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Abstract
Fraud refers to earn wealth including property, goods and services through immoral and non-legal
channels. Fraud has always been in action and experiences an increasing trend worldwide. Fraud in
financial transactions not only leads to losing huge financial resources, but also leads to reduction
in trust of customers on using modern banking systems and hence, reduction in efficiency of the
systems and optimal management of financial transactions. In recent years, by emerging new tech-
nologies of banking industry, new means of fraud are discovered. Although a new information system
carry advantages and benefits, new opportunities are made for fraudsters. The applications of fraud
detection methods encompasses detection of frauds in an organization, analysis of frauds and also
user/customer behavior analytics in order to predict future behavior and reduce the fraud risks. In
recent decades, employing new technologies in management of banking transactions has risen. Banks
and financial institutions inevitably migrated from traditional banking to modern online banking to
provide effective services. Although, the use of online banking systems improves the management of
financial processes and speeds up services to customers of institutions, but some issues would also
be carried. Financial frauds is one of the issues which organizations seek to prevent and reduce
effects. In this paper, a novel machine learning based model is presented to detect fraud in electronic
banking transactions using profile data of bank customers. In the proposed method, transactional
data from banks are leveraged and a multi-layer perceptron neural network with adaptive learning
rate is trained to prove the validity of a transaction and hence, improve the fraud detection in elec-
tronic banking. The proposed method shows promising results compared with logistic regression and
support vector machines.
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1. Introduction

Banking Fraud has been an ever-growing issue with huge consequences to banks and customers alike,
both in terms of financial losses, trust and credibility. As per the Nilson report, it is anticipated
that card frauds alone would amount to a whopping $30 billion worldwide by 2020. Also, with the
technology disruption in both banking and payments (due to a plethora of payment channels —
credit/debit cards, smartphones, kiosks), the number of transactions has increased exponentially in
recent years. Fraudsters have also become extremely smart, adopting innovatory fraudulent tactics.
As a result it has compounded the problem.
Primarily, most banks employ Rule-based Systems with manual evaluation for detecting fraud. Al-
though these systems were doing a pretty decent job, in the recent years, they have become more
inconsistent. That’s because new fraud patterns are evolving rapidly and these systems are unable to
evolve accordingly, allowing frauds to go undetected, and resulting in huge financial losses. There are
banks which also have systems built on RDBMS, but their performance is even worse when compared
to Rule-based Systems.
Considering all these challenges and shortcomings, Machine Learning can play a vital role in effec-
tive and efficient fraud detection in the banking industry. In this paper, a multi-layer perceptron
neural network with adaptive learning rate is proposed to detect fraudulent and non-fraudulent bank
transactions.
The rest of the paper is organized as follows. In section 2, related works are described and dis-
cussed from two perspectives of supervised and unsupervised techniques. In section 3, a multi-layer
perceptron neural network with adaptive learning rate is mathematically formulated. In section 4,
results and discussions are described to compare the proposed method against logistic regression and
support vector machines. Conclusion of the paper is made in section 5.

2. Related Works

The methods to detect fraudulent and non-fraudulent records are surveyed as two classifications of
supervised and unsupervised techniques.

2.1. Supervised techniques
In supervised learning, samples of both fraudulent and non-fraudulent records, associated with their
labels are used to create models. These techniques are often used in fraud analysis approach. One
of the most popular supervised neural networks is back propagation network (BPN). It minimizes
the objective function using a multi-stage dynamic optimization method that is a generalization
of the delta rule. The back propagation method is often useful for feed-forward network with no
feedback. The BPN algorithm is usually time-consuming and parameters like the number of hidden
neurons and learning rate of delta rules require extensive tuning and training to achieve the best
performance [1]. In the domain of fraud detection, supervised neural networks like back-propagation
are known as efficient tool that have numerous applications [2], [3], [4]. Raghavendra Patidar et al.
[5] used a dataset to train a three layers backpropagation neural network in combination with genetic
algorithms (GA) [6] for credit card fraud detection. In this work, genetic algorithms was responsible
for making decision about the network architecture, dealing with the network topology, number of
hidden layers and number of nodes in each layer.
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Also, Aleskerov et al. [7] developed a neural network based data mining system for credit card fraud
detection. The proposed system (CARDWATCH) had three layers auto associative architectures.
They used a set of synthetized data for training and testing the system. The reported results show
very successful fraud detection rates.
In [8], a P-RCE neural network was applied for credit card fraud detection. P-RCE is a type of
radial-basis function networks [9, 10] that usually applied for pattern recognition tasks. Krenker et
al. proposed a model for real time fraud detection based on bidirectional neural networks [11]. They
used a large data set of cell phone transactions provided by a credit card company. It was claimed
that the system outperforms the rule based algorithms in terms of false positive rate.
Again in [12] a parallel granular neural network (GNN) is proposed to speed up data mining and
knowledge discovery process for credit card fraud detection. GNN is a kind of fuzzy neural network
based on knowledge discovery (FNNKD). The underlying dataset was extracted from SQL server
database containing sample Visa Card transactions and then preprocessed for applying in fraud
detection. They obtained less average training errors in the presence of larger training dataset.

2.2. Unsupervised techniques
The unsupervised techniques do not need the previous knowledge of fraudulent and normal records.
These methods raise alarm for those transactions that are most dissimilar from the normal ones.
These techniques are often used in user behavior approach. ANNs can produce acceptable result for
enough large transaction dataset. They need a long training dataset. Self-organizing map (SOM)
is one of the most popular unsupervised neural networks learning which was introduced by [13].
SOM provides a clustering method, which is appropriate for constructing and analyzing customer
profiles, in credit card fraud detection, as suggested in [14]. SOM operates in two phase: training and
mapping. In the former phase, the map is built and weights of the neurons are updated iteratively,
based on input samples [15], in latter, test data is classified automatically into normal and fraudulent
classes through the procedure of mapping. As stated in [16], after training the SOM, new unseen
transactions are compared to normal and fraud clusters, if it is similar to all normal records, it is
classified as normal. New fraud transactions are also detected similarly.
One of the advantages of using unsupervised neural networks over similar techniques is that these
methods can learn from data stream. The more data passed to a SOM model, the more adaptation
and improvement on result is obtained. More specifically, the SOM adapts its model as time passes.
Therefore it can be used and updated online in banks or other financial corporations. As a result,
the fraudulent use of a card can be detected fast and effectively. However, neural networks has some
drawbacks and difficulties which are mainly related to specifying suitable architecture in one hand
and excessive training required for reaching to best performance in other hand.

3. Proposed method

The most commonly used algorithm to train neural networks is gradient descent. The gradient is
a numeric calculation allowing us to adjust the parameters of a network in order to minimize its
output deviation. However, the learning time is a challenge. Standard version of gradient descent
learns slowly. There, an improvement is required for the gradient descent in real-world applications.
Gradient descent algorithms including Batch Gradient Descent (BGD), Stochastic Gradient De-
scent (SGD) and mini-Batch Gradient Descent (mini-BGD, the mixture of BGD ans SGD) are
the base state-of-the-art gradient descent algorithms. In essence, the methods seek to update the
weights θ of the network, with the help of a learning rate ηη, the objective function J(θ) and the
gradient of it, ∇J(θ). What all gradient descent algorithms and its improvements have in common,
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is the goal of minimizing J(θ) in order to find the optimal weights θθ. The simplest of the three is
the BGD.

θ = θ − η · ∇θJ(θ) (3.1)
It tries to reach the minimum of J(θ), by subtracting from θ the gradient of J(θ) (refere to Figure 3
for a visualization). The algorithm always computes over the whole set of data, for each update. This
makes the BGD the slowest and causes it to be unable to update online. Additionally, it performs
redundant operates for big sets of data, computing similar examples at each update and it converges
to the closeset minimum depending on the given data, resulting in potential suboptimal results. An
often used algorithm is the SGD.

θ = θ − η · ∇θJ
(
θ;x(i); y(i)

)
(3.2)

Contrary to BGD, SGD updates for each training example (x(i);y(i)), thus updating according to a
single example step. Furthermore, this fluctuation enables the SGD to jump to minima farther away,
potentially reaching a better minimum. But thanks to this fluctuation, SGD is also able to overshoot.
This can be counteracted by slowly decreasing the learning rate. In the exemplary code shown in
Figure 2, a shuffle function is additionally used in the SGD and mini-BGD algorithm, compared to
the BGD. This is done, as it is often preferable to avoid meaningful order of the data and thereby
avoid bias of optimization algorithm, although sometimes better results can be achieved with data
in order. In this case the shuffle operation is to be removed. Lastly, there is the mini-BGD.

θ = θ − η · ∇θJ
(
θ;x(i:+n); y(i;+n)

)
(3.3)

The mini-BGD updates for every mini-batch of n training examples. This leads to a more stable
convergence, by reducing the variance of the parameters. When people talk abput a SGD algorithm,
they often refer to this version.
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3.1. Adaptive Learning Rate Method
As an improvement to traditional gradient descent algorithms, the adaptive gradient descent op-
timization algorithms or adaptive learning rate methods can be utilized. Several versions of these
algorithms are described below.
Momentum can be seen as an evolution of the SGD.

vt = yvt− 1 + η∇θJ(θ)
θ = θ − vt

(3.4)

While SGD has problems with data having steep curves in one direction of the gradient, Momentum
circumvents that by adding the update vector of the time step before multiplying it with a γ, usually
around 0.9. As an analogy, one can think of a ball rolling down the gradient, gathering momentum
(hence the name), while still being affected by the wind resistance (0< γ < 1).

As an improvement to traditional gradient descent algorithms, the adaptive 
gradient descent optimization algorithms or adaptive learning rate methods can 
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Figure 2: Visualization of the analogy for Momentum using a γ = 0.9. 
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Figure 2: Visualization of the analogy for Momentum using a γ = 0.9.

4. Results

In this paper, a perceptron multi-layer neural network with two hidden layers is designed such that
the input layer contains 30 nodes taking bias aside which is taken from the 30 independent variables.
The middle layer of the network is designed to contain 10 nodes and a bias. The output layer of the
network contains two nodes taken from the number of dependent variables. All the nodes of each
layer is fully connected to the nodes of previous layer. The connections carry the weights of the
network elements. Fig. 3 shows the discriminability of the dataset features and Fig. 4 shows the
classification of the features into appropriate and inappropriate features.
The network is evaluated with different number of network layers and different number of hidden
layers; the reported error rate is drawn in Fig. 5 and Fig. 6, respectively.
Since the identification of fraud transaction is based on classification. Classification measures are
used to evaluate the performance of the proposed method against other methods. The proposed
method which is a multi-layer perceptron neural network is evaluated against logistic regression and
support vector machine.
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Figure 3: Discriminability of dataset feature 

 

 

Figure 3: Discriminability of dataset feature

 

Figure 4: Separation of features into appropriate and inappropriate candidate feature 

The network is evaluated with different number of network layers and different number of 

hidden layers; the reported error rate is drawn in Fig. 5 and Fig. 6, respectively. 

 

 

Figure 5: The comparison of different number network layers 

 

Figure 4: Separation of features into appropriate and inappropriate candidate feature
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5. Conclusion

In this paper, a novel machine learning method is proposed which is able to identify suspicious trans-
actions as frauds and report the results to the bank switch. Multi-layer perceptron neural network
with adaptive learning rate is employed as a learning model to identify frauds in bank card transac-
tions. A significant requirement for a method of fraud detection is the ability of real-time detection.
Since banks always handle huge amounts of transactional data, the fraud detection model is expected
to produce real-time results. A post-detection action after the fraud detection can be blockage of
the suspicious account. Therefore, the costs of false detection of non-fraud transaction increases. On
the other hand, risk of irreversibility of a suspicious transaction is tied to the risk of false detection
of non-fraud transaction. Therefore, the risk factor level can be determined according to the bank
strategy requirements. In future works, a dependent variable with numerous classifications can be
used. For example, classes such as normal transaction, low-risk transaction, high-risk transaction,
fraud transaction are defined based on the dependent variable. The classification scheme block the
accounts associated to fraud transactions and more investigations will be conducted for low-risk
transactions.
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