
Int. J. Nonlinear Anal. Appl. 12 (2021) No. 1, 337-349
ISSN: 2008-6822 (electronic)
http://dx.doi.org/10.22075/ijnaa.2021.4803

Multi-point boundary value problems of higher-order
nonlinear fractional differential equations
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Abstract

We investigate the existence and uniqueness of solutions for multi-point nonlocal boundary value
problems of higher-order nonlinear fractional differential equations by using some well known fixed
point theorems.
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1. Introduction

Fractional differential equations have been of great interest recently. This is due to the intensive
development of the theory of fractional calculus itself as well as its applications. They arise in various
fields of science and engineering such as the mathematical modeling of systems and processes in the
fields of physics, chemistry, biology, aerodynamics, porous structures and polymer rheology [6, 15,
20]. Therefore, in recent years, the study of the boundary value problems for fractional differential
equations has received considerable attention (see, for instance, [2, 4, 5, 8, 9, 10, 16, 19, 23, 25, 26,
27, 28, 30, 31, 32, 34] and references therein). However, few papers have considered the multi-point
boundary value problems for higher-order fractional differential equations (see [7, 13, 17, 21, 29, 33]).

Ahmad and Nieto [1] studied some existence results in a Banach space for a nonlocal fractional
boundary value problem given by{

CDq(x(t)) = f(t, x(t)), t ∈ (0, 1), q ∈ (m− 1,m], m ≥ 2,
x(0) = x′(0) = ... = x(m−2)(0) = 0, x(1) = αx(η), 0 < η < 1,
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where CDq is the Caputo fractional derivative.
Salem [22] investigated the existence of Pseudo solutions for the nonlinear m-point fractional

boundary value problem
Dα

0+(x(t)) + q(t)f(t, x(t)) = 0, t ∈ (0, 1), α ∈ (n− 1, n], n ≥ 2,

x(0) = x′(0) = ... = x(n−2)(0) = 0, x(1) =
m−2∑
i=1

ζix(ηi),

where 0 < η1 < . . . < ηm−2 < 1, ζi > 0 with
m−2∑
i=1

ζiη
α−1
i < 1.

Jia and Zhang [12] consider the multi-point boundary value problem of nonlinear fractional dif-
ferential equation

Dα
0+u(t) + λf(t, u(t)) = 0, 0 < t < 1, α ≥ 2, n− 1 < α ≤ n,

u(0) = u′(0) = . . . = u(n−2)(0) = 0, u(i)(1) =
m−2∑
j=0

ηju
′(ξj)ds, 0 ≤ i ≤ n− 2.

Ahmad and Ntouyas [3] are concerned with the existence of solutions for a fractional boundary
value problem 

CDq(x(t)) = f(t, x(t)), t ∈ (0, T ), 1 ≤ q ≤ 2,
α1x(0) + β1(

CDq(x(0))) = γ1,
α2x(1) + β2(

CDq(x(1))) = γ2, 0 < p < 1.

Liu and Jia [18] investigated the nonlinear boundary value problem of fractional differential
equation 

CDq(x(t)) = f(t, x(t), x′(t)), t ∈ (0, 1), q ∈ (n− 1, n], n > 2,
g0(x(0), x

′(0)) = 0,
g1(x(1), x

′(1)) = 0,
x′′(0) = x′′′(0) = ... = x(n)(0) = 0.

In [24], authors developed sufficient conditions for multiplicity of positive solutions to the bound-
ary value problem 

Dq
0+(u(t)) + f(t, u(t)) = 0, t ∈ (0, 1),

u(i)(0) = 0, 0 ≤ i ≤ n− 2,

u(1) =
m−2∑
i=1

δiu(ηi),

where n − 1 < q ≤ n and Dq
0+ is the standard Riemann-Liouville fractional derivative of order q,

n ≥ 3, δi, ηi ∈ (0, 1) with
m−2∑
i=1

δiη
q−1
i < 1 and f : [0, 1]× [0,∞) → [0,∞) is continuous.

Jiang and Wang [14] studied the existence and uniqueness of solutions to the following boundary
value problem for fractional differential equation Dα

0+u(t) + f(t, u(t), Iβ0+u(t)) = 0, 0 ≤ t ≤ 1,

u(0) = u′(0) = . . . = u(n−2)(0) = 0, Dp
0+u(1) =

m∑
i=1

aiD
q
0+u(ξi),

where Dα
0+ is the Riemann-Liouville fractional derivative of order n− 1 < α ≤ n, n ≥ 2, 0 < β < 1,

p ∈ [1, n− 2], q ∈ [0, p], 0 < ξ1 < ξ2 < · · · < ξm < 1, f : [0, 1]×R2 → R is a continuous function and
ai > 0 (i = 1, 2, · · · ,m).
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Motivated by the aforementioned works, this paper is concerned with the existence of solutions
to multi-point boundary value problem for higher order fractional differential equations:

−RDα
0+(u(t)) + f(t, u(t)) = 0, t ∈ [0, 1],

u′′(0) = u′′′(0) = · · · = u(n−2)(0) = 0, u′′(1) =
m−2∑
i=1

γiu
′′(ξi),

au(0)− bu′(0) =
m−2∑
i=1

aiu
′(ξi),

cu(1) + du′(1) =
m−2∑
i=1

biu
′(ξi),

(1.1)

where RDα
0+ is the Riemann-Liouville fractional derivative of order α. Throughout the paper we

suppose that m ≥ 3, n ≥ 4, n − 1 < α ≤ n where n,m ∈ N, a, b, c, d > 0, ai, bi ≥ 0, 0 < ξ1 <

. . . < ξm−2 < 1 and 0 ≤
m−2∑
i=1

γiξ
n−1
i < 1. We assume that f : [0, 1]× R → R is continuous. Also, we

consider the analogous problem using the Caputo fractional derivative:

−CDα
0+(u(t)) + f(t, u(t)) = 0, t ∈ [0, 1],

u′′(0) = u′′′(0) = · · · = u(n−2)(0) = 0, u′′(1) =
m−2∑
i=1

γiu
′′(ξi),

au(0)− bu′(0) =
m−2∑
i=1

aiu
′(ξi),

cu(1) + du′(1) =
m−2∑
i=1

biu
′(ξi).

(1.2)

We mean a function u ∈ C[0, 1] of class Cn[0, 1] which satisfies the nonlocal fractional boundary
value problem (1.1) (or (1.2)) by a solution of (1.1) (or (1.2)).

We have organized the paper as follows. First, we provide some definitions and preliminary
lemmas which are key tools for our main results. Second, we obtain some existence and uniqueness
results of the Riemann-Liouville multi-point boundary value problem (RLMBVP) (1.1) and the
Caputo multi-point boundary value problem (CMBVP) (1.2).

We assume that the following conditions are satisfied:

(H1) If m ≥ 3, then c
m−2∑
i=1

ai ≥ a
m−2∑
i=1

bi and if m > 3, then ad > c
j−1∑
i=1

ai ≥ a
j−1∑
i=1

bi > bc where

2 ≤ j ≤ m− 2.

(H2) ad > a
m−2∑
i=1

bi + c
m−2∑
i=1

ai.

2. Preliminaries

To state the main results of this paper, we will need the following lemmas and we present some
notation.

Definition 2.1. ([15]) The Riemann-Liouville fractional derivative of order α > 0 for a function
u : (0,∞) → R is defined by

RDα
0+u(t) =

1

Γ(n− α)

dn

dtn

∫ t

0

(t− s)n−α−1u(s)ds

where n = [α] + 1, [α] denotes the integer part of the number α, provided that the right side is
pointwise defined on (0,∞).
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Definition 2.2. ([15]) The Riemann-Liouville fractional integral of order α > 0 of a function
u : (0,∞) → R is given by

Iα0+u(t) =
1

Γ(α)

∫ t

0

(t− s)α−1u(s)ds

provided the integral exists.

Lemma 2.3. ([15]) Let α > 0. Then the following equality holds for u ∈ L(0, 1), RDα
0+u ∈ L(0, 1);

Iα0+
RDα

0+u(t) = u(t) + c1t
α−1 + c2t

α−2 + · · ·+ cnt
α−n,

ci ∈ R, i = 1, ..., n, where n− 1 < α ≤ n.

Definition 2.4. ([15]) The fractional derivative of a function u in the Caputo sense is defined as

CDα
0+u(t) =

1

Γ(n− α)

∫ t

0

(t− s)n−α−1u(n)(s)ds

where n = [α] + 1, [α] denotes the integer part of the number α, provided that the right side is
pointwise defined on (0,∞).

Lemma 2.5. ([15]) Let n− 1 < α ≤ n, u ∈ Cn[0, 1]. Then

Iα0+
CDα

0+u(t) = u(t) + c0 + c1t+ c2t
2 + · · ·+ cn−1t

n−1,

for ci ∈ R, i = 1, ..., n.

In the following, the RLMBVP (1.1) will be reduced to an equivalent integral equation. We know
that RDα

0+(u(t)) = RDα−2
0+

(
RD2

0+u(t)
)
= RDα−2

0+ (u′′(t)). If −u′′(t) = y(t) and α − 2 = q, then the
problem 

−RDα−2
0+ (u′′(t)) + f(t, u(t)) = 0, t ∈ [0, 1]

u′′(0) = u′′′(0) = · · · = u(n−2)(0) = 0, u′′(1) =
m−2∑
i=1

γiu
′′(ξi)

is turned into problem
RDq

0+y(t) + f(t, u(t)) = 0, t ∈ [0, 1]

y(0) = y′(0) = · · · = y(n−4)(0) = 0, y(1) =
m−2∑
i=1

γiy(ξi).
(2.1)

Lemma 2.6. The boundary value problem (2.1) has a unique solution

y(t) =

1∫
0

H1(t, s)f(s, u(s))ds

where

H1(t, s) =
1

K1Γ(q)



(1− s)q−1tq−1 −
m−2∑
i=k

γit
q−1(ξi − s)q−1,

t ≤ s, s ∈ Jk, k = 1, 2, ...,m− 1;

(1− s)q−1tq−1 −
m−2∑
i=k

γit
q−1(ξi − s)q−1 −K1(t− s)q−1,

t ≥ s, s ∈ Jk, k = 1, 2, ...,m− 1,

and K1 = 1−
m−2∑
i=1

γiξ
q−1
i .
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Proof . According to Lemma 2.3, we can obtain that

y(t) = − 1

Γ(q)

t∫
0

(t− s)q−1f(s, u(s))ds+ c1t
q−1 + c2t

q−2 + · · ·+ cn−2t
q−n+2.

By boundary conditions of (2.1) we get c2 = c3 = · · · = cn−2 = 0 and

c1 =
1

K1Γ(q)

 1∫
0

(1− s)q−1f(s, u(s))ds−
m−2∑
i=1

γi

ξi∫
0

(ξi − s)q−1f(s, u(s))ds

 .

Thus, the unique solution of problem (2.1) is

y(t) = − 1

Γ(q)

t∫
0

(t− s)q−1f(s, u(s))ds+
1

K1Γ(q)

1∫
0

(1− s)q−1tq−1f(s, u(s))ds

− 1

K1Γ(q)

m−2∑
i=1

γi

ξi∫
0

(ξi − s)q−1tq−1f(s, u(s))ds

=

∫ 1

0

H1(t, s)f(s, u(s))ds.

The proof is complete.
□

Lemma 2.7. Let D := ac + ad + bc +
m−2∑
i=1

(cai − abi) and J1 = [0, ξ1], J2 = [ξ1, ξ2],. . . , Jm−2 =

[ξm−3, ξm−2], Jm−1 = [ξm−2, 1]. For y ∈ C[0, 1], the boundary value problem
−u′′(t) = y(t), t ∈ [0, 1],

au(0)− bu′(0) =
m−2∑
i=1

aiu
′(ξi)

cu(1) + du′(1) =
m−2∑
i=1

biu
′(ξi)

(2.2)

has a unique solution

u(t) =

1∫
0

G(t, s)y(s)ds (2.3)

where

G(t, s) =
1

D



(at+ b+
k−1∑
i=1

ai)(c(1− s) + d−
m−2∑
i=k

bi) +
m−2∑
i=k

ai[c(t− s) +
k−1∑
i=1

bi],

t ≤ s, s ∈ Jk, k = 1, 2, ...,m− 1;

(as+ b+
k−1∑
i=1

ai)(c(1− t) + d−
m−2∑
i=k

bi) +
k−1∑
i=1

bi[a(t− s) +
m−2∑
i=k

ai],

t ≥ s, s ∈ Jk, k = 1, 2, ...,m− 1.

(2.4)
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Proof . A direct calculation gives that if y ∈ C[0, 1], then the boundary value problem (2.2) has the
unique solution

u(t) = −
t∫

0

(t− s)y(s)ds+
t

D

{
a

1∫
0

(c(1− s) + d)y(s)ds+
m−2∑
i=1

(cai − abi)

ξi∫
0

y(s)ds

}

+
1

D

{
(b+

m−2∑
i=1

ai)

1∫
0

(c(1− s) + d)y(s)ds− (b+
m−2∑
i=1

ai)
m−2∑
i=1

bi

ξi∫
0

y(s)ds

+
1

a

(
c(b+

m−2∑
i=1

ai)−D

)
m−2∑
i=1

ai

ξi∫
0

y(s)ds

}
.

Hence, we obtain (2.3). □

Lemma 2.8. The Green’s function G(t, s) in (2.4) satisfies

0 < G(t, s) ≤ G(s, s)

for (t, s) ∈ [0, 1]× [0, 1].

Proof . From (H1) and (H2), we have G(t, s) > 0.
Now, we will show that G(t, s) ≤ G(s, s).

(i) Let s ∈ Jk, 1 ≤ k ≤ m− 2 and t ≤ s. Since G(t, s) is increasing in t, we get G(t, s) ≤ G(s, s).

(ii) Take s ∈ Jk, 1 ≤ k ≤ m − 2 and t ≥ s. From (H1), G(t, s) is decreasing in t. So we obtain
G(t, s) ≤ G(s, s).

□
From Lemma 2.6 and Lemma 2.7, we know that u(t) is a solution of the problem (1.1) if and only

if

u(t) =

1∫
0

G(t, s)

1∫
0

H1(s, τ)f(τ, u(τ))dτds. (2.5)

Now, let E = C[0, 1], with supremum norm ∥y∥ = sup
t∈[0,1]

|y(t)| for any y ∈ E. We can define the

operator A : E → E by

Au(t) =

1∫
0

G(t, s)

1∫
0

H1(s, τ)f(τ, u(τ))dτds, (2.6)

where u ∈ E. Therefore solving (2.5) in E is equivalent to finding fixed points of the operator A.
Now, the CMBVP (1.2) will be reduced to an equivalent integral equation. We know that

CDα
0+(u(t)) =

CDα−2
0+

(
CD2

0+u(t)
)
= CDα−2

0+ (u′′(t)). If −u′′(t) = y(t) and α− 2 = q, then the problem
−CDα−2

0+ (u′′(t)) + f(t, u(t)) = 0, t ∈ [0, 1]

u′′(0) = u′′′(0) = · · · = u(n−2)(0) = 0, u′′(1) =
m−2∑
i=1

γiu
′′(ξi)
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is turned into problem
CDq

0+y(t) + f(t, u(t)) = 0, t ∈ [0, 1]

y(0) = y′(0) = · · · = y(n−4)(0) = 0, y(1) =
m−2∑
i=1

γiy(ξi).
(2.7)

Lemma 2.9. The boundary value problem (2.7) has a unique solution

y(t) =

1∫
0

H2(t, s)f(s, u(s))ds

where

H2(t, s) =
1

K2Γ(q)



(1− s)q−1tn−1 −
m−2∑
i=k

γit
n−1(ξi − s)q−1,

t ≤ s, s ∈ Jk, k = 1, 2, ...,m− 1;

(1− s)q−1tn−1 −
m−2∑
i=k

γit
n−1(ξi − s)q−1 −K2(t− s)q−1,

t ≥ s, s ∈ Jk, k = 1, 2, ...,m− 1,

and K2 = 1−
m−2∑
i=1

γiξ
n−1
i .

Proof . According to Lemma 2.5, we can obtain that

y(t) = − 1

Γ(q)

t∫
0

(t− s)q−1f(s, u(s))ds+ c0 + c1t+ ...+ cn−1t
n−1.

By boundary conditions of (2.7) we get c0 = c1 = · · · = cn−2 = 0 and

cn−1 =
1

K2Γ(q)

 1∫
0

(1− s)q−1f(s, u(s))ds−
m−2∑
i=1

γi

ξi∫
0

(ξi − s)q−1f(s, u(s))ds

 .

Thus, the unique solution of problem (2.7) is

y(t) = − 1

Γ(q)

t∫
0

(t− s)q−1f(s, u(s))ds+
1

K2Γ(q)

1∫
0

(1− s)q−1tn−1f(s, u(s))ds

− 1

K2Γ(q)

m−2∑
i=1

γi

ξi∫
0

(ξi − s)q−1tn−1f(s, u(s))ds

=

∫ 1

0

H2(t, s)f(s, u(s))ds.

The proof is complete.
□
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From Lemma 2.7 and Lemma 2.9, we know that u(t) is a solution of the problem (1.2) if and only
if

u(t) =

1∫
0

G(t, s)

1∫
0

H2(s, τ)f(τ, u(τ))dτds. (2.8)

We can define the operator F : C[0, 1] → C[0, 1] by

Fu(t) =

1∫
0

G(t, s)

1∫
0

H2(s, τ)f(τ, u(τ))dτds,

where u ∈ C[0, 1]. Therefore solving (2.8) in C[0, 1] is equivalent to finding fixed points of the operator
F .

3. Existence and uniqueness of solutions

In this section, first, we will use the following well-known contraction mapping theorem named
also as the Banach fixed point theorem: Let E be a Banach space and S a nonempty closed subset of
E. Assume A : S → S is a contraction, i.e., there is a λ (0 < λ < 1) such that ∥Ax−Ay∥ ≤ λ∥x−y∥
for all x, y in S. Then A has a unique fixed point in S.

Theorem 3.1. We assume that the function f(t, x) satisfies the following Lipschitz condition
(H3) There is a constant L > 0 such that

|f(t, x)− f(t, y)| ≤ L|x− y| for all t ∈ [0, 1] and x, y ∈ C[0, 1].

If we have

L

K1Γ(q)

1∫
0

G(s, s)(1− s)q−1ds < 1,

then the RLMBVP (1.1) has a unique solution in C[0, 1].

Proof . For u1, u2 ∈ C[0, 1] and t ∈ [0, 1], we have

|(Au1)(t)− (Au2)(t)| ≤
1∫

0

G(t, s)

1∫
0

|H1(s, τ)| |f(τ, u1(τ))− f(τ, u2(τ))| dτds

≤
1∫

0

G(s, s)

1∫
0

(1− s)q−1

K1Γ(q)
L |u1(τ)− u2(τ)| dτds

≤

 L

K1Γ(q)

1∫
0

G(s, s)(1− s)q−1ds

 ∥u1 − u2∥

by using Lemma 2.8, Lemma 2.6 and the condition (H3). Hence, A is a contraction mapping and
the theorem is proved. □
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Theorem 3.2. Suppose that (H3) holds. Moreover,

L

K2Γ(q)

1∫
0

G(s, s)(1− s)q−1ds < 1.

Then, the CMBVP (1.2) has a unique solution in C[0, 1].

Proof . The proof of Theorem 3.2 is very similar to that of Theorem 3.1 and therefore omitted.
□
In the next theorem, the function f(t, x) satisfies a Lipschitz condition on a subset of C[0, 1].

Theorem 3.3. We assume that
(H4) Let there exists a number r > 0 such that

|f(t, x)− f(t, y)| ≤ L|x− y| for each t ∈ [0, 1],

for all x and y in S = {x ∈ C[0, 1] : ∥x∥ ≤ r}, where L > 0 is a constant which may depend on r.
Also,

L

K1Γ(q)

1∫
0

G(s, s)(1− s)q−1ds < 1.

Suppose that there exists nonnegative function g ∈ C[0, 1] such that |f(t, u(t))| ≤ g(t) |u(t)| and

1

K1Γ(q)

1∫
0

G(s, s)(1− s)q−1

1∫
0

g(τ)dτds ≤ 1.

Then, the RLMBVP (1.1) has a unique solution u ∈ C[0, 1] with |u(t)| ≤ r, ∀t ∈ [0, 1].

Proof . Let us take S = {u ∈ C[0, 1] : ∥u∥ ≤ r}. Obviously, S is a closed subset of C[0, 1]. Let
A : C[0, 1] → C[0, 1] be the operator defined by (2.6). For u1 and u2 in S, taking into account (H4),
in exactly the same way in the proof of Theorem 3.1 we can get ∥Au1 − Au2∥ ≤ λ∥u1 − u2∥, where
0 < λ < 1.

It remains to show that A maps S into itself. If u ∈ S, then we obtain

|(Au)(t)| ≤
1∫

0

G(t, s)

1∫
0

|H1(s, τ)| |f(τ, u(τ))| dτds

≤
1∫

0

G(s, s)

1∫
0

(1− s)q−1

K1Γ(q)
g(τ) |u(τ)| dτds

≤ ∥u∥ .

Since ∥Au∥ ≤ r, we have A : S → S.
From the contraction mapping theorem, the RLMBVP (1.1) has a unique solution u ∈ C[0, 1]

with |u(t)| ≤ r, ∀t ∈ [0, 1].
□
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Theorem 3.4. We assume that (H4) holds. Also,

L

K2Γ(q)

1∫
0

G(s, s)(1− s)q−1ds < 1.

Suppose that there exists nonnegative function g ∈ C[0, 1] such that |f(t, u(t))| ≤ g(t) |u(t)| and

1

K2Γ(q)

1∫
0

G(s, s)(1− s)q−1

1∫
0

g(τ)dτds ≤ 1.

Then, the CMBVP (1.2) has a unique solution u ∈ C[0, 1] with |u(t)| ≤ r, ∀t ∈ [0, 1].

Proof . The proof of Theorem 3.4 is very similar to that of Theorem 3.3 and therefore omitted.
□
To get an existence theorem without uniqueness of solution, we will apply the following Leray-

Schauder nonlinear alternative theorem.

Theorem 3.5. [11] Let E be a real Banach space and Ω be a bounded open subset of E, 0 ∈ Ω,
F : Ω → E be a completely continuous operator. Then either there exist x ∈ ∂Ω, λ > 1 such that
F (x) = λx, or there exists a fixed point x∗ ∈ Ω.

For convenience, we introduce the following notation. Let

B1 =
1

K1Γ(q)

1∫
0

G(s, s)(1− s)q−1

1∫
0

g(τ)dτds,

B2 =
1

K2Γ(q)

1∫
0

G(s, s)(1− s)q−1

1∫
0

g(τ)dτds,

D1 =
1

K1Γ(q)

1∫
0

G(s, s)(1− s)q−1

1∫
0

h(τ)dτds,

D2 =
1

K2Γ(q)

1∫
0

G(s, s)(1− s)q−1

1∫
0

h(τ)dτds.

Theorem 3.6. Suppose that there exist nonnegative functions g, h ∈ C[0, 1] such that |f(t, u(t))| ≤
g(t) |u(t)|+ h(t) and B1 < 1. Then the RLMBVP (1.1) has at least one solution u ∈ C[0, 1].

Proof . Since B1 < 1 and D1 > 0, r := D1(1−B1)
−1 > 0. Let us take Ω = {u ∈ C[0, 1] : ∥u∥ < r}.

By Arzela-Ascoli theorem, it is easy to check that A : Ω → C[0, 1] is completely continuous operator.
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If we take u ∈ ∂Ω, λ > 1 such that Au = λu, then

λD1(1−B1)
−1 = λr = λ∥u∥ = ∥Au∥ = max

t∈[0,1]
|Au(t)|

≤ max
t∈[0,1]

1∫
0

G(t, s)

1∫
0

|H1(s, τ)| |f(τ, u(τ))| dτds

≤
1∫

0

G(s, s)

1∫
0

(1− s)q−1

K1Γ(q)
(g(τ) |u(τ)|+ h(τ)) dτds

≤ B1 ∥u∥+D1 = B1r +D1 = D1(1−B1)
−1.

Hence we obtain λ ≤ 1, this contradicts λ > 1. By Theorem 3.5, the operator A has a fixed point in
Ω. Thus, the RLMBVP (1.1) has at least one solution u ∈ Ω.

□

Theorem 3.7. Suppose that there exist nonnegative functions g, h ∈ C[0, 1] such that |f(t, u(t))| ≤
g(t) |u(t)|+ h(t) and B2 < 1. Then the CMBVP (1.2) has at least one solution u ∈ C[0, 1].

Proof . The proof of Theorem 3.7 is very similar to that of Theorem 3.6 and therefore omitted.
□

Example 3.8. Consider the following nonlinear RLMBVP
−RD

11
2

0+(u(t)) + 2 + t2u(t) = 0, t ∈ [0, 1],
u′′(0) = u′′′(0) = u(4)(0) = 0, u′′(1) = u′′(1

2
),

u(0)− u′(0) = u′(1
2
),

2u(1) + 3u′(1) = u′(1
2
).

(3.1)

Taking a = b = a1 = b1 = γ1 = 1, ξ1 = 1
2
, c = 2, d = m = 3, n = 6, α = 11

2
and q = 7

2
, we obtain

K1 = 1− 1
4
√
2
and G(s, s) = 1

4
(−s2 + s+ 2). Since we have

|f(t, x)− f(t, y)| = |t2x(t)− t2y(t)| ≤ |x(t)− y(t)|, ∀t ∈ [0, 1],

we take L = 1. Also, we obtain

L

K1Γ(q)

1∫
0

G(s, s)(1− s)q−1ds ≈ 0, 055875 < 1.

Hence, by Theorem 3.1, the RLMBVP (3.1) has a unique solution in C[0, 1].
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