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Abstract

In this paper, an inverse problem of determining an unknown reaction coefficient in a one-dimensional
time-fractional reaction-diffusion equation is considered. This inverse problem is generally ill-posed.
For this reason, the mollification regularization technique with the generalized cross-validation criteria
will be employed to find an equivalent stable problem. Afterward, a finite difference marching scheme
is introduced to solve this regularized problem. The stability and convergence of the numerical
solution are investigated. In the end, some numerical examples are presented to verify the ability
and effectiveness of the proposed algorithm.
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1. Introduction

In recent decades, the fractional order derivative and integral operators have found many applications
in science disciplines [5, 21, 24, 37, 39]. The fractional order derivatives are nonlocal and have
memory effects, namely, in a fractional system, the next state depends on its current and all previous
states. Thus, fractional differential and integral equations have been used widely to model a range of
phenomena in different fields of science, such as physics, chemistry, biology and engineering [5, 10, 12,
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17, 21, 23, 24, 26, 37, 39]. Fractional diffusion equations are one of the most important equations to
make mathematical formulations of these real applications. References [10, 17, 26, 39] and the other
references cited therein reveal the fundamental properties of time-fractional diffusion equations.

Many phenomena in science and engineering have been modeled in the form of inverse problems
[2, 3, 4, 6, 25]. These types of problems are suitable for dealing with the models containing some
unknown input information. Optical tomography [2], scattering of waves [9], heat conduction [6],
machine learning [25], water and air pollution intensity [22] are examples of these applications. Based
on the recent developments in the fractional order differential equations, researchers have used these
new concepts to generalize some previously presented models. Thus, some useful papers have been
published about the fractional order inverse problems. The studies of these scientists have led to
some interesting computational ways for solving inverse problems of fractional types [8, 14, 20, 29,
30, 32, 34, 35, 36, 38]. In these papers, various numerical schemes have been proposed to solve inverse
problems of time fractional type, such as finite difference methods [20, 30], spectral regularization
method [38], quasi-Newton method [14], the quasi-boundary value method [34], boundary element
method [35], the method of fundamental solutions [8, 36], the homotopy regularization algorithm
based on the error functional [29] and modulating functions method [1]. Fractional order inverse
problems are generally ill-posed. Thus, using appropriate regularization methods are necessary to
find a stable numerical solution for these problems. In this article, the time-fractional order reaction-
diffusion equation

Dα
0,tu(x, t) = uxx(x, t)− q(x)u(x, t) + f(x, t), (x, t) ∈ Ω× I, (1.1)

with the initial and the boundary conditions

u(x, 0) = u0(x), x ∈ Ω, (1.2)

ux(0, t)− σu(0, t) = 0, t ∈ I, (1.3)

ux(1, t) + γu(1, t) = 0, t ∈ I, (1.4)

is considered. f(x, t) shows the source term, q(x) is unknown reaction coefficient and u0(x) is the
given initial function. Also, Ω := (0, 1), I := (0, 1) and the known constants σ, γ ∈ R in boundary
conditions (1.3) and (1.4) are correspond to the insulation parameters at both ends [32]. Also, Dα

0,tu
means Caputo’s fractional derivative of order α ∈ (0, 1) defined as [21]:

Dα
0,tu(x, t) =

1

Γ(1− α)

∫ t

0

(t− s)−αus(x, s)ds, t ∈ I,

where Γ(.) is the Gamma function. Eq. (1.1) comes from numerous practical applications. The
anomalous diffusion equation is one of these cases which is characterized by the property that its
variance behaves like a non-integer power of time [7, 16, 17]. The anomalous non-Markovian diffu-
sion process is often observed in materials with memory, e.g., viscoelastic materials, and heteroge-
neous media, such as soil, heterogeneous aquifer, and underground fluid flow [13]. Hence, fractional
derivatives are useful tools for describing sub-diffusion phenomena, which are characterized by a
heavy-tailed waiting time distribution in diverging temporal moments and non-Markovian dynamics.
A fractional reaction-diffusion equation can be derived from a continuous time random walk model
with temporal memory and sources [11] or a continuous time random walk model when the trans-
port is dispersive [27]. In the medical sciences, the temperature and the blood perfusion coefficient
q(x) are related through the Pennes bio-heat conduction equation given by the equation (1.1). The
accurate estimations of temperature and blood perfusion rate through a certain region of tissue is
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an important task during a surgical operation [31]. Considering this problem as an inverse problem,
help researchers to determine both the temperature u and the perfusion coefficient q(x). Also, ac-
cording to the properties of nonlocality [21, 24], fractional derivatives are useful tools to model the
multidirectional nonlocal flow through the living tissue. The Robin boundary conditions (1.3) and
(1.4) occur in many physical phenomena. In heat conduction process, under the assumption that
the heat fluxes across the boundaries of the problem are as functions of temperature, we will have
nonlinear boundary conditions [13].

To our knowledge, there are a few works concerned with the inverse problems related to the
time-fractional reaction-diffusion equations. An iteration scheme for the numerical reconstruction
of the nonlinear source term in a reaction-diffusion problem was discussed in [15]. In [32, 33] the
unique solvability of the inverse problem to recover the unknown coefficients of a multidimensional
fractional reaction-diffusion equation under the Dirichlet and the Neumann boundary conditions was
proved. In [28] a multi-parameter regularization L2 +BV method was presented to solve a reaction
coefficient inverse problem for time fractional reaction-diffusion equation with Neumann boundary
data in two dimensional spaces.

To determine the reaction coefficient q(x) in the inverse problem (1.1)-(1.4), we need an additional
condition. Here, the condition

u(1, t) = ϕ(t), t ∈ I, (1.5)

is used. The existence and uniqueness of the solution to this problem have been investigated in [32].
No numerical method has been given by the authors in the literature to solve the problem (1.1)-(1.5).
Furthermore, in addition to the ill-posedness of the inverse coefficient problem, the process of nu-
merical fractional differentiation is well known to be an ill-posed problem [19], because the fractional
derivative is defined by a nonlocal weak singular integration. So, a small error in measurement data
can induce a large error in the approximate derivative. Thus, proposing a reliable algorithm to find
the numerical solution of this type of fractional problem may be useful for researchers. In practice,
the input functions of the problem are not exact, but some perturbed versions of them are in hand.
Thus, we first stabilize this problem by a mollification regularization method [18]. Afterwards, a
numerical scheme based on the space marching method is introduced to approximate the solution of
(1.1) and the unknown coefficient q(x).

This paper consists four sections. In Section 2, a regularization technique is proposed to stabilize
the inverse problem (1.1)-(1.5). In Section 3, the marching algorithm for the numerical solution of
the mollified problem is described and the stability and convergence of the numerical conclusion are
analysed. Finally, in Section 4, some numerical examples are investigated.

2. Ill-posedness and regularization of the inverse problem

The time-fractional inverse problem with unknown reaction coefficient is generally a type of ill-
posed problems, because a small error in the input data can cause a large error in the solution of
the problem [13, 20]. In practice, the input function ϕ(t) in (1.5) is not exact, but some perturbed
approximations of that is in hand. Thus, this perturbed function can affect on the solution of the
problem. For more illustration, we study a numerical test problem. Consider the problem (1.1)-(1.5)
with σ = 1, γ = −1, u0(x) = ex and

f(x, t) =
ext1−α

Γ(2− α)
+ ex(1 + t)(Eα(x

α)(1− x)− 1),

where Eα(.) is the Mittag-Leffler function [24]. Suppose we have two sample input functions ϕ1(t) =
e1(1 + t) and ϕ2(t) = ϕ1(t) + 0.1. Now the reaction coefficients q1(x) and q2(x) dependent on ϕ1(t),
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Figure 1: The two estimated reaction coefficients q1(t) and q2(t) (Right) correspond to the two close input functions ϕ1(t) and ϕ2(t)

(Left).

and ϕ2(t), are calculated by using the proposed algorithm in Section 3. Figure 1 indicates the input
functions ϕi(t), i = 1, 2, and the approximated reaction coefficients qi(x), i = 1, 2. Although these
input conditions are very close, but the calculated reaction coefficients dependent on them are far
more than we expected. This example shows ill-posedness of the inverse problem. Thus, using
appropriate regularization methods is necessary to find a stable numerical solution of the problem.

In this work, we will use the mollification approach to stable the perturbed problem. For this
purpose, first we review some basic definitions in the mollification method. Let C0(I) denote the set
of continuous real functions over the unit interval I with norm

∥g∥∞,I = max
t∈I

|g(t)|.

Let δ > 0, p > 0, and

Ap =
(∫ p

−p

exp(−s2)ds
)−1

.

For g(t) ∈ L1(I) and t ∈ Iδ = [pδ, 1− pδ], the δ-mollification of g(t) is defined as follows:

Jδg(t) = (ρδ ∗ g)(t) =
∫ t+pδ

t−pδ

ρδ(t− s)g(s)ds,

where

ρδ,p(t) =

{
Apδ

−1exp(− t2

s2
), |t| ≤ pδ,

0, |t| > pδ.

Notice that, the Gaussian kernel ρδ,p is a non-negative C
∞(−pδ, pδ) function satisfying

∫ pδ

−pδ
ρδ,p(t)dt =

1. The radius of mollification δ is determined automatically by the Generalized Cross Validation
(GCV) criteria [18]. In order to define the mollification of a discrete function, let Ī = {tj : j ∈ Z} ⊂ I
and

∆t = sup{(tj+1 − tj) : j ∈ Z, tj+1 − tj > d > 0},

where Z is a set of integers, and d is a positive constant. Let G = {g(tj) = gj : j ∈ Z} be a discrete
function defined on Ī. We set

sj =
1

2
(tj + tj+1) , j ∈ Z.



Numerical solution of a time fractional inverse coefficient problem 12 (2021) No. 1, 365-383 369

The discrete δ-mollification of G is defined as follows:

JδG(t) =
∞∑

j=−∞

(∫ sj

sj−1

ρδ(t− s)ds
)
gj.

Notice that
∞∑

j=−∞

(∫ sj

sj−1

ρδ(t− s)ds
)
=

∫ pδ

−pδ

ρδ(s)ds = 1.

Now, let in the problem (1.1)-(1.5), ϕ(t) and u0(x) are only known approximately as ϕε and uε
0, such

that the infinity norm of the difference between every of these functions and their corresponding
approximations are less than a known value ε. Suppose υ = Jδu is the mollified version of u. So,
the regularized problem is formulated as follows

Dα
0,tυ(x, t) = υxx(x, t)− q(x)υ(x, t) + f(x, t), (x, t) ∈ Ω× I, (2.1)

υ(1, t) = Jδϕ
ε(t), t ∈ I, (2.2)

υ(x, 0) = Jδ′u
ε
0(x), x ∈ Ω, (2.3)

where δ and δ
′
are the radii of mollification, and will be chosen using the GCV criteria.

Before we introduce the numerical procedure for the above stabilized problem, we notice that the
process of numerical fractional differentiation is well known to be ill-posed [19]. Hence, we will use
the mollified fractional derivative on our calculations.
Suppose gε(t) is a perturbed version of the exact function g(t). To approximate Jδ(D

α
0,tg

ε) on a
uniform partition Ī of the unit interval, we follow the mollification technique proposed in [19].
Let D+ be forward finite difference operator and D0 be the centered finite difference operator. The
discrete computed fractional order derivative, denoted (Dα

0,tG
ε)δ, in the grid points, will be as(

Dα
0,tG

ε
)
δ
(t1) = D+(JδG

ε)(t1)ω1, (2.4)(
Dα

0,tG
ε
)
δ
(t2) = D+(JδG

ε)(t1)ω2 +D+(JδG
ε)(t2)ω1, (2.5)

and (
Dα

0,tG
ε
)
δ
(tj) = D+(JδG

ε)(t1)ωj +

j−1∑
i=2

D0(JδG
ε)(ti)ωj−i+1 +D+(JδG

ε)(tj)ω1, (2.6)

where j = 3, 4, ..., n and the quadrature weights ωj = ωj(α, tj) are integrated exactly with values

ω1 =
(∆t)1−α

Γ(2− α) 21−α
,

ωi =
(∆t)1−α

Γ(2− α) 21−α

[
(2i+ 1)1−α − (2i− 1)1−α

]
, i = 2, 3, ..., j − 1,

and

ωj =
1

Γ(2− α)

[
j∆t−

[(
j − 1

2

)
∆t

]1−α]
.
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3. Numerical procedure

In this section, a numerical algorithm will be presented to find the solution of (2.1)-(2.3). Let M
and N are positive integers. Consider a uniform grid in the unit interval [0, 1]× [0, 1] as

{(xi = ih, tn = nk) , i = 0, 1, ...,M ; n = 0, 1, ..., N},

in which Mh = 1 and Nk = 1. Let the value of υ(x, t) at (xi, tn) is indicated by Rn
i . In addition,

suppose
Wn

i = υx(ih, nk), Qn
i = D

(α)
t υ(ih, nk), qi = q(ih), Fn

i = f(ih, nk).

Notice that for n ∈ {0, ..., N}

Rn
M = Jδϕ

ε(nk), Qn
M = Dα

0,tJδϕ
ε(nk).

From (1.4), we obtain
Wn

M = −γJδϕ
ε(nk), n ∈ {0, ..., N},

and for i ∈ {0, ...,M}

R0
i = Jδ′u

ε
0(ih), W0

i = D0(Jδ′u
ε
0(ih)), Ti = D2(Jδ′u

ε
0(ih)),

where D2 := D+D− is second-order finite differences operator. From (2.1), we obtain

qM =
1

R0
M

(TM − Q0
M + F0

M).

Now we approximate the partial differential equation of fractional order in system (2.1)-(2.3) by the
finite difference schemes

Rn
i−1 = Rn

i − hWn
i , (3.1)

Wn
i−1 = Wn

i − h(Qn
i + qiR

n
i − Fn

i ), (3.2)

Qn
i−1 = Dα

0,t(Jδi−1
Rn
i−1), (3.3)

qi−1 =
1

R0
i−1

(Ti−1 − Q0
i−1 + F0

i−1), (3.4)

where i = M,M − 1, ..., 1 and n = 0, 1, ..., N . To approximate Dα
0,t(JδiR

n
i ), the quadrature formula

(2.4)-(2.6) will be used.

4. Stability and convergence analysis

In this section, the stability and convergence of the numerical conclusion are analysed.

Theorem 4.1. (Stability of the algorithm) Suppose |Ri|, |Wi|, |Qi| are maximum values of |Rn
i |,

|Wn
i |, |Qn

i |, where n = 0, 1, ..., N . For the marching scheme, there exist two constants θ1 and θ2, such
that

max{|R0|, |W0|, |Q0|, |q0|} ≤ θ1max{|RM |, |WM |, |QM |, |qM |}+ θ2.
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Proof . Let Mf = max
x,t∈[0,1]

{|f(x, t)|}. By using (3.1) and (3.2), we have

|Rn
i−1| ≤ (1 + h)max{|Rn

i |, |Wn
i |}, (4.1)

|Wn
i−1| ≤ (1 + h)max{|Rn

i |, |Wn
i |, |Qn

i |, |qi|}+ hMf . (4.2)

Let δ̄ = min
i
{δi}. From (3.3) and Eq.(30) in [4], we have

|Qn
i−1| ≤

4Ap(nk)
1−α(1 + h)

δ̄Γ(2− α)
max{|Rn

i |, |Wn
i |}, (4.3)

Also, let T̄ = max
i

{|Ti|}. From (3.4) and (4.3), we have

|qi−1| ≤
4Ap(nk)

1−α(1 + h)

δ̄Γ(2− α)
max{|R0

i |, |W0
i |}+Mf + T̄. (4.4)

Also, let

γ1 = max
{
1,

4Ap(nk)
1−α

δ̄Γ(2− α)

}
, γ2 = {1, h}.

From (4.1)-(4.4), we obtain

max{|Ri−1|, |Wi−1|, |Qi−1|, |qi−1|} ≤ (γ1 + hγ1)max{|Ri|, |Wi|, |Qi|, |qi|}+ γ2Mf + T̄.

Iterating this inequality M times, we have

max{|R0|, |W0|, |Q0|, |q0|} ≤ (γ1 + hγ1)
M max{|RM |, |WM |, |QM |, |qM |}+ τ(γ2Mf + T̄),

where τ =
∑M−1

i=0 (γ1 + hγ1)
i. This inequality implies

max{|R0|, |W0|, |Q0|, |q0|} ≤ γM
1 exp(1)max{|RM |, |WM |, |QM |, |qM |}+ τ(γ2Mf + T̄).

Letting θ1 = γM
1 exp(1) and θ2 = τ(γ2Mf + T̄) complete the proof of stability. □

Theorem 4.2. For the marching schemes, when ε, h and k tend towards 0, by choosing δ̂ = δ̂(ε),
the discrete mollified solution converges to the mollified exact solution.

Proof . First, we define the discrete error functions

∆Rn
i = Rn

i − υ(ih, nk), ∆Wn
i = Wn

i − υx(ih, nk), ∆qi = qi − q(ih),

where i ∈ {0, 1, ...,M} and n ∈ {0, 1, ..., N}. By applying Eq. (30) in [4] and theorem (4.6) in [18],
we have

|Qn
i −Dα

0,tυ(ih, nk)| = |Dα
0,tJδu

ε(ih, nk)−Dα
0,tJδu(ih, nk) +O(k)|

= |Dα
0,t(Jδu

ε(ih, nk)− Jδu(ih, nk)) +O(k)| ≤ 1

Γ(1− α)

∫ nk

0

4Apε

δ(nk − s)α
ds+O(k)

=
4Apε(nk)

1−α

δΓ(2− α)
+O(k) ≤ 4Apε

δΓ(2− α)
+O(k) = Cα

ε

δ
+O(k), (4.5)
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where Cα =
4Ap

Γ(2− α)
. Expanding the mollified solution υ(x, t) by the Taylor series, we obtain

υ((i− 1)h, nk) = υ(ih, nk)− hυx(ih, nk) +O(h2), (4.6)

υx((i− 1)h, nk) = υx(ih, nk)− h(Dα
0,tυ(ih, nk) + q(ih)υ(ih, nk)− f(ih, nk)) +O(h2), (4.7)

q((i− 1)h) =
1

υ((i− 1)h, 0)
(υxx((i− 1)h, 0)−Dα

0,tυ((i− 1)h, 0) + f((i− 1)h, 0)) +O(h2). (4.8)

From (3.1) and (4.6), we have

∆Rn
i−1 = Rn

i−1 − υ((i− 1)h, nk)

= Rn
i − hWn

i − υ((i− 1)h, nk)

= Rn
i − hWn

i − υ(ih, nk) + hυx(ih, nk) +O(h2)

= (Rn
i − υ(ih, nk))− h(Wn

i − υx(ih, nk)) +O(h2)

= ∆Rn
i − h∆Wn

i +O(h2).

and
|∆Rn

i−1| ≤ |∆Rn
i |+ h|∆Wn

i |+O(h2). (4.9)

By using (3.2), (4.5) and (4.7), we have

∆Wn
i−1 = Wn

i−1 − υx((i− 1)h, nk)

= Wn
i − h(Qn

i + qiR
n
i − Fn

i )− υx((i− 1)h, nk)

= Wn
i − h(Qn

i + qiR
n
i − Fn

i )− υx(ih, nk)

+ h(Dα
0,tυ(ih, nk) + q(ih)υ(ih, nk)− f(ih, nk)) +O(h2)

= ∆Wn
i − h(Θ1 +Θ2)− hCα

ε

δ
+O(hk) +O(h2),

where
Θ1 = Rn

i ∆qi, Θ2 = q(ih)∆Rn
i .

Now, by applying theorem 4.1, we have

|∆Wn
i−1| ≤ |∆Wn

i |+ hc1|∆Rn
i |+ hc2|∆qi|+ hCα

ε

δ
+O(hk) +O(h2). (4.10)

From (3.4) and (4.8), we obtain

∆qi−1 = qi−1 − q((i− 1)h)

=
1

R0
i−1

(Ti−1 − Q0
i−1 + F0

i−1)− q((i− 1)h)

=
1

R0
i−1

(Ti−1 − Q0
i−1 + F0

i−1)−
1

υ((i− 1)h, 0)

(
υxx((i− 1)h, 0)

− Dα
0,tυ((i− 1)h, 0) + f((i− 1)h, 0)

)
+O(h2)

= Φ1 − Φ2 + Φ3f((i− 1)h, 0) +O(h2),

where

Φ1 =
Ti−1

R0
i−1

− D2(υ((i− 1)h, 0))

υ((i− 1)h, 0)
,
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Φ2 =
Q0

i−1

R0
i−1

−
Dα

0,tυ((i− 1)h, 0)

υ((i− 1)h, 0)
,

Φ3 =
1

R0
i−1

− 1

υ((i− 1)h, 0)
.

Notice that

Φ1 = D2(υ((i− 1)h, 0))Φ3 +
1

R0
i−1

∆Ti−1, (4.11)

in which ∆Ti = Ti −D2(υ(ih, 0)) and

Φ2 = Dα
0,tυ((i− 1)h, 0)Φ3 +

1

R0
i−1

∆Q0
i−1. (4.12)

Let Mt = max
i

{|Ti|}, m0 = min
i
{|R0

i |}. By applying theorem (4.8) in [18], we have

|∆Ti| = |Ti −D2(υ(ih, 0))| ≤ C̄1
ε

δ′ . (4.13)

Now by using (4.11) and (4.13), we obtain

|Φ1| ≤ |D2(υ((i− 1)h, 0))||Φ3|+
1

|R0
i−1|

|∆Ti−1|

≤ Mt|Φ3|+
C̄1ε

δ′m0

.

Also let M0 = max
i

{|R0
i |}, by using Eq.(30) in [4], (4.5) and (4.12), we have

|Φ2| ≤ |Dα
0,tυ((i− 1)h, 0)||Φ3|+

1

|R0
i−1|

|∆Q0
i−1|

≤ 4ApM0

δ′Γ(2− α)
|Φ3|+

1

m0

(
Cα

ε

δ′ +O(k)
)
,

and by applying theorem (4.2) in [18], we have

|Φ3| ≤
C

m2
0

(δ
′
+ h).

Thus, we have

|Φ1| ≤
Mt

m2
0

C(δ
′
+ h) +

C̄1ε

δ′m0

,

|Φ2| ≤
4ApCM0

δ′Γ(2− α)m2
0

(δ
′
+ h) +

1

m0

(
Cα

ε

δ′ +O(k)
)
.

Let M̂f = max
i,j

{|f(ih, jk))|}. Hence, we obtain

|∆qi−1| ≤ |Φ1|+ |Φ2|+ |Φ3||f((i− 1)h, 0)|+O(h2)

≤ Ψ1 +Ψ2 +O(h2), (4.14)

where

Ψ1 =
C

m2
0

(
Mt +

4ApM0

δ′Γ(2− α)
+ M̂f

)
(δ

′
+ h), Ψ2 =

1

m0

(
C̄1

ε

δ′ + Cα
ε

δ′ +O(k)
)
.



374 Babaei, Banihashemi, Damirchi

Let |∆Ri| = max
0≤n≤N

|∆Rn
i |, |∆Wi| = max

0≤n≤N
|∆Wn

i | and θ̂ = hCα
ε

δ
+O(hk) +O(h2).

Thus, from (4.9), (4.10), we obtain

|∆Ri−1| ≤ |∆Ri|+ h|∆Wi|+O(h2),

|∆Wi−1| ≤ |∆Wi|+ hc1|∆Ri|+ hc2|∆qi|+ θ̂,

hence

|∆Ri−1| ≤ (1 + h)max{|∆Ri|, |∆Wi|}+O(h2),

|∆Wi−1| ≤ (1 + hc1)max{|∆Ri|, |∆Wi|}+ hc2(Ψ1 +Ψ2 +O(h2)) + θ̂.

Let λ = max{1, c1}. Then, we have

max{|∆Ri−1|, |∆Wi−1|} ≤ (1 + λh)max{|∆Ri|, |∆Wi|}+ Λ,

where Λ = hc2(Ψ1 +Ψ2 +O(h2)) +O(h2) + θ̂. Now let ∆i = max{|∆Ri|, |∆Wi|}. Thus, we have

∆i−1 ≤ (1 + λh)∆i + Λ, (4.15)

and

∆0 ≤ (1 + λh)∆1 + Λ ≤ (1 + λh)2∆2 + (1 + λh)Λ + Λ ≤ ... ≤ (1 + λh)M∆M + τΛ, (4.16)

where τ =
M−1∑
i=0

(λ1 + hλ2)
i. Now by using theorem (4.2) in [18], for n ∈ {0, 1, ..., N}, there exists

constant Cn and Dn, such that

|∆Rn
M | = |Rn

M − υ(1, nk)| ≤ Cn(δ + k),

|∆Wn
M | = |Wn

M − υx(1, nk)| ≤ Dn(δ + k).

Let C
′
= max{Cn, Dn| n = 0, ..., N}, then we have

∆M = max{|∆Rn
M |, |∆Wn

M |} ≤ C
′
(δ + k),

and
∆0 ≤ exp(λ)C

′
(δ + k) + τΛ. (4.17)

As a result, when ε, h and k tend towards 0, by choosing δ̂ = δ̂(ε), δ and Λ tend towards 0. Thus,
∆0 will tend to 0. It completes the proof. □

5. Numerical examples for reconstruction of the unknown reaction coefficient

In this section, two examples are solved to test the ability of the proposed algorithm.
To simulate the data for the inverse problem, some random noises are added to the data resulted
from the additional functions. Suppose that ε indicates a relative noise level in the data. Then, for
generating noisy data, we use the formula

sε(ti) = s(ti)(1 + ε× rand(i)),

where rand(i) is a random number uniformly distributed in [−1, 1]. Also, to demonstrate the accuracy
of our method, by using the L2-norm

EL2(h, k) = max
1≤n≤N

∥un − Un∥,
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Figure 2: The exact solution of Example 5.1 when α = 0.45.

we calculate the convergence order of proposed method with the following formulas

Order(h) = log h1
h2

(EL2(h1, k)

EL2(h2, k)

)
, Order(k) = log k1

k2

(EL2(h, k1)

EL2(h, k2)

)
.

The computations are performed on a personal computer using a 2.20 GHz processor and the codes
are written in Matlab R2014a.

Example 5.1. In this example, we work on the test problem presented in Section 2. The exact
solution of this problem is

u(x, t) = ex(1 + t),

and q(x) = Eα(x
α)(1− x).

Figure 2 shows the exact solutions and Figure 3, Figure 4 and Figure 5 show the numerical solu-
tions and absolute error of u(x, t) when α = 0.45,M = 150, N = 150 and ε = 1%, 5%, 10%. Figure
6 shows the comparison between the exact and the computed solutions of q(x) with regularization
and without regularization when α = 0.45, M = 100, N = 150 and ε = 5%. Figure 7 displays the
behaviour of numerical approximations to q(x) when α = 0.25, M = 100, and N = 150 for various
noise levels.
Furthermore, Figure 8 shows the exact and the estimated solutions to q(x) for several values of α
when M = 100, N = 150 and ε = 1%.
Finally, let h = 1/100. Taking different time steps, Table 1 presents the maximum L2-norm errors
and convergence orders of the method. Again, fixing the temporal step k = 1/150 and taking different
spatial steps, Table 2 presents the L2-norm errors and convergence orders in spatial direction.

Example 5.2. Consider Eq. (1.1) with

f(x, t) =
Γ(3)

Γ(3− α)
t2−αx2 + 2 sin(4πx)(x2(1 + t2)− x+ ex−1)− 2t2 − ex−1 − 2.

Also, let u0(x) = x2 − x + ex−1, σ = 1 − e, γ = −2 and ϕ(t) = 1 + t2. The exact solution of this
problem is u(x, t) = ex−1 − x+ x2(1 + t2) and q(x) = 2 sin(4πx).
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Figure 3: The numerical solution and its absolute error for Example 5.1 when α = 0.45 and ε = 1%.
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Figure 4: The numerical solutions and its absolute error for Example 5.1 when α = 0.45 and ε = 5%.
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Figure 5: The numerical solutions and its absolute error for Example 5.1 when α = 0.45 and ε = 10%.
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Figure 6: The exact and numerical values of q(x) in Example 5.1 when α = 0.45 and ε = 5%. Left: without regularization. Right: with

regularization.
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Figure 7: The numerical approximations to q(x) in Example 5.1 for several noise levels when α = 0.25.
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Figure 8: The exact and numerical approximations to q(x) in Example 5.1 for various values of α when ε = 1% .
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Table 1: The maximum L2-norm errors and convergence orders for Example 5.1 when h = 1/100.

α k EL2 Order(k) EL2 Order(k) EL2 Order(k)
ε = 1% ε = 5% ε = 10%

0.25 1/25 0.2606 ∗ 0.4667 ∗ 0.7089 ∗
1/50 0.1022 1.3504 0.1884 1.3087 0.2891 1.2940
1/100 0.0355 1.6092 0.0652 1.5309 0.1035 1.4819
1/200 0.0092 1.8645 0.0185 1.8173 0.0306 1.7580

0.5 1/25 0.3340 ∗ 0.6045 ∗ 0.8561 ∗
1/50 0.1221 1.4518 0.2287 1.4023 0.3285 1.3819
1/100 0.0400 1.6100 0.0771 1.5687 0.1152 1.5118
1/200 0.0107 1.9024 0.0215 1.8424 0.0329 1.8080

0.75 1/25 0.4522 ∗ 0.8002 ∗ 0.9901 ∗
1/50 0.1486 1.6055 0.2712 1.5610 0.3640 1.4436
1/100 0.0425 1.8059 0.0825 1.7169 0.1200 1.6009
1/200 0.0110 1.9500 0.0221 1.9003 0.0332 1.8538

Table 2: The maximum L2-norm errors and convergence orders for Example 5.1 when k = 1/150.

α h EL2 Order(h) EL2 Order(h) EL2 Order(h)
ε = 1% ε = 5% ε = 10%

0.25 1/25 0.0955 ∗ 0.1746 ∗ 0.3081 ∗
1/50 0.0446 1.0985 0.0751 1.2172 0.1406 1.1318
1/100 0.0191 1.2235 0.0310 1.2765 0.0610 1.2047
1/200 0.0076 1.3295 0.0121 1.3573 0.0223 1.4518

0.5 1/25 0.1224 ∗ 0.2508 ∗ 0.4990 ∗
1/50 0.0554 1.1436 0.1111 1.1747 0.2121 1.2343
1/100 0.0240 1.2069 0.0436 1.3495 0.0803 1.4013
1/200 0.0094 1.3523 0.0163 1.4195 0.0261 1.6214

0.75 1/25 0.1936 ∗ 0.4011 ∗ 0.6432 ∗
1/50 0.0813 1.2518 0.1725 1.2174 0.2521 1.3513
1/100 0.0304 1.4192 0.0634 1.4440 0.0901 1.4844
1/200 0.0106 1.5200 0.0208 1.6079 0.0280 1.6861
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Figure 9: The exact solution of Example 5.2 when α = 0.75.
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Figure 10: The numerical solution and its absolute error for Example 5.2 when α = 0.75 and ε = 1%.

Figure 9 shows the exact solutions and Figure 10, Figure 11 and Figure 12 show the numerical
solutions and absolute error of u(x, t) when α = 0.75,M = 150, N = 150 and ε = 1%, 5%, 10%.
Figure 13 shows the comparison between the exact and the computed solutions of q(x) with regular-
ization and without regularization when α = 0.5, M = 100, N = 150 and ε = 5%. Let h = 1/100.
Taking different time steps, Table 3 presents the maximum L2-norm errors and convergence orders
of the method. Again, fixing the temporal step k = 1/150 and taking different spatial steps, Table
4 presents the L2-norm errors and convergence orders in spatial direction. Figure 14 displays the
behaviour of numerical approximations to q(x) when α = 0.3, M = 150, and N = 200 for various
noise levels.

6. Conclusion

In this paper, the inverse problem of recovering the reaction coefficient for the time-fractional
reaction-diffusion equation under the Robin boundary conditions was investigated. The mollification
regularization method was applied to regularize the problem and a marching finite difference scheme
was used to find the numerical solution. The stability of the algorithm and its convergence were
verified and some test problems were solved. To simulate the data for the inverse problem some
random errors were added to the exact data functions. The recovered reaction coefficient and the
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Figure 11: The numerical solution and its absolute error for Example 5.2 when α = 0.75 and ε = 5%.
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Figure 12: The numerical solution and its absolute error for Example 5.2 when α = 0.75 and ε = 10%.
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Figure 13: The exact and numerical values of q(x) in Example 5.2 when α = 0.5 and ε = 5%. Left: without regularization. Right: with

regularization.
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Table 3: The maximum L2-norm errors and convergence orders for Example 5.2 when h = 1/100.

α k EL2 Order(k) EL2 Order(k) EL2 Order(k)
ε = 1% ε = 5% ε = 10%

0.25 1/25 0.0643 ∗ 0.1777 ∗ 0.2785 ∗
1/50 0.0296 1.1192 0.0801 1.1496 0.1211 1.2015
1/100 0.0131 1.1760 0.0352 1.1862 0.0506 1.2590
1/200 0.0057 1.2005 0.0146 1.2696 0.0194 1.3831

0.5 1/25 0.0737 ∗ 0.1945 ∗ 0.3483 ∗
1/50 0.0322 1.1946 0.0866 1.1673 0.1497 1.2183
1/100 0.0140 1.2016 0.0372 1.2191 0.0602 1.3142
1/200 0.0060 1.2224 0.0151 1.3008 0.0229 1.3944

0.75 1/25 0.0981 ∗ 0.2219 ∗ 0.4150 ∗
1/50 0.0424 1.2102 0.0949 1.2254 0.1731 1.2615
1/100 0.0178 1.2522 0.0380 1.3204 0.0686 1.3353
1/200 0.0071 1.3260 0.0141 1.4303 0.0244 1.4913

Table 4: The maximum L2-norm errors and convergence orders for Example 5.2 when k = 1/150.

α h EL2 Order(h) EL2 Order(h) EL2 Order(h)
ε = 1% ε = 5% ε = 10%

0.25 1/25 0.0244 ∗ 0.0523 ∗ 0.0917 ∗
1/50 0.0130 0.9084 0.0258 1.0194 0.0420 1.1265
1/100 0.0064 1.0224 0.0116 1.1532 0.0186 1.1751
1/200 0.0028 1.1926 0.0050 1.2141 0.0078 1.2538

0.5 1/25 0.0327 ∗ 0.0680 ∗ 0.1067 ∗
1/50 0.0162 1.0133 0.0309 1.1379 0.0462 1.2076
1/100 0.0075 1.1110 0.0137 1.1734 0.0194 1.2518
1/200 0.0032 1.2288 0.0058 1.2401 0.0080 1.2780

0.75 1/25 0.0493 ∗ 0.0812 ∗ 0.1228 ∗
1/50 0.0227 1.1187 0.0356 1.1896 0.0527 1.2204
1/100 0.0101 1.1683 0.0148 1.2663 0.0216 1.2868
1/200 0.0043 1.2319 0.0061 1.2787 0.0087 1.3119
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Figure 14: The numerical approximations to q(x) in Example 5.2 for several noise levels when α = 0.3.

approximated solution of the fractional reaction-diffusion equation were displayed in some suitable
graphs. Furthermore, the maximum L2-norm errors and convergence orders of the method for dif-
ferent values of h and k were presented in some tables. The proposed numerical scheme is fast and
convenient in implementation. The numerical results verify the high accuracy of the method. The
obtained convergence orders are more than one. This confirms that the convergence speed of the
method for solving the inverse problem is good, even in the presence of the noise up to ten percent.
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