.

Therefore, we have

$$\limsup_{n \to \infty} \langle f(z) - z, x_n - z \rangle = \lim_{\alpha \to \infty} \langle f(z) - z, x_{n_\alpha} - z \rangle = \langle f(z) - z, u - z \rangle \le 0.$$

Finally, we show that $x_n \to P_Z f(z)$. In fact, using Lemma 2.4, (1.1) and Lemma 2.2 of [5], for some appropriate constant L > 0, we have

$$||x_{n+1} - z||^2 = ||\beta_n f(x_n) + (1 - \beta_n) J_{R(\mathbf{A}, \lambda)} x_n + e_n - z||^2$$

$$= \|\beta_n f(x_n) + (1 - \beta_n) J_{R(\mathbf{A}, \mathbf{\lambda})} x_n + e_n - \beta_n z - (1 - \beta_n) z \|^2$$

$$\leq \|(1 - \beta_n) J_{R(\mathbf{A}, \mathbf{\lambda})} x_n + e_n - (1 - \beta_n) z \|^2 + 2\beta_n \langle f(x_n) - z, x_{n+1} - z \rangle$$

$$\leq \|(1 - \beta_n) J_{R(\mathbf{A}, \mathbf{\lambda})} x_n - (1 - \beta_n) z \|^2 + 2\beta_n \langle f(x_n) - z, x_{n+1} - z \rangle + L \|e_n\|$$

$$\leq (1 - \beta_n)^2 \|x_n - z \|^2 + 2\beta_n \langle f(x_n) - z, x_{n+1} - z \rangle + L \|e_n\|$$

$$\leq (1 - \beta_n)^2 \|x_n - z \|^2 + 2\beta_n \langle f(x_n) - f(z), x_{n+1} - z \rangle + 2\beta_n \langle f(z) - z, x_{n+1} - z \rangle + L \|e_n\|$$

$$\leq (1 - \beta_n)^2 \|x_n - z \|^2 + 2k\beta_n \|x_n - z \| \|x_{n+1} - z \| + 2\beta_n \langle f(z) - z, x_{n+1} - z \rangle + L \|e_n\|$$

$$\leq (1 - \beta_n)^2 \|x_n - z \|^2 + k\beta_n (\|x_n - z \|^2 + \|x_{n+1} - z \|^2) + 2\beta_n \langle f(z) - z, x_{n+1} - z \rangle + L \|e_n\|,$$

This implies that

$$\begin{split} \|x_{n+1} - z\|^2 &\leq \frac{(1 - \beta_n)^2 + k\beta_n}{1 - k\beta_n} \|x_n - z\|^2 + \frac{2\beta_n}{1 - k\beta_n} \langle f(z) - z, x_{n+1} - z \rangle + \frac{L}{1 - k\beta_n} \|e_n\| \\ &\leq \frac{1 - 2\beta_n + k\beta_n}{1 - k\beta_n} \|x_n - z\|^2 + \frac{\beta_n^2}{1 - k\beta_n} \|x_n - z\|^2 + \frac{2\beta_n}{1 - k\beta_n} \langle f(z) - z, x_{n+1} - z \rangle \\ &+ \frac{L}{1 - k\beta_n} \|e_n\| \\ &\leq \left(1 - \frac{2(1 - k)\beta_n}{1 - k\beta_n}\right) \|x_n - z\|^2 + \frac{2(1 - k)\beta_n}{1 - k\beta_n} \left(\frac{\beta_n N}{2(1 - k)} + \frac{1}{1 - k} \langle f(z) - z, x_{n+1} - z \rangle\right) \\ &+ \frac{L}{1 - k\beta_n} \|e_n\| \\ &\leq (1 - \gamma_n) \|x_n - z\|^2 + \gamma_n \delta_n + \eta_n, \end{split}$$

where $N = \sup\{\|x_n - z\|^2 : n \in \mathbb{N}\}, \ \gamma_n = \frac{2(1-k)\beta_n}{1-k\beta_n}, \ \delta_n = \frac{\beta_n N}{2(1-k)} + \frac{1}{1-k} \langle f(z) - z, x_{n+1} - z \rangle$ and $\eta_n = \frac{L}{1-k\beta_n} \|e_n\|$. By assumption $\gamma_n \to 0, \ \sum_{n=1}^{\infty} \gamma_n = \infty$ and we have $\limsup_{n \to 0} \delta_n \leq 0$ and $\sum_{n=1}^{\infty} \eta_n < \infty$. Hence, applying Lemma 2.6, we immediately deduce that $x_n \to z$ where $z = P_Z f(z)$. \Box

Remark 2.8. In general, $\bigcap_{i \in I} A_i(\{x\}) \subseteq R(\mathbf{A}, \boldsymbol{\lambda})(\{x\})$. From Theorem 2.5 of [1] we know that, if A_i 's are monotone and $\bigcap_{i \in I} A_i^{-1}(0) \neq \emptyset$, then $(R(\mathbf{A}, \boldsymbol{\lambda}))^{-1}(0) = \bigcap_{i \in I} A_i^{-1}(0)$. On the other hand, we have

$$\left(R(\boldsymbol{A},\boldsymbol{\lambda})\right)^{-1} = R(\boldsymbol{A}^{-1},\boldsymbol{\lambda})$$
(2.6)

see Theorem 2.2 in [1] for more details. Therefore, one can replace $R(\mathbf{A}, \mathbf{\lambda})^{-1}(0) \neq \emptyset$ by $\bigcap_{i \in I} A_i^{-1}(0) \neq \emptyset$ in Theorem 2.7. The following example shows that there is a finite family of monotone operators $\{A_i : H \multimap H\}_{i \in I}$ such that $\bigcap_{i \in I} A_i^{-1}(0) = \emptyset$, but $(R(\mathbf{A}, \mathbf{\lambda}))^{-1}(0) \neq \emptyset$.

Example 2.9. Let $A = (A_1, A_2)$, $A^{-1} = (A_1^{-1}, A_2^{-1})$ and $\lambda_i = \frac{1}{2}$ for each i = 1, 2. Let for each i = 1, 2, ... Let for each i = 1, 2, ... Let for each i = 1, 2, ...

$$A_i(x) = \begin{cases} H & x = a_i, \\ \emptyset & x \neq a_i, \end{cases}$$

where $a_1, a_2 \in H$ with $a_1 \neq a_2$. We have $A_i^{-1} : H \multimap H$, $A_i^{-1}(x) = \{a_i\}$ for each i = 1, 2. Clearly, $\bigcap_{i=1}^2 A_i^{-1}(0) = \emptyset$.

On the other hand, for each i = 1, 2, we have

$$(A_i^{-1} + \mathrm{Id})^{-1}(x) = \{x - a_i\}.$$
(2.7)

By using (2.6) and (2.7), we get

$$(R(\mathbf{A},\lambda))^{-1}(0) = R(\mathbf{A}^{-1},\boldsymbol{\lambda})(0)$$

= $\left(\left(\frac{1}{2}(A_1^{-1} + \mathrm{Id})^{-1} + \frac{1}{2}(A_2^{-1} + \mathrm{Id})^{-1}\right)^{-1} - \mathrm{Id}\right)(0)$
= $\left\{x \in H : 0 \in \frac{1}{2}\{x - a_1\} + \frac{1}{2}\{x - a_2\}\right\}$
= $\left\{\frac{a_1 + a_2}{2}\right\}.$

Therefore, $(R(\mathbf{A}, \boldsymbol{\lambda}))^{-1}(0) \neq \emptyset$.

Theorem 2.10. Let $\{A_i : H \multimap H\}_{i \in I}$ be a finite family of maximal monotone operators with $Z = R(\mathbf{A}, \mathbf{\lambda})^{-1}(0) \neq \emptyset$, where $\lambda_i > 0$ and $\sum_{i \in I} \lambda_i = 1$. Assume that f is k-contraction of H into itself. Let $\{\beta_n\}$ be a real sequence in (0, 1) and $\{e_n\}$ be a sequence of errors. Let $\{x_n\}$ be the sequence generated by (2.4). Assume that the following conditions are satisfied:

- (i) $e_n \in K$, satisfies $\sum_{n \in \mathbb{N}} ||e_n|| < \infty$,
- (*ii*) $\lim_{n \to \infty} \beta_n = 0$ and $\sum_{n=0}^{\infty} \beta_n = \infty$,

then the sequence $\{x_n\}$ converges strongly to $z \in Z$, where $z = P_Z f(z)$.

Proof. Since A_i 's are maximal monotone, then A_i 's are monotone and satisfy the following condition:

$$\operatorname{Dom} R(\boldsymbol{A}, \boldsymbol{\lambda})) \subset K \subset \operatorname{ran}(\operatorname{Id} + R(\boldsymbol{A}, \boldsymbol{\lambda})).$$

Putting K = H, the desired result holds. \Box

Theorem 2.11. For every $n \in \mathbb{N}$ and $i \in I$, let $A_i : H \to H$ be a finite family of maximal monotone operators with $Z = R(\mathbf{A}, \boldsymbol{\lambda})^{-1}(0) \neq \emptyset$, where $\lambda_i > 0$ and $\sum_{i \in I} \lambda_i = 1$. Let $\{\beta_n\}$ be a real sequence in (0, 1) and $\{e_n\}$ be a sequence of errors. Let $\{x_n\}$ be the sequence generated by $u, x_1 \in H$ and

$$x_{n+1} = J_{R(\boldsymbol{A},\boldsymbol{\lambda})}(\beta_n u + (1 - \beta_n)x_n + e_n), \ n \in \mathbb{N}.$$
(2.8)

Assume that the following conditions are satisfied:

- (i) $e_n \in K$, satisfies $\sum_{n \in \mathbb{N}} ||e_n|| < \infty$,
- (*ii*) $\lim_{n \to \infty} \beta_n = 0$ and $\sum_{n=0}^{\infty} \beta_n = \infty$,

then the sequence $\{x_n\}$ converges strongly to $z \in Z$, where $z = P_Z u$.

Proof. First, we show that equation (2.8) is equivalent to the following equation:

$$x_{n+1} = (1 - \beta_n) J_{R(\boldsymbol{A},\boldsymbol{\lambda})}(x_n) + \beta_n u + e_n, \ n \in \mathbb{N}.$$

Set $y_n := \beta_n u + (1 - \beta_n) x_n + e_n$. We can rewrite (2.8) as

$$y_{n+1} = (1 - \beta_{n+1}) J_{R(\mathbf{A}, \lambda)}(y_n) + \beta_{n+1} u + e_{n+1}, \ n \in \mathbb{N},$$
(2.9)

Re-denoting $x_n := y_n$, $\beta_n := \beta_{n+1}$ and $e_n := e_{n+1}$ in (2.9), algorithm (2.8) reads

$$x_{n+1} = (1 - \beta_n) J_{R(\boldsymbol{A},\boldsymbol{\lambda})}(x_n) + \beta_n u + e_n, \ n \in \mathbb{N},$$

$$(2.10)$$

which is exactly the algorithm that is proposed in Theorem 2.10. \Box

Algorithm 1 Iterative algorithms for resolvent average

Input: $x_1 \in H$, $\{\beta_n\}_{n \in \mathbb{N}} \subset (0,1), \{\lambda_i\}_{1 \le i \le m} \subset (0,1), \{e_n\} \in H$, $\mathbf{A} = (A_1, \dots, A_m)$ Output: x_n for i = 1 to m do $J_{A_i}(x_n) := (A_i + \mathrm{Id})^{-1}(x_n)$ end for Set $J_{R(\mathbf{A},\lambda)}(x_n) = \sum_{i=1}^m \lambda_i J_{A_i}(x_n)$ for n = 1 to ... do $x_{n+1} = \beta_n f(x_n) + (1 - \beta_n) J_{R(\mathbf{A},\lambda)}(x_n) + e_n$ end for

3. Numerical examples

In this section, we have supported our new iterative algorithm for monotone operators by numerical examples.

Example 3.1. Let $A_1(x) = x$ and $A_2(x) = x + 1$. Set $\mathbf{A} = (x, x + 1)$, $\lambda_1 = \lambda_2 = \frac{1}{2}$ and $f(x) = \frac{x}{2}$. Assume that $e_n = \left\{\frac{1}{n^n}\right\}$ is the sequence of errors and $\beta_n = \left\{\frac{1}{n}\right\}$ for $n \in \mathbb{N}$. First note that $A_1^{-1}(x) = x$ and $A_2^{-1}(x) = x - 1$. So, $\mathbf{A}^{-1} = (x, x - 1)$. Then by easy calculation,

we get

$$J_{A_1^{-1}}(x_n) = (A_1^{-1} + \mathrm{Id})^{-1}(x_n) = \left\{\frac{1}{2}x_n\right\},\tag{3.1}$$

and

$$J_{A_2^{-1}}(x_n) = \left\{ \frac{1}{2}(x_n+1) \right\}.$$
(3.2)

By using (2.6) and (2.7), we obtain

$$(R(\mathbf{A}, \boldsymbol{\lambda}))^{-1}(0) = (R(\mathbf{A}^{-1}, \boldsymbol{\lambda}))(0)$$

= $\left(\left(\frac{1}{2}(A_1^{-1} + \mathrm{Id})^{-1} + \frac{1}{2}(A_2^{-1} + \mathrm{Id})^{-1}\right)^{-1} - \mathrm{Id}\right)(0)$
= $\left\{x \in \mathbb{R} : 0 \in \left(\frac{1}{2}(A_1^{-1} + \mathrm{Id})^{-1}(x) + \frac{1}{2}(A_2^{-1} + \mathrm{Id})^{-1}(x)\right)\right\}$
= $\left\{x \in \mathbb{R} : 0 \in \frac{1}{2}\left(\frac{1}{2}x\right) + \frac{1}{2}\left(\frac{1}{2}(x+1)\right)\right\}$
= $\left\{-\frac{1}{2}\right\}.$

Therefore, $Z = (R(\boldsymbol{A}, \boldsymbol{\lambda}))^{-1}(0) = \left\{ -\frac{1}{2} \right\}$. Hence,

$$P_Z(f(z)) = P_{\{-\frac{1}{2}\}}\left(f\left(-\frac{1}{2}\right)\right) = P_{\{-\frac{1}{2}\}}(1) = -\frac{1}{2}$$
(3.3)

Let $\{x_n\}$ be the sequence generated by

$$x_{n+1} = \beta_n f(x_n) + (1 - \beta_n) J_{R(\boldsymbol{A},\boldsymbol{\lambda})} x_n + e_n, \ n \in \mathbb{N},$$
(3.4)

with starting point $x_1 \in \mathbb{R}$. Clearly,

$$J_{A_1}(x_n) = (A_1 + \mathrm{Id})^{-1}(x_n) = \{ y \in \mathbb{R} : x_n \in (A_1 + \mathrm{Id})(y) \} = \{ \frac{1}{2} x_n \}.$$
(3.5)

and similarly,

$$J_{A_2}(x_n) = \left\{ \frac{1}{2} (x_n - 1) \right\}.$$
 (3.6)

Substituting (3.5) and (3.6) into (3.4), we obtain

$$\begin{aligned} x_{n+1} &= \beta_n f(x_n) + (1 - \beta_n) J_{R(\boldsymbol{A},\boldsymbol{\lambda})} x_n + e_n \\ &= \beta_n f(x_n) + (1 - \beta_n) \sum_{i=1}^2 \lambda_i J_{A_i} x_n + e_n \\ &= \frac{1}{2n} x_n + \frac{1}{2} \left(1 - \frac{1}{n} \right) \left(\frac{1}{2} x_n + \frac{1}{2} (x_n - 1) \right) + \frac{1}{n^n}, \ n \in \mathbb{N} \end{aligned}$$

It follows from Theorem 2.7 that $\{x_n\}$ converges, say to x. Since $\{x_n\}$ is bounded, by letting $n \to \infty$ in the above equality we obtain

$$x = 0 + \frac{1}{2} \left(\frac{1}{2}x + \frac{1}{2}(x-1) \right).$$

Therefore, $x = -\frac{1}{2}$. The numerical results with starting point $x_1 = 0$, which are shown in Table 1, shows that $x_n \to -\frac{1}{2}$.

Table 1: Results for given starting point $x_1 = 0$ in Example 3.1

n	1	10	100	1000	2000	3000	4000	5000	10000	
x_n	0	-0.42656	-0.49489	-0.49949	-0.49975	-0.49983	-0.49987	-0.4999	-0.4999	

Example 3.2. Let $A_1(x) = 2x - 1$, $A_2(x) = x$, $A_3(x) = x + 1$ and $A_4(x) = 2x + 3$. Set $\mathbf{A} = (2x - 1, x, x + 1, 2x + 3)$, $f(x) = \frac{2x}{3}$ and $\lambda_i = \frac{1}{4}$ for each $1 \le i \le 4$. Assume that $e_n = \left\{\frac{1}{n^n}\right\}$ is the sequence of errors and $\beta_n = \left\{\frac{1}{n}\right\}$ for $n \in \mathbb{N}$. We have $\mathbf{A}^{-1} = \left(\frac{1+x}{2}, x, x - 1, \frac{x-3}{2}\right)$. Then by easy calculation, we get

$$J_{A_1^{-1}}(x_n) = \left\{ \frac{1}{3} (2x_n - 1) \right\}, \ J_{A_2^{-1}}(x_n) = \left\{ \frac{1}{2} x_n \right\}, J_{A_3^{-1}}(x_n) = \left\{ \frac{1}{2} (x_n + 1) \right\}, \ J_{A_4^{-1}}(x_n) = \left\{ \frac{1}{3} (2x_n + 3) \right\}.$$
(3.7)

By using (2.6) and (3.7), we obtain

$$(R(\boldsymbol{A},\boldsymbol{\lambda}))^{-1}(0) = \left\{-\frac{1}{2}\right\}.$$

Therefore, $Z = (R(\boldsymbol{A}, \boldsymbol{\lambda}))^{-1}(0) = \left\{\frac{-1}{2}\right\}$. Hence

$$P_Z(f(z)) = P_{\{-\frac{1}{2}\}}\left(f\left(-\frac{1}{2}\right)\right) = P_{\{-\frac{1}{2}\}}\left(-\frac{1}{4}\right) = -\frac{1}{2}$$
(3.8)

Let $\{x_n\}$ be the sequence generated by

$$x_{n+1} = \beta_n f(x_n) + (1 - \beta_n) J_{R(\boldsymbol{A},\boldsymbol{\lambda})} x_n + e_n, \ n \in \mathbb{N},$$
(3.9)

with starting point $x_1 \in \mathbb{R}$. We have

$$J_{A_1}(x_n) = \left\{ \frac{1}{3}(x_n+1) \right\}, \ J_{A_2}(x_n) = \left\{ \frac{1}{2}x_n \right\}, J_{A_3}(x_n) = \left\{ \frac{1}{2}(x_n-1) \right\}, \ J_{A_4}(x_n) = \left\{ \frac{1}{3}(x_n-3) \right\}.$$
(3.10)

Substituting (3.10) into (3.9), we obtain

$$x_{n+1} = \beta_n f(x_n) + (1 - \beta_n) J_{R(\mathbf{A}, \mathbf{\lambda})} x_n + e_n$$

= $\frac{2}{3n} x_n + \frac{1}{4} \left(1 - \frac{1}{n} \right) \left(\frac{1}{6} (10x_n - 7) \right) + \frac{1}{n^n}, \ n \in \mathbb{N}.$

Now, Theorem 2.7 implies the convergence of $\{x_n\}$, say to x. By letting $n \to \infty$ in the above equality we obtain

$$x = 0 + \frac{1}{24}(10x - 7);$$

i.e., $x = -\frac{1}{2}$. The numerical results in Table 2 with starting point $x_1 = 0$ show that $x_n \to -\frac{1}{2}$.

Table 2: Results for given starting point $x_1 = 0$ in Example 3.2

n	1	10	100	1000	2000	3000	4000	5000	10000	
x_n	0	-0.45656	-0.49708	-0.49971	-0.49985	-0.4999	-0.49992	-0.49994	-0.49997	

Example 3.3. Let $\mathbf{A} = (x^3 - 1, x - 1, (x - 1)^3)$, $f(x) = \frac{99x}{100}$ and $\lambda_i = \frac{1}{3}$ for every $1 \le i \le 3$. Assume that $e_n = \left\{\frac{1}{n^n}\right\}$ and $\beta_n = \left\{\frac{1}{n+1}\right\}$. We have $\mathbf{A}^{-1} = \left((1+x)^{\frac{1}{3}}, 1+x, 1+x^{\frac{1}{3}}\right)$. Then

$$J_{A_1^{-1}}(x_n) = \left\{ x_n + \frac{\left(\frac{2}{3}\right)^{\frac{1}{3}}}{h_1(x_n)} - \frac{h_1(x_n)}{\left(2\right)^{\frac{1}{3}}\left(3\right)^{\frac{2}{3}}} \right\}, \ J_{A_2^{-1}}(x_n) = \left\{ \frac{1}{2} \left(x_n - 1\right) \right\},$$

$$J_{A_3^{-1}}(x_n) = \left\{ x_n - \frac{\left(\frac{2}{3}\right)^{\frac{1}{3}}}{h_2(x_n)} + \frac{h_2(x_n)}{\left(2\right)^{\frac{1}{3}}\left(3\right)^{\frac{2}{3}}} - 1 \right\},\tag{3.11}$$

where $h_1(x_n) = \left(9 + 9x_n - \sqrt{3}\sqrt{31 + 54x_n + 27x_n^2}\right)^{\frac{1}{3}}$ and $h_2(x_n) = \left(9 - 9x_n + \sqrt{3}\sqrt{31 - 54x_n + 27x_n^2}\right)^{\frac{1}{3}}$. Let $\{x_n\}$ be the sequence generated by

$$x_{n+1} = \beta_n f(x_n) + (1 - \beta_n) J_{R(\boldsymbol{A},\boldsymbol{\lambda})} x_n + e_n, \ n \in \mathbb{N},$$
(3.12)

with starting point $x_1 \in \mathbb{R}$. We have

$$J_{A_1}(x_n) = \left\{ \frac{h_1(x_n)}{(2)^{\frac{1}{3}} (3)^{\frac{2}{3}}} - \frac{(\frac{2}{3})^{\frac{1}{3}}}{h_1(x_n)} \right\}, \quad J_{A_2}(x_n) = \left\{ \frac{1}{2} (1+x_n) \right\},$$

$$J_{A_3}(x_n) = \left\{ \frac{\left(\frac{2}{3}\right)^{\frac{1}{3}}}{h_2(x_n)} - \frac{h_2(x_n)}{\left(2\right)^{\frac{1}{3}}\left(3\right)^{\frac{2}{3}}} + 1 \right\}.$$
(3.13)

Substituting (3.13) into (3.12), we obtain

$$\begin{aligned} x_{n+1} &= \beta_n f(x_n) + (1 - \beta_n) J_{R(\mathbf{A}, \mathbf{\lambda})} x_n + e_n \\ &= \frac{99}{100(n+1)} x_n + \frac{1}{3} \left(1 - \frac{1}{n+1} \right) \left(\frac{3}{2} + \frac{1}{2} x_n + \frac{\left(\frac{2}{3} \right)^{\frac{1}{3}}}{h_2(x_n)} - \frac{h_2(x_n)}{\left(2 \right)^{\frac{1}{3}} \left(3 \right)^{\frac{2}{3}}} \\ &+ \frac{h_1(x_n)}{\left(2 \right)^{\frac{1}{3}} \left(3 \right)^{\frac{2}{3}}} - \frac{\left(\frac{2}{3} \right)^{\frac{1}{3}}}{h_1(x_n)} \right) + \frac{1}{n^n}, \ n \in \mathbb{N}. \end{aligned}$$

The numerical results in Table 3 with starting point $x_1 = 0$ show that $x_n \to 1$.

Table 3: Results for given starting point $x_1 = 0$ in Example 3.3

n	1	10	100	1000	2000	5000	10000	
x_n	0	1.01732	0.999754	0.999976	0.999988	0.999995	0.999998	

References

- S. Bartz, H. H. Bauschke, S. M. Moffat, and X. Wang, The resolvent average of monotone operators: dominant and recessive properties, SIAM J. Optimiz. 26(2016), 602–634.
- [2] H.H.Bauschke and P.L.Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer, 2011.
- [3] H.H.Bauschke, R.Goebel, Y.Lucet and X.Wang, The proximal average: basic theory, SIAM J. Optimiz. 19(2008), 766–785.
- [4] H. Brezis, Operateurs Maximaux Monotones et Semi-Groups de Contractions dans les Espaces de Hilbert, North-Holland, Amsterdam, 1973.
- [5] M. Eslamian, Rockafellar's proximal point algorithm for a finite family of monotone operators, Sci. Bull. 76(2014), 43–50.
- [6] O. Guler, On the convergence of proximal point algorithm for convex minimization, SIAM J. Control Optim. 29(1991), 403–419.
- [7] P. E. Mainge, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal. 16(2008), 899–912.

- [8] B. Martinet, *Régularisation dinéquations variationnelles par approximations successives*, Recherche Opérationnelle. 4(1970), 154158.
- [9] A. Moudafi, Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl. 241(2000), 46–55.
- [10] R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim. 14(1976), 877–898.
- C. A. Tian and Y. Song, Strong convergence of a regularization method for Rockafellar's proximal point algorithm, J. Global Optim. 55(4)(2013), 831–837.
- [12] H. K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc. 66(2002), 240–256.
- [13] H.K.Xu, Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl. 298(2004), 279–291.
- [14] H. K. Xu, A regularization method for the proximal point algorithm, J. Global Optim. 36(2006), 115–125.