Int. J. Nonlinear Anal. Appl. 12 (2021) No. 1, 397-403 ISSN: 2008-6822 (electronic) http://dx.doi.org/10.22075/ijnaa.2021.4812

On J-class C_0 -semigroups of operators

Abolfazl Nezhadali Baghan^a, Mohammad Janfada^{b,*}

^aDepartment of Pure Mathematics, Ferdowsi University of Mashhad, International Campus, Mashhad, Iran. ^bDepartment of Pure Mathematics, Ferdowsi University of Mashhad, P. O. Box 1159, Mashhad 91775, Iran

(Communicated by Madjid Eshaghi Gordji)

Abstract

In this paper, locally topologically transitive (or J-class) C_0 -semigroups of operators on Banach spaces are studied. Some similarity and differences of locally transitivity and hypercyclicity of C_0 semigroups are investigated. Next the Kato's limit of a sequence of C_0 -semigroups are considered and their locally transitivity relations are studied.

Keywords: Hypercyclic C_0 -semigroup; J-class C_0 -semigroup; approximation in the sense of Kato. 2010 MSC: Primary 47D03 ; Secondary 47A16, 47A58.

1. Introduction and preliminaries

A continuous linear operator T on a Banach space X is called hypercyclic if it has a hypercyclic vector $x \in X$, i.e. there is a vector $x \in X$ such that $orb(T, x) := \{T^n x : n \in \mathbb{N}_0\}$ is dense in X. In [13], Kitai, and in [9] Gethner and Shapiro gave independently a sufficient condition for hypercyclicity which is useful in applications. Using Baire's category theorem, it can be shown that a bounded linear operator T on a separable Banach space is hypercyclic if and only if it is topologically transitive, i.e. for every two open, non-empty subsets U, V of X there is a natural number n such that $U \cap T^n(V) \neq \emptyset$.

An operator $T \in B(X)$, the space of all bounded linear operators on X, is called a J-class operator, if there exists $0 \neq x \in X$ such that $J_T(x) = X$, where

 $J_T(x) := \{ y \in X : \text{ there exists a strictly increasing sequence} \\ \text{ of natural numbers } (k_n)_n \text{ and a sequence} \\ (x_n)_n \text{ in } X \text{ such that } x_n \to x \text{ and } T^{k_n}(x_n) \to y \}.$

^{*}Corresponding author

Email addresses: nejadali.2000@yahoo.com (Abolfazl Nezhadali Baghan), janfada@um.ac.ir (Mohammad Janfada)

The vector x is said to be a J-class vector. It is clear that topologically transitive operators are J-class.

Many facts about hypercyclic and J-class operators are investigated by G. Costakis and A. Manoussos in [4] and [3]. For more properties of J-class operators, one can see [14, 15] and [19].

In the continuous case, a one-parameter family $T = \{T(t)\}_{t\geq 0}$ of continuous linear operators on X, is a strongly continuous semigroup (or C_0 -semigroup) of operators, if T(0) = I, T(t)T(s) = T(t+s), for all $t, s \geq 0$, and $\lim_{t\to 0} T(t)x = x$ for all $x \in X$. The operator $A : D(A) \subseteq X \to X$ defined by $Ax = \lim_{t\to 0} \frac{T(t)x-x}{t}$ is called the generator of the C_0 -semigroups T, where $D(A) = \{x \in X :$ $\lim_{t\to 0} \frac{T(t)x-x}{t}$ exists $\}$. For further information about C_0 -semigroups we refer the reader to the books [8, 16].

A C_0 -semigroup $T = \{T(t)\}_{t\geq 0}$ is said to be hypercyclic if $orb(T, x) := \{T(t)x : t \geq 0\}$ is dense in X for some $x \in X$. Desch, Schappacher and Webb in [6] initiated the investigation of hypercyclic semigroups. So far, several specific examples of hypercyclic strongly continuous semigroups have been studied, see for example [1, 2, 6, 7, 10, 11, 17]. As in the single operator case, the first example of a hypercyclic C_0 -semigroup was given by Rolewicz [18], in 1969. J-class C_0 -semigroups of operators, also called topologically transitive C_0 -semigroups, where else studied by Nasseri in [14].

Definition 1.1. A C_0 -semigroup $\{T(t)\}_{t\geq 0}$ on a normed space X is called J-class if there exists $0 \neq x \in X$ such that $J_T(x) = X$, where

$$J_T(x) := \{ y \in X : \text{ there exist a strictly increasing sequence} \\ (t_n)_n \subseteq [0, \infty) \text{ with } t_n \to \infty \text{ and a sequence} \\ (x_n)_n \text{ in } X \text{ such that } x_n \to x \text{ and } T(t_n)(x_n) \to y \}.$$

Trivially if there exists $t_0 \ge 0$ such that $T(t_0)$ is J-class, then $\{T(t)\}_{t\ge 0}$ is also a J-class C_0 -semigroup. Put

$$A_T := \{ x \in X : J_T(x) = X \}$$

By Theorem 4.1.9 [14], A_T and $J_T(x)$ are closed subsets of X. Using proof similar to the proof of Proposition 4.1.8 of [14], one can see that

 $J_T(x) = \{ y \in X : \text{for every neighborhood } U \text{ of } x \text{ and neighborhood } V \text{ of } y \text{ there exists } t > 0 \text{ such that } T(t)U \cap V \neq \emptyset \}.$

Remark 1.2. i) For a C_0 -semigroup $\{T(t)\}_{t\geq 0}$, if $||T(t)|| \leq 1$ for all $t \geq 0$, i.e. T is contraction C_0 -semigroup, then T is not J-class. Indeed if in this case, there exists $x \in X$ such that $J_T(x) = X$, then with M = ||x|| + 1 and any $y \in X$, there exist a sequence $(x_n) \subseteq X$ and and a sequence $(t_k) \subseteq \mathbb{R}$ such that $x_k \to x$ and $T(t_k)x_k \to y$. For large enough k we know

$$||x_k|| \le ||x_k - x|| + ||x|| < 1 + ||x|| = M.$$

Thus $||T(t_k)x_k|| \le ||x_k|| \le M$, which implies that $||y|| \le M$ and this is a contradiction. ii) If X is a finite dimensional Banach space then one can prove that there is no J-class C_0 -semigroup

on X. Indeed this follows from the fact that C_0 -semigroups on finite dimensional spaces are of the form exp(tA) with A bounded. If the C_0 -semigroup exp(tA) is J-class, then the spectrum $\sigma(A)$ of A has to intersect the unit circle. But in finite dimensional case $\sigma(A) = \sigma_p(A)$, where $\sigma_p(A)$ is the point spectrum of A. This implies that $\sigma_p(A^*)$ intersect the unite circle. This together with [14] Proposition 4.1.12 turn to a contradiction (This part is contributed by A. B. Nasseri). In this paper, we study properties of J-class C_0 -semigroups. In Section 2, some elementary properties of J-class C_0 -semigroups are studied. In particular, by some examples, it is proved that many properties of hypercyclic C_0 -semigroups are not valid for locally topologically transitive C_0 -semigroups. In Section 3, the Kato's limit of C_0 -semigroups and their locally topologically transitivity properties are studied.

2. J-class C_0 -semigroups of operators

The following characterization of J-class C_0 -semigroup will be useful in the rest of the paper.

Theorem 2.1. For a C_0 -semigroup $\{T(t)\}_{t\geq 0}$ on a Banach space X, the following assertions are equivalent:

- i) $\{T(t)\}_{t>0}$ is J-class;
- ii) There exists a non-zero $x \in X$ such that for every $y \in X$ and $\varepsilon > 0$, there exist $u \in X$ and t > 0 with $||u x|| < \varepsilon$ and $||T(t)u y|| < \varepsilon$.

Proof. Let $\{T(t)\}_{t\geq 0}$ be J-class. So there exists $0 \neq x \in X$ such that $J_T(x) = X$. For given $y \in X$ and $\varepsilon > 0$, letting $V = N_{\varepsilon}(y)$ and $U = N_{\varepsilon}(x)$ $(N_{\varepsilon}(y))$ is the neighborhood of y with reduce ε), we may find t > 0 such that

$$T(t)U \cap V \neq \emptyset$$

So there exists $u \in U$ such that $||T(t)u - y|| < \varepsilon$ and $||u - x|| < \varepsilon$. Conversely, suppose that (ii) holds for some $x \in X$. We shall show that $J_T(x) = X$.

Let $y \in X$ and U be an arbitrary neighborhood of x. There exists ε_0 such that $N_{\varepsilon_0}(x) \subseteq U$. For every neighborhood V of y there exists ε_1 such that $N_{\varepsilon_1}(y) \subseteq V$. Put $\varepsilon = \min\{\varepsilon_0, \varepsilon_1\}$. By (ii) there exists $u \in N_{\varepsilon}(x) \subseteq U$ and t > 0 such that $T(t)u \in N_{\varepsilon}(y) \subseteq V$, which implies that $T(t)U \cap V \neq \emptyset$. \Box

Theorem 2.2. Let $T = \{T(t)\}_{t\geq 0}$ and $S = \{S(t)\}_{t\geq 0}$ be two C_0 -semigroups on Banach spaces X and Y, respectively and $\phi: X \to Y$ be a continuous function with dense range such that $\phi(A_T \setminus \{0\}) \neq \{0\}$ and $S(t) \circ \phi = \phi \circ T(t)$, for all $t \geq 0$. If T is J-class, then so is S.

Proof. If T is J-class, then by the fact that $\phi(A_T) \neq \{0\}$ we may choose $0 \neq x \in X$ such that $J_T(x) = X$ and $\phi(x) \neq 0$. We claim that $J_S(\phi(x)) = Y$.

Let $z \in ran \phi$, then there exists $y \in X = J_T(x)$ such that $\phi(y) = z$.

So there exists $(x_n) \subseteq X$ and a strictly increasing sequence of positive real numbers $(t_n)_n$ such that $t_n \to \infty$, $x_n \to x$ and $T(t_n)x_n \to y$. By continuity of ϕ , $y_n := \phi(x_n) \to \phi(x)$ and $S(t_n) \circ \phi(x_n) = \phi(T(t_n)x_n) \to \phi(y) = z$.

Thus $J_S(\phi(x)) \supseteq ran \phi$. But $J_S(\phi(x))$ is closed and $ran \phi$ is dense so $J_S(\phi(x)) = Y$. \Box The following example shows that the hypothesis $\phi(A_T) \neq \{0\}$ cannot be removed. Also it shows that if the direct sum of two C_0 -semigroups is J-class then its is not necessary that these C_0 -semigroups are J-class.

Example 2.3. Let X, Y be two complex Banach spaces, where X is separable. Let $A \in B(Y)$ with $\sigma(A) \subset \{z \in \mathbb{C} : Rez > 0\}$. If $\{T(t)\}_{t\geq 0}$ is a hypercyclic C_0 -semigroup on X, then the system $B(t) := e^{tA} \oplus T(t)$ is a J-class C_0 -semigroup on the Banach space $X \oplus Y$ and $A_B = \{0\} \oplus X$ (Theorem 4.1.13, [14]). Now consider $\phi : X \oplus Y \to Y$ defined by $\phi(x \oplus y) = y$. Then with $S(t) := e^{tA}$ we have $\phi \circ B(t) = S(t) \circ \phi$, B(t) is J-class but S(t) is not J-class, since $\sigma(A) \cap i\mathbb{R} = \emptyset$ (see Lemma 4.1.14, [14]). Indeed in this case $\phi(A_B) = \{0\}$. This example also shows that if $\{T(t)\}_{t\geq 0}$ is a J-class C_0 -semigroup on a Banach space X and M_1 , M_2 are two non-trivial invariant closed subspaces of X, where $X = M_1 \oplus M_2$, then $\{T(t)|_{M_i}\}_{t\geq 0}$ is not J-class on M_i , i = 1, 2, in general.

The following proposition shows that locally topologically transitivity of the direct sum of a C_0 -semigroup with itself, implies that it is also locally topologically transitive.

Proposition 2.4. Let $\{T(t)\}_{t\geq 0}$ be a C_0 -semigroup on a Banach space X. If $\{T(t) \oplus T(t)\}_{t\geq 0}$ is locally topologically transitive C_0 -semigroup on $X \oplus X$, then so is $\{T(t)\}_{t\geq 0}$.

Proof. Let $J_{T\oplus T}(x \oplus y) = X \oplus X$, for some non-zero $x \oplus y \in X \oplus X$. Without loss of generality let $x \neq 0$. Thus for every $z \in X$, there exist a sequence $(x_n \oplus y_n)_n \in X \oplus X$ and a strictly increasing sequence $(t_n) \in [0, \infty)$ with $t_n \to \infty$ such that $x_n \oplus y_n \to x \oplus y$ and $T(t_n) \oplus T(t_n)(x_n \oplus y_n) \to z \oplus z$. These imply that $x_n \to x$ and $T(t_n)x_n \to z$, i.e. $J_T(x) = X$. \Box

As a consequence of this proposition one can see that if X is a real-Banach space, X is the complexification of X, $\{T(t)\}_{t\geq 0}$ is a C_0 -semigroup on X and $\{\widetilde{T}(t)\}_{t\geq 0}$ is the complexification of $\{T(t)\}_{t\geq 0}$, then locally topologically transitivity of $\{\widetilde{T}(t)\}_{t\geq 0}$ implies that $\{T(t)\}_{t\geq 0}$ is locally topologically transitive.

In the following proposition, we show that the direct sum of two J-class C_0 -semigroups is not J-class in general. Note that the adjoint of a C_0 -semigroup on a Hilbert space is again a C_0 -semigroup.

Proposition 2.5. Let $\{T(t)\}_{t\geq 0}$ be a J-class C_0 -semigroup on a Hilbert space H such that $\{T^*(t)\}_{t\geq 0}$ is also J-class. Then $T(t) \oplus T^*(t)$ is not a J-class C_0 -semigroup.

Proof. Assume that $T(t) \oplus T^*(t)$ is a J-class C_0 -semigroup. So there exist $x, y \in H$ such that $J_{T \oplus T^*}(x \oplus y) = H \oplus H$ and $x \oplus y \neq 0$.

Case I: Suppose that one of the vectors x, y is zero. Without loss of generality assume x = 0. Then there exist a strictly increasing sequence $(t_n)_n \subseteq [0, \infty)$ with $t_n \to \infty$ and sequences $(x_n)_n, (y_n)_n \in H$ such that $x_n \to x = 0, y_n \to y, T(t_n)x_n \to y$ and $T^*(t_n)y_n \to x = 0$. Taking limits in the following equality $\langle T(t_n)x_n, y_n \rangle = \langle x_n, T^*(t_n)y_n \rangle$ we get that ||x|| = ||y|| = 0 and hence y = 0. Therefore $x \oplus y = 0$, which yields a contradiction.

Case II: Suppose that $x \neq 0$ and $y \neq 0$. Let us show first that $J_{T \oplus T^*}(\lambda x \oplus \mu y) = H \oplus H$, for every $\lambda, \mu \in \mathbb{C} \setminus \{0\}$. Indeed, fix $\lambda, \mu \in \mathbb{C} \setminus \{0\}$. Take any $z, w \in H$. Since $J_{T \oplus T^*}(x \oplus y) = H \oplus H$, there exist a strictly increasing sequence $(t_n)_n \subseteq [0, \infty)$ with $t_n \to \infty$ and sequences $(x_n)_n, (y_n)_n \in H$ such that $x_n \to x, y_n \to y, T(t_n)x_n \to \lambda^{-1}z$ and $T^*(t_n)y_n \to \mu^{-1}w$. This implies that $z \oplus w \in J_{T \oplus T^*}(\lambda x \oplus \mu y)$, hence $J_{T \oplus T^*}(\lambda x \oplus \mu y) = H \oplus H$. With no loss of generality we may assume that $||x|| \neq ||y||$ (because if ||x|| = ||y||, by multiplying with a suitable $\lambda \in \mathbb{C} \setminus \{0\}$ we have $\lambda ||x|| \neq ||y||$ and $J_{T \oplus T^*}(\lambda x \oplus y) = H \oplus H$). Taking limits in the following equality $\langle T(t_n)x_n, y_n \rangle = \langle x_n, T^*(t_n)y_n \rangle$ we get that ||x|| = ||y||, which is a contradiction. \Box

Proposition 2.6. Suppose X is a normed space, C_0 -semigroup $\{T(t)\}_{t\geq 0}$ is J-class on X, and Y is a Banach space containing X as a dense subspace. Then the extension of T in Y is J-class.

Proof. Let for $0 \neq x \in X$, $J_T(x) = X$. For every $\varepsilon > 0$ and $y \in Y = \overline{X}$ there exists $y_1 \in X$ such that $\|y_1 - y\| < \frac{\varepsilon}{2}$. For $y_1 \in X$ there exist $u \in X$ and $t_1 > 0$ such that $\|u - x\| < \frac{\varepsilon}{2}$, $\|y_1 - T(t)u\| < \frac{\varepsilon}{2}$. So

$$||y - T(t)u|| \le ||y - y_1|| + ||y_1 - T(t)v|| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

3. Limit of C_0 -semigroups in the sense of Kato

A sequence $\{(X_n, \|\cdot\|_n) : n \in \mathbb{N}\}$ of Banach spaces is said to be convergent to a Banach space $(X, \|\cdot\|)$ in the sense of Kato (see [12], Chap. IX, Sect. 4) and is denoted by $X_n \xrightarrow{K} X$, if for any n there is a linear operator $P_n \in B(X, X_n)$ (called an approximating operator) satisfying the following two conditions:

- $(K_1) \lim_{n \to \infty} ||P_n f||_n = ||f||$ for any $f \in X$;
- (K_2) for any $f_n \in X_n$, there exists $f^{(n)} \in X$ such that $f_n = P_n f^{(n)}$ with $||f^{(n)}|| \leq C ||f_n||_n$ (C is independent of n).

Let $X_n \xrightarrow{K} X$ and $B_n \in B(X_n)$. The sequence $(B_n)_{n \in \mathbb{N}}$ is said to be convergent to B in the sense of Kato if $\lim_{n\to\infty} \|B_n P_n f - P_n Bf\|_n = 0$, for any $f \in X$. In this case we write $B_n \xrightarrow{K} B$.

Theorem 3.1. Let $\{(X_n, \|\cdot\|_n) : n \in \mathbb{N}\}$ be a sequence of Banach spaces convergeing to a Banach space $(X, \|\cdot\|)$ in the sense of Kato. Suppose that $T = \{T(t)\}_{t\geq 0}$ is a J-class C_0 -semigroup on X for which $P_n(A_T) \neq \{0\}$ and $\{T_n(t)\}_{t\geq 0}$ is a C_0 -semigroup on $(X_n, \|\cdot\|_n)$. If for some $n \in \mathbb{N}$ one has

$$P_n T(t) f = T_n(t) P_n f, \quad (f \in X, \ t \ge 0),$$
(3.1)

then $\{T_n(t)\}_{t>0}$ is also J-class.

Proof. Let $\{T(t)\}_{t\geq 0}$ be J-class. So there exists a non-zero $f^* \in X$ such that $J_T(f^*) = X$. By our hypothesis, we may choose f^* such that $P_n f^* \neq 0$. We shall prove that $J_{T_n}(P_n f^*) = X_n$. For any $g_n \in X_n$ from (K_2) , there exists $g^{(n)} \in X$ such that $g_n = P_n g^{(n)}$ and $||g^{(n)}|| \leq C||g_n||_n$. For arbitrary $\varepsilon > 0$, there exist $u \in X$ and t > 0 such that $||u - f^*|| < \varepsilon$ and $||g^{(n)} - T(t)u|| < \varepsilon$. Put $f_n^* := P_n f^*$, $u_n := P_n u$ and $t_n := t$. The assumption (K_1) implies the uniform boundedness of $\{P_n\}$. Therefore

$$||u_n - f_n^*||_n = ||P_n u - P_n f^*||_n \le ||P_n|| ||u - f^*|| \le ||P_n||\varepsilon$$

and

$$\begin{aligned} \|g_n - T_n(t_n)u_n\| &= \|P_n g^{(n)} - T_n(t)P_n u\|_n \\ &= \|P_n g^{(n)} - P_n T(t)u\|_n \\ &\leq \|P_n\| \|g^{(n)} - T(t)u\| \leq \|P_n\|\varepsilon. \end{aligned}$$

 \Box For any constant C and $f_n \in X_n$, define

$$l_C(f_n) := \{ f^{(n)} \in X : P_n f^{(n)} = f_n \text{ with } \| f^{(n)} \| \le C \| f_n \| \}.$$

Theorem 3.2. Suppose that (3.1) holds for some $n \in \mathbb{N}$ and $\{T_n(t)\}_{t\geq 0}$ is J-class. If there exists a constant C such that for every $f \in X$ and $\varepsilon > 0$ there is an $f^{(n)} \in l_C(P_n f)$ with $||f - f^{(n)}|| < \varepsilon$, then $\{T(t)\}_{t\geq 0}$ is also J-class.

Proof. Let $\{T_n(t)\}_{t\geq 0}$ be J-class on X_n . So there exists a non-zero $f_n^* \in X_n$ such that $J_{T_n}(f_n^*) = X_n$. From (K_2) , there exists $f_*^{(n)} \in X$ such that $f_n^* = P_n f_*^{(n)}$. By the linearity of P_n , $f_*^{(n)} \neq 0$. We shall show that $J_T(f_*^{(n)}) = X$. Let $g \in X$ and $\varepsilon > 0$ be given. Put $g_n := P_n g$. So there exist t > 0 and $u_n^* \in X_n$ such that $||u_n^* - f_n^*|| < \varepsilon$ and $||g_n - T_n(t)u_n^*||_n < \varepsilon$. From (K_2) , there exists $u_*^{(n)} \in X$ such that $u_n^* = P_n u_*^{(n)}$. Now for $h = g - T(t)u_*^{(n)}$, there exists $h^{(n)} \in P_n h$, with $||h - h^{(n)}|| < \varepsilon$ and

$$P_n h^{(n)} = P_n h = g_n - P_n T(t) u_*^{(n)}$$

As a consequence of (3.1), we obtain that

$$g_n - P_n T(t) u_*^{(n)} = g_n - T_n(t) P_n u_*^{(n)}.$$

So

$$\begin{aligned} |g - T(t)u_*^{(n)}|| &\leq ||h - h^{(n)}|| + ||h^{(n)}|| \\ &\leq \varepsilon + C||g_n - T_n(t)P_nu_*^{(n)}||_n \\ &\leq (1 + C)\varepsilon \end{aligned}$$

and

$$||u_*^{(n)} - f_*^{(n)}|| \le C ||P_n u_*^{(n)} - P_n f_*^{(n)}||_n \le C ||P_n||\varepsilon$$

Remark 3.3. Let $T_n = \{T_n(t)\}_{t\geq 0}$ and $T = \{T(t)\}_{t\geq 0}$ be C_0 -semigroups on the Banach spaces $(X_n, \|\cdot\|)$ and $(X, \|\cdot\|)$, respectively, $n \in \mathbb{N}$. The sequence (T_n) is said to be convergent to T in the sense of Kato if for any $\tau > 0$,

$$\lim_{n \to \infty} \sup_{t \in [0,\tau]} \|T_n(t)P_n(f) - P_nT(t)f\|_n = 0, \quad (f \in X).$$

If T_n is J-class then it is not true that T is also J-class, in general. For showing this, we apply Theorem 3.3 of [5]. Let $X_n = X := l^1$, B is the backward shift on l^1 and $A = \alpha(B - I)$, for some $\alpha > 0$. If $T = \{T(t)\}_{t \ge 0}$ is the C₀-semigroup generated by A then

$$||T(t)|| = ||e^{\alpha t(B-I)}|| = e^{-\alpha t} ||e^{t\alpha B}|| \le e^{-\alpha t} e^{||t\alpha B||} = 1.$$

This, by Remark 1.2, implies that T is not J-class. Now, by [5] Theorem 3.3, the C_0 -semigroup $\{T_n(t)\}_{t\geq 0}$ generated by $A_n := -\alpha I + \beta_n B$ is hypercyclic and so is J-class, where $\beta_n > \alpha > 0$ and $\beta_n \to \alpha$. Also the sequence $(T_n)_{n\in\mathbb{N}}$ converges to T, in the sense of Kato (see [5] Theorem 3.3).

References

- T. Bermúdez, A. Bonilla and A. Martinón, On the existence of chaotic and hypercyclic semigroups on Banach spaces, Proc. Amer. Math. Soc. 131(8) (2003) 2435–2441.
- T. Bermúrdez, A. Bonilla, J. A. Conejero and A. Peris, Hypercyclic, topologically mixing and chaotic semigroups on Banach spaces, Studia Math. 170(1) (2005) 57–75.
- [3] G. Costakis and A. Manoussos, J-class weighted shifts on the space of bounded sequences of complex numbers, Integral Equ. Oper. Theory 62 (2008) 149–158.
- [4] G. Costakis and A. Manoussos, J-class operators and hypercyclicity, J. Operator Theory, 67 (2012) 101–119.
- [5] R. DeLaubenfels, H. Emamirad and V. Protopopescu, *Linear chaos and approximation*, J. Approx. Theory 105(1) (2000) 176–187.
- [6] W. Desch, W. Schappacher and G.F. Webb, Hypercyclic and chaotic semigroups of linear operators, Ergodic Theory Dynam. Syst. 17 (1997) 793–819.

- [7] H. Emamirad, Hypercyclicity in the scattering theory for linear transport equation, Trans. Amer. Math. Soc. 350 (1998) 3707–3716.
- [8] K.J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer-Verlag, New York, 2000.
- R. Gethner and J.H. Shapiro, Universal vectors for operators on spaces of holomorphic functions, Proc. Amer. Math. Soc. 100(2) (1987) 281–288.
- [10] T. Kalmes, On chaotic C_0 -semigroups and infinitely regular hypercyclic vectors, Proc. Amer. Math. Soc. 134 (2006) 2997–3002.
- [11] T. Kalmes, Hypercyclic, Mixing, and Chaotic C₀-Semigroups, Ph. D. Thesis, Trier University, 2006.
- [12] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin-New York, 1966.
- [13] C. Kitai, *Invariant closed sets for linear operators*, Ph. D. Thesis, University of Tornto, 1982.
- [14] A.B. Nasseri, J-class Operators on Certain Banach Spaces, Ph. D. Thesis, Dortmund University, 2013.
- [15] A.B. Nasseri, On the existence of J-class operators on Banach spaces, Proc. Amer. Math. Soc. 140 (2012) 3549– 3555.
- [16] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1992.
- [17] V. Protopopescu and Y. Azmy, Topological chaos for a class of linear models, Math. Models Methods Appl. Sci. 2 (1992) 79–90.
- [18] S. Rolewicz, On orbits of elements, Studia Math. 32(1969) 17–22.
- [19] G. Tian and B. Hou, *Limits of J-class operators*, Proc. Amer. Math. Soc. 142(5)(2014) 1663–1667.