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Abstract

In this paper the implementation of parallel algorithm of alternating direction implicit (ADI) method
has been considered. ADI parallel algorithm is used to solve a multiphase multicomponent fluid flow
problem in porous media. There are various technologies for implementing parallel algorithms on
the CPU and GPU for solving hydrodynamic problems. In this paper GPU-based (graphic processor
unit) algorithm was used. To implement the GPU-based parallel ADI method, CUDA and OpenCL
were used. ADI is an iterative method used to solve matrix equations. To solve the tridiagonal system
of equations in ADI method, the parallel version of cyclic reduction (CR) method was implemented.
The cyclic reduction is a method for solving linear equations by repeatedly splitting a problem as
a Thomas method. To implement of a sequential algorithm for solving the oil recovery problem,
the implicit Thomas method was used. Thomas method or tridiagonal matrix algorithm is used
to solve tridiagonal systems of equations. To test parallel algorithms personal computer installed
Nvidia RTX 2080 graphic card with 8 GB of video memory was used. The computing results of
parallel algorithms using CUDA and OpenCL were compared and analyzed. The main purpose of
this research work is a comparative analysis of the parallel algorithm computing results on different
technologies, in order to show the advantages and disadvantages each of CUDA and OpenCL for
solving oil recovery problems.
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1. Introduction

Hydrodynamic modelling of processes in oil reservoirs is one of the complex fluid mechanics problems.
This is due to the fact that flow processes in underground reservoirs can be very complex. It is neces-
sary to take into account phase transitions, chemical transformations, temperature effects, degassing
processes with a drop in pressure at the bottomhole and in the reservoir, etc. When modeling the
filtration of multiphase multicomponent fluids, the properties of phases can vary depending on the
composition of the phases, temperature (in oil reservoirs they can reach up to 200 C) and pressure
(in oil reservoirs can reach up to 150 MPa).

The oil phase consists of hydrocarbon components that range from the lightest (methane) to
the heaviest (bitumen). A large number of components can be grouped into pseudo-components.
Knowing the physical parameters of the pseudo-component (molecular weight, critical pressure, crit-
ical temperature, compressibility, density, viscosity, thermal conductivity, and specific heat), it is
possible to simulate the process of multicomponent filtration.

The level of development of computing technology today highly determines the pace of technical
progress and success in solving fundamental scientific problems, among which the class of problems
is generally recognized as Grand challenges: these are fundamental scientific or engineering problems
with a wide range of applications, the effective solution of which is possible only with the use of
powerful computing resources (supercomputer) with a performance of hundreds of Gflops and higher.
One of these tasks is modeling the optimal strategy for the development of oil and gas fields, the
creation and use of permanent geological and technological models for managing the development of
oil and gas fields, requiring processing of huge amounts of information.

All the world’s oil and gas companies are already using numerical modeling to some extent when
developing new fields and determining the optimal method for extracting resources. The oil and gas
industry are one of the leaders in high-performance resources - the growth of computing power in
this composition is up to 100% per year. In total, 10% of the world’s TOP 500 supercomputers are
used for computing geophysical problems.

The role of high-performance computing in the oil and gas industries growth up every year. The
progress of modern GPUs has opened up possibilities for computing these kinds of tasks. Given
this fact, a parallel algorithm of ADI method [28] on modern GPUs to solve the multiphase, multi-
component fluid flow problem in porous media were considered. ADI is a finite-difference numerical
method for solving parabolic, hyperbolic and elliptic equations and is widely used in scientific and
engineering fields [5, 12, 24, 27]. In the ADI method, each numerical step is divided into several
substeps based on a spatial dimension of the problem, and the system of linear equations is solved
implicitly in one direction and explicitly in other direction. In the ADI method, at each substep,
equations have a tridiagonal structure and can be solved using the Thomas method [40].

To accelerate this kind of parallel algorithms, platforms with non-specialized GPGPU (general-
purpose computing on graphics processing units) are excellent. The GPU achieves high performance
by running more than a thousand threads at the same time, and each of them processing different
computing blocks. In various research fields, there have been many successful GPU-based implemen-
tations, such as medical image analysis [18] and computational fluid dynamics [43, 44]. With the
advent of high-performance computing in GPUs, parallel algorithms have been developed for solving
systems of tridiagonal equations [42, 41, 10, 11, 13, 22, 33, 32]. Zhang and et al. first implemented
parallel cyclic reduction (PCR) algorithm [42], and then proposed a hybrid CR-PCR algorithm. The
PCR-Thomas hybrid algorithm was proposed by N. Sugar [33]. In each direction of the ADI method,
CR algorithms were used as a parallel algorithm for solving systems of tridiagonal equations. Its
solver achieves high-performance with a huge number of available systems.
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The systems of tridiagonal equations were first implemented on GPUs in the work of M. Kass
and et al. to perform effective depth of field blurring [20]. Their implementation was based on CR
and was written in GPU shading languages. S. Sengupta and et al. implemented CR using CUDA
technology and applied it to modelling shallow water flows in real time [21, 35]. Also, we published
the results of oil problems [2] and their parallel implementations with CUDA on mobile devices [1, 17].
To implement the parallel ADI method, the parallel versions of existing CR algorithm using CUDA
[19] and OpenCL [8] were used. The main reason for choosing this framework is its heterogeneity.
OpenCL is an open standard for cross-platform parallel programming of various processors found on
personal computers, servers, mobile devices and embedded platforms. OpenCL provides a standard
interface for parallel computing using task and data parallelism. While OpenCL can interact with a
large number of devices natively, this does not mean that the code will run optimally on all of them
without any effort. For solving the sequential algorithm, Thomas method was implemented [39].

2. Mathematical Model

The compositional model is widely used in the oil and gas industry. These basic equations may
seem easy, but there are certain challenges in solving them. Let us consider a mathematical model
of multicomponent filtration of a three-phase liquid in a porous medium.

We have considered a mathematical model of multiphase, multicomponent fluid flow in a porous
media. The model takes into account 3 phases (phase number - α : α = o - oil phase, α = g - gas
phase, α = w - water phase). A component number in phase α will be denoted by j. The continuity
equation for a separate component with the number j contained in the phase α in differential form

and the phase velocities
−→
Uα according to Darcy’s law has following form [6, 16]:

∂

∂t

(∑
α

mραSαCαj

)
+div

(∑
α

ραCαj
−→
U α

)
=div (mDαjSαgrad (ραCαj))

α=w, o, g; j=1,n (2.1)

uα= −K
kra (S)

µα

∇ (pα− pαgz), (2.2)

α=w, o, g;

Sw+So+Sg= 1

where,m – rock porosity, Sα – phase saturation,
−→
Uα− velocity vector of phase filtration, Djα− molecular

diffusion coefficient of component j in phaseα,K− absolute permeability, kra= kra (S, T )− relative
phase permeability of α, µα=µα (pα, T , Ciα)− phase viscosity, pα= pα(S) − phase pressure,
ρα− phase mass density, g− acceleration of gravity, z− depth. The phase pressures are related by
the following expressions:

po= pw+pcow(Sw), pg= po+pcog (Sg) (2.3)

where pcow(Sw, T ), pcog (Sg , T )− capillary pressure at the border of water-oil (cow) and oil-gas
(cog). These dependencies are considered to be specified saturation functions.

The oil phase is composed of hydrocarbon components ranging from lightest (methane) to heavier
(bitumen). A large number of components can be grouped into pseudo-components. Knowing the
physical parameters of the pseudo-component (molecular weight, critical pressure, critical temper-
ature, compressibility, density, viscosity, thermal conductivity, and specific heat), it is possible to
simulate the process of multicomponent filtration.
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Let’s write down the system of equations for 4 components. For each component, the equations
of continuity will look like this:

∂

∂t
(ρwSwCw1 + ρoSoCo1 + ρgSgCg1)+

+div
(
ρwCw1

−→
Uw + ρoCo1

−→
Uo + ρgCg1

−→
Ug

)
=

= div (mDw1Swgrad (ρwCw1)+

+mDo1Sograd (ρoCo1) +mDg1Sggrad (ρgCo1))

∂

∂t
(ρwSwCw2 + ρoSoCo2 + ρgSgCg2)+

+div
(
ρwCw2

−→
Uw + ρoCo2

−→
Uo + ρgCg2

−→
Ug

)
=

= div (mDw2Swgrad (ρwCw2)+

+mDo2Sograd (ρoCo2) +mDg2Sggrad (ρgCo2))

∂

∂t
(ρwSwCw3 + ρoSoCo3 + ρgSgCg3)+

+div
(
ρwCw3

−→
Uw + ρoCo3

−→
Uo + ρgCg3

−→
Ug

)
=

= div (mDw3Swgrad (ρwCw3)+

+mDo3Sograd (ρoCo3) +mDg3Sggrad (ρgCo3))

∂

∂t
(ρwSwCw4 + ρoSoCo4 + ρgSgCg4)+

+div
(
ρwCw4

−→
Uw + ρoCo4

−→
Uo + ρgCg4

−→
Ug

)
=

= div (mDw4Swgrad (ρwCw4)+

+mDo4Sograd (ρoCo4) +mDg4Sggrad (ρgCo4))

Table 1: Composition of water, oil and gas
Component
number,
j

Gas Oil Water

1 - - +
2 + - -
3 + + -
4 - + -

Table 1 shows the compositional compositions of the gas, water and oil phases. Component
number 1 is contained only in the aqueous phase, component 2 is contained only in the gas phase,
component 3 is included in the gas and oil phases, and component number 4 is contained only in the
oil phase. Hence, the following expressions follow:
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Cw1 = 1,

Cw2 = 0,

Cw3 = 0,

Cw4 = 0,

Co1 = 0,

Co2 = 0,

Cg1 = 0,

Cg4 = 0,

Co3 + Co4 = 1,

Cg2 + Cg3 = 1.

(2.4)

Taking into account (2.4), the system of equations for 4 components can be rewritten as follows:

m
∂

∂t
(ρwSw) + div

(
ρw

−→
Uw

)
= 0

m
∂

∂t
(ρgSgCg2) + div

(
ρgCg2

−→
Ug

)
== div(mDg2Sg grad (ρgCg2))

m
∂

∂t
(ρoSoCo3 + ρgSgCg3)

+div
(
ρoCo3

−→
Uo + ρgCg3

−→
Ug

)
= div(mDo3Sograd (ρoCo3)

+mDg3Sggrad (ρgCg3))

m
∂

∂t
(ρoSoCo4 ) + div

(
ρoCo4

−→
Uo

)
= div(mDo4Sograd (ρoCo4)) (2.5)

The relationship between pressure, temperature and phase volume is determined by the equation
of state. The thermodynamic behaviour of liquids is determined by cubic equations of the van der
Waals type (equations of state of Peng-Robinson, Redlich-Kwong, Soave-Kwong, Zudkevich-Ioffe,
etc.) [25, 29, 4, 31, 30, 36, 45].

The distribution of each component of the hydrocarbon phase between the two phases is a stable
equilibrium state, which can also be said as the Gibbs free energy for a compositional system:

fmo (po,x1o,x2o,. . . ,xNco) = fmg

(
pg,x1g,x2g, . . . ,xNcg

)
where fmo and fmg are functions of the fugacity of the m-th component in the gas and liquid phases,
respectively.

After several simple arithmetic operations, equation (2.5) is reduced to the form (in the two-
dimensional case):

∂

∂x

[
(Mx)

∂P g

∂x

]
= R(x, t, P cow, P cog, Sw, So,Sw)

which is further solved by the sweep method.
The relative permeabilities can be determined by Stone’s approximation in a modified version of

Aziz and Settari:
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Sα =
Sα − Sαr

1− Swr − Sor − Sgr

, α = w, o, g.

krw
(
Sw

)
=


S
1/2

w

[
1−

(
1− S

n/(n−1)

w

)(n−1)/n
]2
, 0 < Sw < 1,

1, Sw ≥ 1,
0, Sw ≤ 0;

krg
(
Sg

)
=


S
1/2

g

[
1− (1− Sg)

n/(n−1)
]2(n−1)/n

, 0 < Sg < 1,

1, Sg ≥ 1,
0, Sg ≤ 0;

kow
(
Sw

)
=


(1− Sw)

1/2
[
1− S

n/(n−1)

w

]2(n−1)/n

, 0 < Sw < 1,

1, Sw ≤ 0,
0, Sw ≥ 1;

kog
(
So

)
=


S
1/2

o

[
1−

(
1− S

n/(n−1)

w

)(n−1)/n
]2
, 0 < So < 1,

1, So ≥ 1,
0, So ≤ 0;

kn
(
Sw, So

)
=

 Sokow(Sw)kog(So)
(1−Sw)(Sw+So)

, Sw < 1, Sw + So < 1,

0, in other case;

where Sα - effective phase saturation, Sαr - critical phase saturation, n = 3.25.
Capillary pressures are described by Parker’s approximate model:

pcow (Sw) = po − pw =
1

ζ

(
S
n/(n−1)

w − 1
)1/n

,

pcog (Sg) = pg − po=
1

ζ

(
(1− Sg)

n/(n−1) − 1
)1/n

3. Why GPU?

Let’s take a quick look at some of the significant differences between the areas and features of
the CPU and video card applications.

The CPU is initially adapted for solving general problems and works with arbitrarily addressable
memory. Programs on the CPU can directly access any linear and homogeneous memory cells.

This is not the case for the GPU. There are as many as 6 types of memory in CUDA. You can
read from any physically accessible cell, but not all cells can be written. The reason is that a GPU is
a specific device for specific purposes anyway. This limitation was introduced to increase the speed
of certain algorithms and reduce the cost of equipment.

An age-old problem in most computing systems is that memory is slower than a processor. CPU
manufacturers solve this problem by introducing caches. The most frequently used areas of memory
are placed in cache or cache memory, operating at the frequency of the processor. This allows you
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to save time when accessing the most frequently used data and load the processor with the actual
calculations.

Note that caches are actually transparent to the programmer. Both during reading and writing,
data does not go directly to RAM, but passes through caches. This allows, in particular, to quickly
read a certain value immediately after writing.

The GPU also has caches, and they are also important, but this mechanism is not as powerful as
on the CPU. Firstly, not all memory types are cached, and secondly, caches are read-only.

On the GPU, slow memory accesses are hidden by using parallel computing. While some tasks
are waiting for data, others are working, ready for calculations. This is one of the main principles of
CUDA, which can greatly increase the performance of the system as a whole.

4. CUDA architecture

The CUDA program, called the kernel, is executed by thousands of threads grouped into blocks.
Blocks are placed in a grid and scheduling in any of the available cores, which automates the scaling
of different architectures. The smallest number of threads that are scheduled are called warps.
All threads within the warp execute the same instruction simultaneously. The size of the warp is
implementation-defined and has to do with shared memory organization, data access patterns, and
data control [15, 37, 9, 34, 14, 7].

Figure 1: Architecture and memory structure of CUDA

The memory hierarchy is organized into read-only global, persistent and texture memory, with
special functions such as caching or data prefetching. These memories are available to all threads,
each thread has its own local and private memory. There are mechanisms for synchronizing threads
within a block, but not among different blocks. Because of this, limited data cannot be shared
between blocks (Figure 1). This becomes problematic when a thread needs data that was created
outside of its block.

5. OpenCL architecture

The OpenCL specification moves away from architectural differences by presenting any platform
as a host system associated with one or more devices. Each device consists of one or more compute
units, which can include several processing elements. All calculations take place in the processing
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elements of the device. It is obvious that such a general model can be used to describe any system,
including central and graphics processors, as well as various types of accelerators. The control
application runs on the host system and issues OpenCL commands to organize computing on devices.
The processing elements of one computational module can execute the instruction stream as SIMD
(Single Instruction, Multiple Data) units or as SPMD (Single Program, Multiple Data) units.

Figure 2: OpenCL platform model

An OpenCL-based application includes two components: kernels, which run on OpenCL devices,
and a host program, which runs on the host system and organizes the execution of the kernels
(Figure 2). The OpenCL execution model defines each component. Execution of kernels on the
device [26, 38, 3, 23]. Before starting the kernel, called index space is defined. An instance of the
kernel is executed for each point in a given space and is called a work-item. The corresponding point
in index space specifies its global identifier. Each piece of work follows a specific path within the
same code, receiving unique data as input. This is how data parallelism is implemented, which is
the main use case for OpenCL.

Work items are combined into work-groups, which provide a coarser-grained decomposition of the
index space. Work groups are also assigned unique identifiers that have the same dimension as the
index space. Within one work group, each item is assigned a unique local identifier. Thus, a work
item is defined in two ways: by its global identifier, or by a combination of a local identifier and a
work group identifier.

6. Parallel algorithms

To implement the sequential algorithm Thomas method was used. Thomas method is a Gaussian
exception in the case of a tridiagonal system. The algorithm has two stages, forward elimination and
backward substitution. In the first step, we find the coefficients as follows:

α1 =
c1
b1
, αi =

ci
bi − αi−1ai

, i = 2, 3, . . . , n

β1 =
d1

b1
, βi =

di − βi−1ai

bi −αi−1ai

, i = 2,3, . . . ,n

At the second stage, all unknowns from the last to the first element are found:
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xn = βn, xi = βi −αixi+1, i = n− 1, . . . ,2,1

The algorithm is sequential and takes 2n computation steps, since the computation of αi, βi and
xi depends directly on the result of the previous computation of αi−1, βi−1 and xi+1.

To implement the parallel ADI method, CR algorithm was chosen. The CR algorithm consists of
two stages: forward reduction and backward substitution. In forward stage, the system is successively
reduced to a smaller system with half the number of unknowns until a system of one unknown is
reached. In backward stage are successively found remaining unknowns, using the previously obtained
values.

At each step of the forward substitution, we update all equations with an even index in par-
allel with equation i of the current system as a linear combination of equations i, i+1 and i-
1, so that we only display a system of unknowns with even indices. Equation i has the form
aixi−1+bixi+cixi+1=di. Updated values of ai, bi, ci and di are found by the following formulas:

a
′

i = −ai−1k1, b
′

i = bi − ci−1k1 − ai+1k2

c
′

i = −ci+1k2, d
′

i = di − di−1k1 − di+1k2

k1 =
ai
bi−1

, k2 =
ci
bi+1

At each step of the backward stage, we simultaneously solve all xi with odd indices by substituting
the solved values xi−1 and xi+1 in equation i :

xi =
d

′
i − a

′
ixi−1 − c

′
ixi+1

b
′
i

Note that for simplicity, in the above description, we neglect the special processing of the last
equation and the first unknown, respectively, in two phases of the algorithm. In addition, we solve
a system of two equations between the two stages of the algorithm. Figure 3 shows the relationship
scheme of the algorithm for a system with eight equations.

Figure 3: Relationship scheme of the CR algorithm for a system with eight equations

The parallel CR algorithm and the sequential Thomas method perform a series of operations
that are linear in the number of unknowns. The Thomas method performs 8n operations, while CR
performs 17n operations. However, on a parallel computer with n processors, CR requires 2log2n
steps, while the Thomas method requires 2n steps.
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For parallel implementation of the ADI method on the GPU, OpenCL and CUDA were used. For
all implementations, we copy the data once from the CPU to the GPU and store all the data in the
GPU memory until we return the result to the CPU.

Shared memory provides much greater throughput and lower latency than global memory, and
therefore it is advisable to preload data from global memory into shared memory. The use of small
sizes of shared memory provides higher load and better performance, allowing you to run more
threads when shared memory is a limiting factor. Below we describe the kernel implementations for
CR algorithm.

First, we set the kernel execution parameters. The number of blocks is equal to the amount of the
system, since each individual system is mapped to one block. The number of threads in one block is
equal to half the number of equations for each system, since we start by updating only equations with
even indices in the first algorithmic step. All variables in memory are stored with single precision
(float) with a floating point.

Figure 4: Data flow diagram for implementing the ADI method: a) sequential algorithm b) parallel algorithm

We use five global arrays to store three diagonals of the matrix (alist : lower diagonal, blist :
main diagonal, clist : upper diagonal), one right side of the dlist and one solution vector xlist. The
amount of shared memory that we allocate for each block or each three-diagonal system is equal to
system size * 5 * sizeof (float) bytes.

The forward stage executes log2(system size/2) algorithmic steps. All five arrays alist, blist, clist,
dlist and xlist are shared memory arrays with data loaded from global memory. The step begins
with 1 and doubles the value of each algorithmic step. The number of active threads decreases by
half at each algorithmic step.

At the beginning of the backward stage, we solve the system of equations with two equations
obtained at the final stage of the forward stage. Then we execute the log2(system size/2) algorithmic
steps to solve all the other unknowns. According to the algorithm, we double the number of active
threads at each algorithmic step.

The general scheme of the sequential ADI method is shown in Figure 4 (a). All arrays are linearly
stored in physical memory in both horizontal and vertical directions. The elements of P are updated
in each direction, and it is immediately used to compute the new linearly stored right term in another
direction, so the result of the linear solution x from Thomas method is mapped back to the two-
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dimensional array P. Since arrays are stored urgently in a C/C++ program, this strategy is good for
computing the vertical right element, but not so good for doing it in the horizontal direction.

On personal computers (PCs) with graphics accelerators, where the computing parts of the pro-
gram are uploaded to the GPU via the PCI Express bus, the program must minimize data transfer
between the host and the device. Therefore, the best scenario is that data is copied to the device
only once at the beginning and saved until the end of the computing. The general scheme of the
parallel ADI method implementation on the GPU is shown in Figure 4 (b).

7. Performance tests

For testing the parallel ADI method using the two-dimensional multiphase filtration problem of a
multicomponent fluid in porous media at different grid sizes. To test the program, we used a PC with
an eight-core Intel Core i7-3770 processor with a clock frequency of 3.4 GHz and 8 GB of memory,
Nvidia RTX 2080 graphic card with 8 GB of video memory, and Windows 10 operating system. To
implement the parallel and sequential algorithm, C++ programming language was used. The task
parameters are set as follows: the grid size (N ) is uniform in both directions with h = ∆x = ∆y
= 1 / (N-1), and the numerical time step ∆t is 0.001, and time is 0.1, therefore – the number of
iterations over time is 100. The size of the grid must be equal to a power of two plus one. The
size of the block depends on the size of N and the GPU compute capability, because of this there
is a limit on the size of the grid. When measuring performance, computing time was used instead
of floating-point operations per second (FLOPS), since different parallel algorithms have different
numbers of FLOPS. The test results in Figure 5 shows that the OpenCL program is 16-25 times
faster than a sequential program. Although the OpenCL program is inferior in performance to the
CUDA program, it is not tied to NVIDIA processors.
Table 2: Computing time in seconds

64 128 256 512 1024
Sequential
algorithm

0,352 1,131 3,472 12,16545,818

OpenCL
algorithm

0,018 0,041 0,138 0,515 2,778

CUDA al-
gorithm

0,013 0,031 0,091 0,323 1,600

As a result, we compared the computation time of three programs: a sequential program im-
plemented using the Thomas method and parallel programs implemented on OpenCL and CUDA
(Table 2). Testing results shows that parallel programs running on a GPU are 16-37 times faster
than a sequential program (Figure 5).

Table 3: Speedup of parallel algorithms
64 128 256 512 1024

OpenCL 19,556 27,585 25,159 23,621 16,493
CUDA 27,077 36,484 38,154 37,663 28,636

From Table 3 we can see that a parallel CUDA program performs faster than a parallel program
implemented on OpenCL. Figure 6 shows that the speedup by increasing the mesh size decreases.
This is due to the overhead in synchronizing data between the host and device. In the parallel
program on the device, memory is allocated for 51 two-dimensional arrays of the float type. The



362 Imankulov, Daribayev, Mukhambetzhanov

approximate required memory for these arrays is 51 * system size * system size * sizeof (float). This
parameter must be considered before each start.

Figure 5: Comparative graph of computing time results on various grid sizes

Given the above limitations, we need to implement the distribution of the data of one system into
several blocks to remove the restriction of the dimension of the computational grid, test this parallel
program on mobile devices, develop an algorithm for running parallel programs on multiple GPUs.

Figure 6: Speedup of parallel algorithms (CUDA and OpenCL) on various grid sizes

8. Conclusions

As a result of this work, the parallel ADI method was developed to solve the multiphase, mul-
ticomponent fluid flow problem in porous media on modern GPU. When implementing the ADI
method, for the parallel solving tridiagonal equations systems in each direction, the cyclic reduction
method using the CUDA and OpenCL were used. To achieve effective acceleration, a reduced shared
memory size in each computing block was used. The test results of the program showed that the
OpenCL program runs 16-25 times and on CUDA 26-37 times faster than the sequential program.
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Due to this acceleration and heterogeneity of OpenCL, the developed program runs on various devices
(mobile devices, FPGA and etc.). All algorithms have memory limitations. Given these limitations,
the next step in the work is:

- implementation of the distribution of data from one system to several CUDA blocks to remove
the restrictions on the dimension of the computational grid

- testing developed algorithms on mobile devices, FPGA and etc.
- implementation of hybrid algorithms for solving the multiphase, multicomponent fluid flow

problem in porous media
- parallel algorithm development on multi-GPU.
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