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Abstract

IIn this paper, we introduce the concept of regular linear operators. We prove that the regular linear
operators preserve the normality, linear independence and dimension of weak hypervector spaces and
prove some important results.
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1. Introduction

The concept of hyperstructure was first introduced by Marty [3] in 1934 and has attracted atten-
tion of many authors in last decades and has constructed some other structures such as hyperrings,
hypergroups, hypermodules, hyperfields, and hypervector spaces. These constructions has been ap-
plied to many disciplines such as geometry, hypergraphs, binary relations, combinatorics, codes,
cryptography, probability, and etc. A wealth of applications of this concepts are given in [1], [2], [14]
and [15]. In 1988 the concept of hypervector space was first introduced by Scafati-Tallini. She stud-
ied more properties of this new structure in [13]. We considered this generalization of vector space in
the viewpoint of analysis and proved important results in this field. See [4, 5, 6, 7, 8, 9, 10, 11, 12].

Note that the hypervector spaces used in this paper are the essential case where there is only
one hyperoperation, except for one, the rest are ordinary operations. The general hypervector spaces
have all operations multivalued also in the hyperfield (see [15]).

In [4], we showed the existence of essential points in weak hypervector spaces. In this paper, we
introduce the concept of regular linear operators. In fact, the regular linear operators are additive
operators preserving the essential points. We prove that the regular operators preserve the normality,
linear independence and dimension of weak hyper vector spaces and also we prove some important
results about them.
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2. Preliminaries

Definition 2.1. [13] A weak or weakly distributive hypervectorspace over a field F is a quadruple
(X,+,o,F ) such that (X,+) is an abelian group and o : F ×X −→ P∗(X) is a multivalued product
such that:

(1) ∀a ∈ F, ∀x, y ∈ X, [ao(x+ y)] ∩ [aox+ aoy] 6= ∅,

(2) ∀a, b ∈ F, ∀x ∈ X, [(a+ b)ox] ∩ [aox+ box] 6= ∅,

(3) ∀a, b ∈ F, ∀x ∈ X, ao(box) = (ab)ox,

(4) ∀a ∈ F, ∀x ∈ X, ao(−x) = (−a)ox = −(aox),

(5) ∀x ∈ X, x ∈ 1ox.

We call (1) and (2) weak right and left distributive laws, respectively. Note that the set ao(box) in
(3) is of the form ∪y∈boxaoy.

In throughout of this paper, assume that X and Y are weak hypervector spaces over a field F .

Definition 2.2. [4] Let a ∈ F and x ∈ X. Essential point of aox, that we denote it by eaox, for
a 6= 0 is the element of aox such that x ∈ a−1oeaox. For a = 0, we define eaox = 0.

As stated in [4], eaox is not unique, necessarily. So the set of all these elements denoted by Eaox.
In the mentioned paper we introduced a certain category of weak hypervector spaces. These weak
hypervector spaces have been called ”normal”. In [4], the following lemma stated a criterion for
normality of a weak hypervector space.

Lemma 2.3. [4] If a ∈ F , 0 6= b ∈ F and x ∈ X, then the following properties hold.
(a) x ∈ E1ox.
(b) aoEbox = abox.
(c) E−aox = −Eaox.
Furthermore, if X is normal, then
(d) Eaox is singleton.

Lemma 2.4. [4] X is normal if and only if

ea1ox + ea2ox = e(a1+a2)ox, ∀x ∈ X, ∀a1, a2 ∈ F,

eaox1 + eaox2 = eao(x1+x2), ∀x1, x2 ∈ X, ∀a ∈ F.

Definition 2.5. [4] A subset M = {x1, ..., xn} of X is said to be linearly independent if the equation
0 =

∑n
i=1 eαioxi implies that α1 = α2 = ... = αn = 0, where α1, ..., αn are scalars. M is said to be

linearly dependent if M isn’t linearly independent.
An arbitrary subset M of X is linearly independent if every nonempty finite subset of M is linearly

independent.
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Definition 2.6. [4] A subset M of X is said to be a basis of X if M is linearly independent and
spans the elements of X. It means that for any x of X there exists scalars α1, ..., αn such that
x =

∑n
i=1 eαioxi, where {x1, ..., xn} is a subspace of M . If there exists a finite basis for X, then X is

said to be a finite dimensional weak hypervector space.

Definition 2.7. [4] Let X be a weak hypervector space over F . A nonempty subset M of X is
called a weak subhypervector space of X, when M satisfies the following properties:
(i) x+ y ∈M, ∀x, y ∈M,
(ii) eaox ∈M, ∀a ∈ F, ∀x ∈M.

Theorem 2.8. [4] Let X be a normal weak hypervector space over F and ∅ 6= S ⊆ X. Then the
following set is the smallest weak subhypervector space of X containing S:

[S] = {
n∑
i=1

eaiosi ; ai ∈ F, si ∈ S, n ∈ N}.

Definition 2.9. A map T : X → Y is called weak linear operator if T is additive and satisfies

T (eaox) ⊆ aoTx

for all x ∈ X and a ∈ F .
We denote the set of all weak linear operators by Lw(X, Y ).

Theorem 2.10. Let X and Y be weak hypervector spaces over F . Then Lw(X, Y ) with the following
sum and product is a weak hypervector space over F .

(T + S)x = Tx+ Sx (T, S ∈ Lw(X, Y ), x ∈ X)

(aoT )x = aoTx (a ∈ F, T ∈ Lw(X, Y ), x ∈ X).

3. Main results

Definition 3.1. Let T : X → Y be a weak linear operator. T is called a regular linear operator
when satisfies

T (Eaox) = EaoTx

for all x ∈ X and a ∈ F . We denote the set of all regular linear operators by Rw(X, Y ).

Example 3.2. The following example of weak hypervector space was stated in [4]. We restate it.
The set C with usual sum and the following scalar product is a weak hypervector space on R.

aox =

{
{reiθ : 0 ≤ r ≤ |a||x|, θ = arg(x)} x 6= 0

{0} x = 0

Let X be the defined weak hypervector space and T : X → X be a map such that for every x ∈ X

Tx = x+ x.

We see that T ∈ Rw(X, Y ), because by the normality of C, we have

T (eaox) = eaox + eaox = eao(x+x) = eaoTx.
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Example 3.3. Let X be normal, 0 6= b ∈ F and T : X → X be a map such that for every x ∈ X

Tx = ebox.

We show T ∈ Rw(X, Y ). Since X is normal, we have

T (x1 + x2) = eao(x1+x2)

= eaox1 + eaox2
= Tx1 + Tx2.

So T is additive. By Lemma 2.3, eaoebox = eabox. Thus, we have

T (eaox) = eboeaox = eabox

= eaoebox = eaoTx.

Proposition 3.4. Let T ∈ Rw(X, Y ) be a bijective map. Then T−1 ∈ Rw(X, Y ).

Proof . It’s clear that T−1 is additive. Let y ∈ Y and a ∈ F . So there exists x ∈ X such that
x = T−1y.

T−1(eaoy) = T−1(eaoTx) = T−1(T (eaox))

= eaox = eaoT−1y.

The proof is complete. �
In the following propositions, we prove that a regular linear operator preserves the normality of

weak hypervector spaces.

Proposition 3.5. Let T ∈ Rw(X, Y ). Then the following statements are hold.
(i) If T is surjective and X is normal, then Y is normal.
(ii) If T is injective and Y is normal, then X is normal.

Proof . (i) Suppose that y1 ,y2 ∈ Y . Since T is surjective, there exist x1, x2 ∈ X such that Tx1 = y1
and Tx2 = y2. Since X is normal, by Lemma 2.4, for all a ∈ F we have

eaoy1 + eaoy2 = eaoTx1 + eaoTx2 = T (eaox1) + T (eaox2)

= T (eaox1 + eaox2) = T (eao(x1+x2))

= eao(Tx1+Tx2) = eao(y1+y2).

Similarly, can prove
eaoy + eboy = e(a+b)oy, (∀a, b ∈ F, y ∈ Y ).

Thus by Lemma 2.4, Y is normal.
(ii) Suppose that x1, x2 ∈ X. For all a ∈ F , we have

T (eaox1 + eaox2) = T (eaox1) + T (eaox2) = eaoTx1 + eaoTx2
= eao(Tx1+Tx2) = eaoT (x1+x2)

= T (eao(x1+x2)).

Since T is injective, we obtain

eaox1 + eaox2 = eao(x1+x2),

similarly, can prove

eaox + ebox = e(a+b)ox (∀a, b ∈ F, x ∈ X)

Thus by Lemma 2.4, X is normal. �
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Proposition 3.6. Let T : X → Y be a weak linear operator. Then the following statements are
hold.
(i) kerT is a weak subhypervector space of X.
(ii) If T ∈ Rw(X, Y ), then ImT is a weak subhypervector space of Y .

Proof . (i) Suppose x, y ∈ kerT and a ∈ F . By Definition 2.7, it is enough to show that x+y ∈ kerT
and eaox ∈ kerT . For all x, y ∈ kerT , it is easy to check that x + y ∈ kerT . By Definition 2.9, we
have T (Eaox) ⊆ aoTx. Since Tx = 0, aoTx = 0, T (eaox) = 0. So eaox ∈ kerT . This completes the
proof.

(ii) Suppose that y1, y2 ∈ ImT and a ∈ F . So there exist x1, x2 ∈ X such that y1 = Tx1 and
y2 = Tx2. It is easy to check that y1 + y2 ∈ ImT . By Definition 3.1, we have

Eaoy1 = EaoTx1 = T (Eaox1)

which implies that eaoy1 ∈ ImT and this completes the proof. �

Lemma 3.7. Suppose that X is normal and S ⊆ X contains linear independent vectors. If x 6∈ [S],
then S ∪ {x} contains linear independent vectors.

Proof . Let α1, α2, . . . , αn, β ∈ F and x1, x2, . . . , xn ∈ S such that

n∑
i=1

eαioxi + eβox = 0.

We assert that β = 0. If β 6= 0, then

β−1oeβox = −β−1o
n∑
i=1

eαioxi .

By Lemma 2.3, we obtain
1ox = −β−1oy,

where y =
∑n

i=1 eαioxi . The above relation yields

e1ox = e−β−1oy.

By Theorem 2.8, [S] is a weak subhypervector space and hence e−β−1oy ∈ [S], because y ∈ [S].
This implies that e1ox that is equal to x, belongs to [S]. This is a contradiction. So β = 0.

By the proved assertion we have
n∑
i=1

eαioxi = 0,

which implies α1 = α2 = · · · = αn = 0, because x1, x2, . . . , xn are linear independent. This completes
the proof. �

Corollary 3.8. If X is normal and finite dimensional, then every linear independent of vectors are
part of a basis for X.

Proof . By Lemma 3.7 is clear. �

Theorem 3.9. Let T ∈ Rw(X, Y ). If X is normal and n-dimensional, then

dim(ImT ) + dim(kerT ) = dimX.
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Proof . Let dim(kerT ) = k. So there exists linear independent set {x1, x2, . . . , xk} ⊆ kerT such
that is a basis for kerT . It is clear that for all 1 ≤ j ≤ k, Txj = 0.

By Corollary 3.8, there exist xk+1, xk+2, . . . , xn in X, such that {x1, . . . , xn} is a basis for X. We
show that {Txk+1, Txk+2, . . . , Txn} is a basis for ImT . Let y ∈ ImT . So there exists x ∈ X such
that y = Tx. Hence there exist α1, α2, ...., αn ∈ F such that x =

∑n
i=1 eαioxi and so

y = Tx = T (
n∑
i=1

eαioxi) =
n∑
i=1

T (eαioxi) =
n∑
i=1

eαioTxi =
n∑

i=k+1

eαioTxi .

This implies that ImT = [Txk+1, Txk+2, . . . , Txn]. Now we show that {Txk+1, Txk+2, . . . , Txn}
is linear independent. Suppose there exist ck+1, ck+2, . . . , cn ∈ F such that

∑n
i=k+1 ecioTxi = 0. This

implies

T (
n∑

i=k+1

ecioxi) = 0,

and so
∑n

i=k+1 ecioxi ∈ kerT . Therefore there exist b1, b2, . . . , bk ∈ F such that

n∑
i=k+1

ecioxi =
k∑
i=1

ebioxi .

Since {x1, x2, . . . , xn} is linear independent, b1 = b2 = · · · = bk = ck+1 = ck+2 = · · · = cn = 0. Thus
{Txk+1, Txk+2, . . . , Txn} is linear independent and so by Definition 2.6, the proof is complete. �
In the following lemma we prove that a regular linear operator preserves the linear independence of
vectors.

Lemma 3.10. Let T ∈ Rw(X, Y ). T is injective if and only if for any linear independent set
{x1, x2, . . . , xn}, {Tx1, Tx2, . . . , Txn} is linear independent.

Proof . First let T be injective. Let α1, α2, . . . , αn ∈ F such that
∑n

i=1 eαioTxi = 0. Therefore

n∑
i=1

T (eαioxi) = T (
n∑
i=1

eαioxi) = 0.

Since T is injective, we obtain
n∑
i=1

eαioxi = 0

which implies α1 = α2 = · · · = αn = 0, because x1, x2, . . . , xn are linear independent.
Conversely, let Tx = 0. If x 6= 0, then Since {x} is linear independent, by assumption {Tx} is

linear independent. This is contradiction, because Tx = 0. The proof is completed. �

Lemma 3.11. Let X be normal. If X is m-dimensional, then every linear independent set of X has
at most m elements.

Proof . Let {x1, . . . , xm} be a basis for X and {y1, . . . , yn} be a linear independent set of X. Thus
for any 1 ≤ j ≤ n there exist α1j, α2j, . . . , αmj ∈ F such that yj =

∑m
i=1 eαijoxi . Let c1, . . . , cn ∈ F .
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By Lemmas 2.3 and 2.4, we have

ec1oy1 + · · ·+ ecnoyn = ec1o
∑m
i=1 eαi1oxi

+ · · ·+ ecno
∑m
i=1 eαinoxi

=
m∑
i=1

ec1o(eαi1oxi ) + · · ·+
m∑
i=1

ecno(eαinoxi )

=
m∑
i=1

ec1αi1oxi + · · ·+
m∑
i=1

ec1αinoxi

=
n∑
j=1

ecjα1jox1 + · · ·+
n∑
j=1

ecjαmjoxm

= e(∑n
j=1 cjα1j)ox1 + · · ·+ e(

∑n
j=1 cjαmj)oxm

.

If ec1oy1 + · · · + ecnoyn = 0, then c1 = · · · = cn = 0. Since {x1, . . . , xm} is linear independent, by
above relation we obtain

n∑
j=1

cjα1j = · · · =
n∑
j=1

cjαmj = 0.

Assume on the contrary that n > m. The remain of proof is the same proof of this lemma in the
classical vector space. With the same reason we can conclude that there exist at least a nonzero cj
and this contradiction completes the proof. �

Lemma 3.12. Let X be normal, finite dimensional and W be a weak subhypervector space of X. If
dimW = dimX, then W = X.

Proof . Assume on the contrary that X 6= W . Thus there exists x ∈ X \W . If B is a basis for W ,
then B ∪ {x} by Lemma 3.7 is a linear independent set with dimX + 1 elements. By Lemma 3.11,
this is a contradiction. Hence W = X and so the proof is completed. �

Theorem 3.13. Let X be normal and {x1, x2, . . . , xn} be a basis for X. If y1, . . . , yn are arbitrary
vectors of Y , then there exists an unique regular linear operator T : X → Y such that for any
1 ≤ i ≤ n, Txi = yi.

Proof . Let x ∈ X. Since {x1, x2, . . . , xn} is a basis for X, there exist c1, . . . , cn ∈ F such that
x =

∑n
i=1 ecioxi . Now define T : X → Y with Tx =

∑n
i=1 ecioyi . We show that T is a regular linear

operator such that for any 1 ≤ i ≤ n, Txi = yi. Let x, y ∈ X. So there exist a1, . . . , an, b1, . . . , bn ∈ F
such that x =

∑n
i=1 eaioxi and y =

∑n
i=1 ebioxi . Thus Tx =

∑n
i=1 eaioyi and Ty =

∑n
i=1 ebioyi . By

Lemma 2.4, we have x+ y =
∑n

i=1 e(ai+bi)oxi and so

T (x+ y) =
n∑
i=1

e(ai+bi)oyi =
n∑
i=1

eaioyi + ebioyi

=
n∑
i=1

eaioyi +
n∑
i=1

ebioyi

= Tx+ Ty,
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which implies that T is additive. Now, let a ∈ F . By Lemmas 2.3 and 2.4, we have

T (eaox) = T (eao∑n
i=1 eaioxi

) = T (
n∑
i=1

eao(eaioxi ))

= T (
n∑
i=1

eaaioxi) =
n∑
i=1

eaaioyi

=
n∑
i=1

eao(eaioyi ) = eao∑n
i=1 eaioyi

= eaoTx

which implies that T preserves the essential points. So T is a regular linear operator. Since X is
normal, by Lemma 2.3, for any 1 ≤ i ≤ n, xi = e1oxi which implies Txi = e1oyi = yi.

Finally, we show the uniqueness of such T . Suppose U is a regular linear operator such that for
any 1 ≤ i ≤ n, Uxi = yi. We have

Ux = U(
n∑
i=1

eaioxi) =
n∑
i=1

eaioUxi =
n∑
i=1

eaioyi = Tx

which implies U = T and this completes the proof. �

Theorem 3.14. Let X and Y be finite dimensional, X be normal and dimX = dimY . If T ∈
Rw(X, Y ), then the following statements are equivalent.
(i) T is invertible.
(ii) T is injective.
(iii) T is surjective.
(iv) If {x1, x2, . . . , xn} is a basis for X, then {Tx1, Tx2, . . . , Txn} is a basis for Y .
(v) There exists a basis {x1, x2, . . . , xn} for X such that {Tx1, Tx2, . . . , Txn} is a basis for Y .

Proof . (i)⇒ (ii): It is clear.
(ii) ⇒ (iii) : By Theorem 3.9, we have dim(ImT ) + dim(kerT ) = dimX. Since T is injective,

kerT = {0} and so dim(kerT ) = 0. This implies that dim(ImT ) = dimX and by assumption we
obtain

dim(ImT ) = dimY.

From Proposition 3.6, ImT is a weak subhypervector space of Y and so by Lemma 3.12, ImT = Y .
Therefore, T is surjective.

(iii) ⇒ (iv): Let y ∈ Y . Since T is surjective, there exists x ∈ X such that Tx = y. Since
{x1, x2, ..., xn} is a basis for X, there exist c1, ..., cn ∈ F such that x =

∑n
i=1 ecioxi . Thus we have

y = Tx = T (
n∑
i=1

ecioxi) =
n∑
i=1

ecioTxi .

This implies that Y = [Tx1, Tx2, ..., Txn]. Since by assumption, dimY = dimX = n, Tx1, Tx2, ..., Txn
are linear independent. Otherwise, if Tx1, Tx2, ..., Txn are linear dependent, then dimY < n. There-
fore, {Tx1, Tx2, ..., Txn} is a basis for Y .

(iv)⇒ (v): It is clear.
(v)⇒ (1): By Theorem 3.13, there exists an unique regular linear operator U such that U(Txi) =

xi, for any 1 ≤ i ≤ n. Since UT is a regular linear operator, it is easy to check that for any x ∈ X,
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UTx = x. So UT = IX . Now let y ∈ Y . Thus there exist c1, ..., cn ∈ F such that y =
∑n

i=1 ecioTxi
and we obtain y = T (

∑n
i=1 ecioxi) and so

TUy = TUT (
n∑
i=1

ecioxi) = T (
n∑
i=1

ecioxi) =
n∑
i=1

ecioTxi = y

which implies TU = IY and this completes the proof. �

Proposition 3.15. If Y is normal, then Rw(X, Y ) is a weak subhypervector space of Lw(X, Y ).

Proof . It is enough to show that T + S and EaoT ⊆ Rw(X, Y ) for all a ∈ F and T, S ∈ Rw(X, Y ).
Since Y is normal, we have

(S + T )(eaox) = T (eaox) + S(eaox)

= eaoTx + eaoSx

= eao(Tx+Sx)

= eao(T+S)x

so T + S ∈ Rw(X, Y ). It is easy to check that eaoT (x) = eaoTx, for all x ∈ X. Let b ∈ F and set
T1 = eaoT . Hence by Lemma 2.3, we have

T1(ebox) = eaoT (ebox) = eaoT (ebox) = eaoeboTx
= eaboTx = eboeaoTx
= eboeaoT (x) = eboT1x.

This completes the proof. �
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