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Abstract

Two sample prediction is considered for a one-parameter exponential distribution. In practical ex-
periments using sampling methods based on different schemes is crucial. This paper addresses the
problem of Bayesian prediction of record values from a future sequence, based on an upper record
ranked set sampling scheme. First, under an upper record ranked set sample (RRSS) and different
values of hyperparameters, point predictions have been studied with respect to both symmetric and
asymmetric loss functions. These predictors are compared in the sense of their mean squared pre-
diction errors. Next, we have derived two prediction intervals for future record values. Prediction
intervals are compared in terms of coverage probability and expected length. Finally, a simulation
study is performed to compare the performances of the predictors. The real data set is also analyzed
for an illustration of the findings.
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1. Introduction

The purpose of statistical prediction is to infer the values of future statistics based on available
observations. Predicting future record statistics is one of the important problems in real-life situa-
tions. This is why many authors attracted to research on it. For instance, we would be interested in
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predicting the degree of temperature or amount of snowfall in the future when the present record will
be broken. For more details see, [1, 2, 3] and the references contained therein. Prediction problems
discussed in the literature can be broadly divided into two types, referred to as one-sample and two-
sample prediction. Here, the prediction of records based on records (two-sample prediction) has been
addressed. Many authors have studied prediction problems. For example, Raqab and Balakrishnan
[4] studied prediction intervals for future records, Ahmadi and Mirmostafaee [5] considered the same
problem in a parametric setting and obtained prediction intervals for order statistics as well as for the
mean life time from a future sample based on observed usual records from an exponential distribu-
tion. Ahmadi and Balakrishnan [6] addressed the question’ How can one predict future records (order
statistics) from an independent Y-sequence based on order statistics (records) from X-sequence? and
derived several nonparametric prediction intervals. MirMostafaee and Ahmadi [7] considered point
prediction of future order statistics from an exponential distribution, Salehi et al. [8] considered the
prediction of order statistics and record values based on an ordered ranked set sample. Kaminsky
and Nelson [9] considered the prediction of order statistics in one-sample as well as two-sample cases,
and obtained linear point predictors and prediction intervals based on samples from location-scale
families. For some other discussion in this regard, one may also refer to Vock and Balakrishnan [10],
and Asgharzadeh et al. [11]. The Bayesian approach, as an alternative to the classical approach, is in
statistical inference. Its principle is to incorporate the information in the parameters’ history through
a prior distribution assuming, a known form of distribution. The parameters of a prior distribution
called hyperparameters. In the Bayesian inference, the performance of the predictor depends on the
prior distribution and also on the loss function used. A symmetric loss as SEL function is found in
different fields. The symmetric nature of this function gives equal weight to overestimation as well
as underestimation, while in the estimation of parameters of lifetime model, overestimation may be
more severe than underestimation or vice-versa. An asymmetric loss function, is also useful. For
example, in the estimation of reliability and failure rate function, an overestimation is usually much
more serious than underestimate. In this article, we use general entropy loss function, because of dif-
ferent choices of a parameter value involved in the loss function can produce different symmetric and
asymmetric loss functions. The first aim of this paper is to study the bahavior of the predictors from
a future sequence using an upper record ranked set sample (RRSS) as an informative sample with
respect to both symmetric and asymmetric loss functions for different values of hyperparameters.
Our second aim of this paper is to discuss the problem of Bayesian prediction intervals for records
from a future sequence. There are some experiments where have been done sequentially, and only
record-breaking data are observed. These types of data have been used in a wide variety of prac-
tical experiments, such as oil and mining surveys, quality control, hydrology, sports achievements,
seismology, the strength of materials, economics, industry, and climatology. Now, we give a brief
description of records. Let {Xi, i ≥ 1} be an infinite sequence of independent and identically dis-
tributed (i.i.d) random variables with absolutely continuous cumulative distribution function (cdf)
F (x; θ) and corresponding probability density function (pdf) f(x; θ) where θ is possibly a vector
real-valued parameter. An observation Xj is called an upper record if Xi < Xj for every i < j, i.e.,
Xj is an upper record value if its value exceeds all previous observations. An analogous definition
can be given for lower record value. Some key references are [12, 13, 14]. In practical experiments,
obtaining observations for the variable is costly and time consuming. In such situations, considering
suitable sampling schemes, in order to reduce the cost and increase efficiency are crucial. The record
ranked set sample (RRSS) scheme, as an alternative method for generating record-breaking data,
has been formally proposed by Salehi and Ahmadi [15]. Among the authors who worked on this
scheme, Salehi and Ahmadi [16] considered the estimation of stress and strength using upper RRSS
from the exponential distribution. They also, with the collaboration of Dey [17], made a comparison
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between RRSS scheme and the ordinary record statistics in estimating the unknown parameter of
the proportional hazard rate model. They showed that the RRSS scheme out-performs the ordinary
record statistics in the frequentist/Bayesian point and interval estimation under that family of dis-
tributions. Eskandarzadeh et al. [18] obtained information measures for the RRSS scheme. Paul
and Thomas [19] proposed concomitant the RRSS for situations that measuring of the variable of
interest is costly or even impossible. Hassan et al. [20] considered Bayesian comparison of the RRSS
and the ordinary records based on generalized inverted exponential distribution. Safaryian et al. [21]
proposed some improved estimators including the preliminary test estimator as well as stein-type
shrinkage estimator for stress-strength reliability using record ranked set sampling scheme. Recently,
Sadeghpour et al. [22] considered the estimation of stress and strength reliability using lower record
ranked set sampling scheme under the generalized exponential distribution. For formal definition of
upper RRSS, suppose we have n independent random sequences where the ith sequence sampling
is finished when the ith upper record is observed. The only observations available for analysis are
the last upper record value in each sequence. This process is called, the RRSS scheme because it is
designed based on the plan of RSS defined by McIntyre [23]. Let us denote the last upper record for
the ith sequence in this plan by Ri,i then R = (R1,1, R2,2, · · · , Rn,n)

⊤ will be an upper RRSS of size
n. The following observational procedure illustrates this plan

1 : R(1)1 → R1,1 = R(1)1

2 : R(1)2 R(2)2 → R2,2 = R(2)2

...
...

...
...

... (1.1)

n : R(1)n R(2)n · · · R(n)n → Rn,n = R(n)n

where R(i)j is the ith ordinary upper record in the jth sequence. Notice that, here Ri,i’s are indepen-
dent random variables but not necessarily ordered with probability one. However, from Lemma 2.1 in
[15], it can be seen that Ri,i’s have stochastic orders in probability, i.e. for i < j; P (Ri,i < Rj,j) >

1
2
.

Thus, if Ri,i’s are upper records then using the marginal density of ordinary records the joint pdf of
the elements of R readily follows as (see, [2])

fR(r; θ) =
n∏

i=1

{− log F̄ (ri,i; θ)}i−1

(i− 1)!
f(ri,i; θ), θ ∈ Θ, (1.2)

where F̄ (.) = 1− F (.), r = (r1,1, r2,2, · · · , rn,n)⊤ is the observed vector of R and Θ is the parameter
space. Substituting F̄ by F gives that of the lower RRSS. In RRSS scheme, a specific statistic of
a future sequence is predicted based on an observed sample. These two samples are supposed to
be independent and called future samples and informative samples, respectively. More precisely,
we intend to predict ordinary upper record statistics arising from a future sequence based on an
observed upper RRSS through the Bayesian viewpoint. Throughout this paper, suppose that X has
an exponential distribution with mean 1

θ
denoted by X ∼ Exp(θ) if its cdf has the form

F (x; θ) = 1− e−θx , x > 0, θ > 0. (1.3)

This distribution playes a important role in many reliability analysis, and lifetime applications. The
rest of the study consists of six sections. Two Bayesian prediction intervals for upper future record
values using RRSS are presented in Section 2. Also, in Section 3, we derive several Bayes point
predictors with respect to both symmetric and asymmetric loss functions. In Section 4, for different
values of hyperparameters, we use a Monte Carlo simulation study to investigate and compare the
performance of the predictors based on the RRSS scheme. Also, a real data on the daily heat degree
is analyzed in Section 5. Finally a conclusion is presented in Section 6.
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2. Bayesian prediction interval for future record values

This section deals with the problem of Bayesian prediction interval. At initial, suppose r =
(r1,1, r2,2, · · · , rn,n)⊤ be the observation of random vector R = (R1,1, R2,2, · · · , Rn,n)

⊤, an upper
RRSS of size n from Exp(θ). Then, from (1.2), the likelihood function of θ given the observed data
r can be written as

L(θ|r) ∝ θNe
−θ

n∑
i=1

ri,i
, (2.1)

where N = n(n+1)
2

and t =
n∑

i=1

ri,i is the observed value of T =
n∑

i=1

Ri,i. The joint density of R belongs

to a full rank exponential family and so T is a complete sufficient statistic for θ and plays a key role
in all the results that can be achieved. In the Bayesian process we need a prior distribution for the
parameter of θ. Because θ is nonnegative, a natural the choice for the priors of θ would be to assume
that its density is of the following forms

π(θ) =
βα

Γ(α)
θα−1e−βθ, θ > 0. (2.2)

The hyperparameters α(> 0) and β(> 0) are chosen to reflect the prior knowledge about θ, Γ(.)
denotes the complete gamma function. By using Bayes theorem, we get the posterior distribution of
θ given r as follows

Π(θ|r) = (β + t)N+α

Γ(N + α)
θN+α−1e−θ(β+t). (2.3)

In other words, θ|R ∼ Gamma(N + α, β + T ). Suppose that Ys is s-th upper record value from a
future sequence. Then the Bayesian predictive density function of Ys given r is given by

f ∗
Ys
(y|r) =

∫
θ

fYs(y|θ)Π(θ|r)dθ.

For the exponential distribution, the conditional density of Ys is gamma distribution with parameters
s and θ. By using this fact and (2.3) we obtain

f ∗
Ys
(y|r) = 1

B(s,N + α)y
p(y)s(1− p(y))N+α, y > 0, (2.4)

where p(y) = y
β+t+y

. Clearly, the Bayesian predictive density function is free of θ. We will use it as
a criterion for predicting future upper record values. Based on Bayesian predictive density function
the following results hold:
(i) For s ≥ 1, the random variable Ys|r with the Bayesian predictive density function f ∗

Ys
(y|r) is

identical in distribution with (β + T ) W
1−W

where W ∼ Beta(s,N + α), and also W and T are
independent.
(ii) N+α

s(β+T )
Ys|r ∼ F2s,2(N+α).

A predictor can be either a point or an interval predictor. In many practical data-analytic situations
we are interested in using the observations from an initial sample to construct an interval that will
have a present probability of containing some statistic based on a future sample of observations from
the same underlying distribution. Such an interval is called a prediction interval for the statistic of
interest. In the following, we will present two Bayesian prediction intervals for Ys. We start with the
survival method.
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2.1. Survival method

In order to construct Bayesian prediction interval based on the survival method, we first find
F̄ ∗
Ys
(y|r). From (2.4) we have

F̄ ∗
Ys
(y|r) =

∫ ∞

y

1

B(s,N + α)z
p(z)s(1− p(z))N+αdz, (2.5)

where F̄ ∗
Ys
(y|r) indicates the Bayesian predictive survival function for Ys. Thus, a 100(1 − γ)%

Bayesian prediction interval for Ys is such that

P (L(r) < Ys < U(r)|r) = 1− γ,

or equivalently

F̄ ∗
Ys
(L(r)|r) = 1− γ

2
, F̄ ∗

Ys
(U(r)|r) = γ

2
,

where L(r) and U(r) are the lower and upper limits satisfying

L(r) =
B1− γ

2
(s,N + α)

1−B1− γ
2
(s,N + α)

(β + T ) & U(r) =
B γ

2
(s,N + α)

1−B γ
2
(s,N + α)

(β + T )

where Bγ(c1, c2) represent the 100γ-th percentile of Beta(c1, c2) distribution.

2.2. The highest posterior density (HPD) method

Now, we construct a HPD interval for Ys. From (2.4) it is clearly concluded that f ∗
Ys
(y|r) is

continuous and uni-modal pdf, then a 100(1− γ)% HPD interval for Ys is given by (ζ1, ζ2) where ζ1
and ζ2 are the solutions the following equations∫ ζ2

ζ1

f ∗
Ys
(y|r)dy = 1− γ , 0 < γ < 1,

f ∗
Ys
(ζ1|r) = f ∗

Ys
(ζ2|r),

or equivalently, we need to solve the following two equations:∫ ζ2

ζ1

1

B(s,N + α)y
p(y)s(1− p(y))N+αdy = 1− γ , 0 < γ < 1,

(
ζ1
ζ2

)s−1

=

(
β + t+ ζ1
β + t+ ζ2

)N+α+s

.

The Monte Carlo simulation has to be used here. We have illustrated in Sections 4 and 5 these results.
Now, we consider the case where s = 1. In this case, the Bayesian predictive density function in
(2.4) for y is strictly decreasing function, (d/dy)f ∗

Y1
(y|r) = −N+α+1

β+t+y
< 0. It follows that 100(1− γ)%

Bayesian prediction interval for Y1 based on the HPD method, is given by (0, (β + T ){γ− 1
N+α − 1

}
).
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3. Bayesian point prediction for future record values

In this section, we discuss how to predict future record values based on an upper RRSS. We obtain
Bayes point predictor for record values from a future sequence with respect to both symmetric, and
asymmetric loss functions such as general entropy loss (GEL) function, precautionary loss (PL)
function, squared error loss (SEL) function, weighted squared error loss (WSEL) function and linear-
exponential (LINEX) loss function. The loss function we considered for Bayes predictor is the GEL
function of the form

L1(θ, θ̂) = q
[( θ̂
θ

)p − p ln
( θ̂
θ

)
− 1

]
; q > 0; p ̸= 0,

where θ̂ is an estimate of θ. This loss function is a generalization of the entropy loss function. It
was proposed by Calabria and Pulcini [24] and its minimum occurs at θ̂ = θ. Because the value of q
does not play any role in the optimization of the loss function, so without loss of generality, we can
assume q = 1. The Bayes point predictor for Ys under GEL function is of the form

Ŷ (BG)
s = (Ef∗(Y −p

s |r))−
1
p , (3.1)

provided that expectation exist and is finite. The proper choice for p is a challenging task for an
analyst because of it reflects the asymmetry of the loss function. Note that

• If we put p = −2 in (3.1), it provides the Bayes point predictor under an asymmetric loss as

PL function of the form L2(θ, θ̂) =
(θ̂−θ)2

θ̂
. Under the PL function, the Bayes point predictor for Ys

is (Ef∗(Y 2
s |r))

1
2 given by the following

Ŷ (BP )
s =

( (s− 1)(s− 2)

(N + α)(N + α + 1)

) 1
2 (β + T ), s > 2. (3.2)

Now, we can find the mean squared prediction error for Ŷ
(BP )
s as follows

E
(
Ŷ (BP )
s − Ys

)2
=

(s− 1)(s− 2)

(N + α)(N + α + 1)

(N
θ2

+ (β +
N

θ
)2
)
−

2s

θ

( (s− 1)(s− 2)

(N + α)(N + α + 1)

) 1
2 (β +

N

θ
) +

s+ s2

θ2
. (3.3)

• When p = −1, the Bayes point predictor in (3.1) coincide with the Bayes point predictor under
a symmetric loss as SEL function of the form L3(θ, θ̂) = (θ̂− θ)2. Under the SEL function, the Bayes
point predictor for Ys is Ef∗(Ys|r) given by the following

Ŷ (BS)
s =

s

N + α− 1
(β + T ), s > 0. (3.4)

We can find the mean squared prediction error for Ŷ
(BS)
s as follows

E
(
Ŷ (BS)
s − Ys

)2
=

s2

(N + α− 1)2
(N
θ2

+ (β +
N

θ
)2
)
− 2s2

θ(N + α− 1)
(β +

N

θ
) +

s+ s2

θ2
. (3.5)
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• In what follows when p = 1, the Bayes point predictor in (3.1) coincide with the Bayes point

predictor under an asymmetric loss as WSEL function of the form L4(θ, θ̂) =
(θ̂−θ)2

θ
. The Bayes point

predictor for Ys under the WSEL function may be defined as (Ef∗(Y −1
s |r))−1. From (2.4) we obtain

Ef∗(Y −1
s |r) =

N + α

(s− 1)(β + T )
,

therefore

Ŷ (BW )
s =

s− 1

N + α
(β + T ), s > 1. (3.6)

We find

E
(
Ŷ (BW )
s − Ys

)2
=

(s− 1)2

(N + α)2
(N
θ2

+ (β +
N

θ
)2
)
− 2s(s− 1)

θ(N + α)
(β +

N

θ
) +

s+ s2

θ2
. (3.7)

Another usefull loss function is the linear-exponential (LINEX) loss function. The LINEX loss

function is a convex but asymmetric loss function, and defined as L5(θ, θ̂) = b[ea(θ̂−θ) − a(θ̂− θ)− 1],
where b > 0 is the scale parameter and a ̸= 0 is the shape parameter. Without loss of generality, it
can be assumed that b = 1. A positive value of a is used when the overestimation is more serious
than an underestimation while a negative values of a is vice-versa. For a close to zero, this loss
function is approximately SEL and therefore almost symmetric (see, [25, 26]). Under the LINEX
loss function, the Bayes point predictor for Ys is

Ŷ (BL)
s = −1

a
lnEf∗(e−aYs|r) = −1

a
ln
[ ∫ ∞

0

e−ayf ∗
Ys
(y|r)dy

]
, (3.8)

provided that expectation exist and is finite. The Bayes point predictor under LINEX loss function
can not be obtained in explicit form. It must be solved by an appropriate numerical method. More-
over, the following may be noted:

(i) Under the modified SEL function of the form L6(θ, θ̂) = ( θ̂−θ
θ
)2, the Bayes point predictor for

Ys is, Ŷ
(BM)
s =

Ef∗ (Y
−1
s |r)

Ef∗ (Y
−2
s |r) =

s−2
N+α+1

(β + T ), s > 2.

(ii) Under the zero-one loss function of the form

L7(θ, θ̂i) =

{
0 θ ∈ Θi,
1 θ ∈ Θj,

for i ̸= j, the Bayes point predictor for Ys is the mode of the Bayesian predictive density func-
tion (2.4). So, Ŷ

(BZ)
s = s−1

N+α+1
(β + T ), s > 1.

4. Simulation study

In order to monitor the performance of the Bayes predictors obtained in the preceding sections,
a Monte Carlo simulation is carried out. Next, we use the following Algorithm 1, for the Bayes
predictors based on the RRSS scheme.

•Algorithm 1
Step 1. For given values of the hyperparameters α and β we generate θ from the prior distribution
(2.2).
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Step 2. For generated θ an upper RRSS of size n, say r = (r1,1, r2,2, · · · , rn,n)⊤, is generated from
(1.1).
Step 3. For given r in Step 2, compute the Bayes point predictors with respect to both symmetric
and asymmetric loss functions in (3.2), (3.4), (3.6) and (3.8).
Step 4. Compute (for 1000 iterations), the values of MSPEs for all the Bayes point predictors
obtained in Step 3. MSPE represents the estimate of mean squared prediction error.
Step 5. Compute EL and CP.

The acronyms EL and CP stand for the average of expected length and coverage probability, re-
spectively. Let (A,B) be a Bayesian prediction interval for Ys. Moreover, (Ai, Bi), i = 1, ..., 1000,
observed values of lower and upper bound of the proposed prediction interval. Thus

EL =
1

1000

1000∑
i=1

(Bi − Ai) & CP =
1

1000

1000∑
i=1

I(Ai ≤ Ys ≤ Bi)

where I(.) is the indicator function. In this simulation study, we consider s = 2, 4, 6, 7, and upper
record values with sizes n = 2(1)5. Also, we use p = −2,−1, 1 in the GEL function. As mentioned in
the Section 2, these different choices allowed us to compare the performance of the Bayes predictors
under different loss functions. The values of the parameter in LINEX loss function is considered to
be a = 1, 2. The value of the model parameter is considered to be θ = 1.17. For Bayesian prediction
computing, we consider different hyperparameters. In first case, we use (α = 1, β = 1) and in the
second case, we take (α = 1.5, β = 1.5), which are denoted by cases P-I and P-II, respectively. Also,
we assumed that the case α = β = 0 i.e. Jeffrey’s noninformative prior, since we do not have any
prior information. The corresponding results of the Bayes point predictors are reported in Tables
1-3. The values in parentheses are MSPEs. For s = 2 in PL function, we obtained invalid point pre-
dictors. These cases are indicated by a dash (-). We observe the following points from the numerical
results in Tables 1-3:

• All the MSPEs obtained are decreasing with respect to the sample sizes of upper record val-
ues, n, when all other parameters are kept fixed and increasing with respect to s. For more details,
see Figures 1(a), 1(b) and 1(c).
• The MSPEs does not have a constant bahavior. But when n increases, predictors under the SEL
function (which is a symmetric loss function) almost performs better than the WSEL and PL func-
tions (which are asymmetric loss functions). For more details, see Figures 2(a), 2(b) and 2(c).
• Also, in LINEX loss function the MSPEs are increasing in a and s.
• The Bayes predictors based on informative priors perform much better than the Bayes predictors
based on noninformative prior in terms of MSPEs.
• The MSPEs decreases with the joint increase of the hyperparameters (α and β), which is reason-
able. Notice that, from (2.2) the priors have the same means. However, the variance of case P-II is
smaller than the others. For this reason, case P-II works better than others in terms of MSPE.
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Table 1: Bayes point predictors for Ys and MSPEs for noninformative prior.

p = −2 (PL) p = −1 (SEL)
n↓ s = 2 s = 4 s = 6 s = 7 s = 2 s = 4 s = 6 s = 7
2 - 1.86 (6.55) 3.39 (11.26) 4.15 (14.22) 2.62 (4.35) 5.25 (14.51) 7.87 (30.48) 9.19 (40.64)
3 - 1.95 (5.71) 3.57 (8.94) 4.37 (10.89) 2.07 (2.26) 4.13 (6.15) 6.20 (11.67) 7.23 (15.04)
4 - 2.00 (5.38) 3.65 (7.86) 4.47 (9.35) 1.90 (1.85) 3.81 (4.48) 5.71 (7.90) 6.66 (9.91)
5 - 2.03 (5.10) 3.70 (7.28) 4.54 (8.53) 1.83 (1.69) 3.67 (3.85) 5.50 (6.49) 6.42 (7.98)

p = 1 (WSEL)
n↓ s = 2 s = 4 s = 6 s = 7
2 0.87 (2.42) 2.62 (5.81) 4.37 (11.13) 5.25 (14.51)
3 0.86 (2.29) 2.58 (4.72) 4.31 (8.10) 5.17 (10.16)
4 0.85(2.25) 2.57 (4.28) 4.28 (6.89) 5.14(8.42)
5 0.85 (2.23) 2.57 (4.06) 4.28 (6.29) 5.14 (7.55)

LINEX
a = 1 a = 2

n ↓ s = 2 s = 4 s = 6 s = 7 s = 2 s = 4 s = 6 s = 7
2 1.27 (0.41) 2.32 (1.91) 3.23 (4.89) 3.66 (7.04) 0.96 (0.65) 1.75 (3.06) 2.45 (7.74) 2.76 (11.05)
3 1.25 (0.33) 2.38 (1.50) 3.41 (3.76) 3.91 (5.37) 0.98 (0.59) 1.85 (2.63) 2.65 (6.49) 3.02 (9.18)
4 1.24 (0.29) 2.41 (1.28) 3.51 (3.16) 4.04 (4.48) 0.98 (0.56) 1.90 (2.41) 2.76 (5.82) 3.17 (8.17)
5 1.24 (0.27) 2.43 (1.16) 3.57 (2.80) 4.12 (3.94) 0.98 (0.54) 1.93(2.29) 2.83 (5.42) 3.26 (7.56)

Table 2: Bayes point predictors for Ys and their MSPEs for case P-I.

p = −2 (PL) p = −1 (SEL)
n↓ s = 2 s = 4 s = 6 s = 7 s = 2 s = 4 s = 6 s = 7
2 - 1.99 (5.69) 3.62 (8.95) 4.44 (10.93) 2.42 (2.86) 4.83 (8.55) 7.25 (17.06) 8.46 (22.38)
3 - 2.02 (5.35) 3.69 (8.04) 4.51 (9.63) 2.06 (2.05) 4.11 (5.28) 6.17 (9.71) 7.20 (12.37)
4 - 2.04 (5.13) 3.72 (7.43) 4.56 (8.76) 1.91 (1.78) 3.83 (4.22) 5.74 (7.33) 6.70 (9.13)
5 - 2.06 (5.00) 3.75 (7.05) 4.60 (8.21) 1.85 (1.66) 3.69 (3.75) 5.54 (6.26) 6.46 (7.67)

p = 1 (WSEL)
n↓ s = 2 s = 4 s = 6 s = 7
2 0.91 (2.35) 2.72 (4.68) 4.53 (8.20) 5.44 (10.37)
3 0.89 (2.23) 2.64 (4.32) 4.41 (7.13) 5.29 (8.80)
4 0.87 (2.21) 2.61 (4.10) 4.35 (6.47) 5.22 (7.83)
5 0.87 (2.20) 2.60 (3.96) 4.33 (6.07) 5.19 (7.24)

LINEX
a = 1 a = 2

n ↓ s = 2 s = 4 s = 6 s = 7 s = 2 s = 4 s = 6 s = 7
2 1.31 (0.27) 2.44 (1.34) 3.46 (3.54) 3.93 (5.16) 1.01 (0.54) 1.87 (2.55) 2.64 (6.49) 2.99 (9.29)
3 1.28 (0.27) 2.44 (1.26) 3.52 (3.18) 4.04 (4.57) 1.00 (0.54) 1.90 (2.41) 2.74 (5.94) 3.13 (8.41)
4 1.26 (0.26) 2.44 (1.16) 3.57 (2.87) 4.11 (4.07) 1.00 (0.53) 1.93 (2.30) 2.81 (5.54) 3.23 (7.77)
5 1.25 (0.25) 2.45 (1.09) 3.61 (2.63) 4.17 (3.71) 1.00 (0.52) 1.94(2.22) 2.86 (5.26) 3.30 (7.33)
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Table 3: Bayes point predictors for Ys and their MSPEs for case P-II.

p = −2 (PL) p = −1 (SEL)
n↓ s = 2 s = 4 s = 6 s = 7 s = 2 s = 4 s = 6 s = 7
2 - 2.03 (5.42) 3.71 (8.26) 4.54 (9.96) 2.36 (2.54) 4.71 (7.25) 7.07 (14.14) 8.25 (18.40)
3 - 2.05 (5.21) 3.73 (7.70) 4.57 (9.17) 2.05 (1.97) 4.10 (4.99) 6.15 (9.05) 7.18 (11.47)
4 - 2.06 (5.06) 3.75 (7.25) 4.60 (8.52) 1.92 (1.76) 3.83 (4.12) 5.75 (7.10) 6.71 (8.82)
5 - 2.07 (4.95) 3.77 (6.94) 4.62 (8.06) 1.85 (1.65) 3.70 (3.70) 5.55 (6.16) 6.48 (7.54)

p = 1 (WSEL)
n↓ s = 2 s = 4 s = 6 s = 7
2 0.92 (2.20) 2.75 (4.37) 4.58 (7.41) 5.50 (9.26)
3 0.89 (2.20) 2.67 (4.18) 4.45 (6.78) 5.33 (8.32)
4 0.88 (2.20) 2.63 (4.03) 4.38 (6.30) 5.25 (7.59)
5 0.87 (2.19) 2.61 (3.92) 4.35 (5.97) 5.21 (7.11)

LINEX
a = 1 a = 2

n ↓ s = 2 s = 4 s = 6 s = 7 s = 2 s = 4 s = 6 s = 7
2 1.33 (0.24) 2.48 (1.18) 3.53 (3.16) 4.01 (4.62) 1.02 (0.51) 1.91 (2.41) 2.70 (6.11) 3.07 (8.74)
3 1.28 (.25) 2.46 (1.17) 3.56 (2.97) 4.09 (4.27) 1.01 (0.52) 1.92 (2.33) 2.77 (5.73) 3.18 (8.11)
4 1.27 (0.25) 2.46 (1.11) 3.60 (2.75) 4.15 (3.90) 1.00 (0.52) 1.94 (2.25) 2.83 (5.42) 3.26 (7.60)
5 1.26 (0.24) 2.46 (1.06) 3.62 (2.56) 4.19 (3.60) 0.99 (0.52) 1.95(2.19) 2.87 (5.19) 3.31 (7.23)
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Figure 1: Plot the MSPEs for s = 2, 4, 6, 7 and n = 2(1)5.
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Figure 2: The Behavior of the MSPEs under PL, SEL and WSEL functions.

In Tables 4-6 according to the survival and HPD methods the values of EL and CP are reported.
Here, the values in parentheses referes to the CPs. The following points are extracted from Tables
4- 6:
• The ELs and CPs improve when n gets large thus the ELs decreases with increasing n, also when
n increases the CPs become closer to prediction coefficient of 0.95 in most cases.
• The Bayesian prediction intervals based on informative priors as compared to the Bayesian predic-
tion intervals based on noninformative prior, acts very good, in terms of ELs and CPs.
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• In more details, the ELs on the basis of the HPD method are smaller than those of survival
method and everywhere the CPs of the HPD method is more than survival method. Note that these
Bayesian intervals improve which was expected as the hyperparameters (α and β) increase jointly.
So the Bayesian prediction intervals based on case P-II has a better performance than others.

Table 4: The values of EL and CP for Ys according to the survival and HPD methods for noninfor-
mative prior, γ = 0.05.

SURVIVAL HPD
n↓ s = 2 s = 4 s = 6 s = 7 s = 2 s = 4 s = 6 s = 7
2 10.44 (0.937) 18.37 (0.942) 26.09 (0.939) 29.92 (0.938) 6.88 (0.959) 12.99 (0.960) 18.73 (0.958) 21.44 (0.959)
3 6.80 (0.942) 11.12 (0.943) 15.14 (0.946) 17.11 (0.947) 5.51 (0.958) 9.62 (0.957) 13.08 (0.959) 14.81 (0.958)
4 5.80 (0.942) 9.09 (0.947) 12.03 (0.951) 13.44 (0.950) 5.02 (0.960) 8.17 (0.959) 10.91 (0.958) 12.23 (0.952)
5 5.37 (0.946) 8.21 (0.951) 10.67 (0.951) 11.84 (0.952) 4.68 (0.961) 7.53 (0.962) 9.92 (0.960) 11.01 (0.961)

Table 5: The values of EL and CP for Ys according to the survival and HPD methods for case P-I,
γ = 0.05.

SURVIVAL HPD
n↓ s = 2 s = 4 s = 6 s = 7 s = 2 s = 4 s = 6 s = 7
2 8.79 (0.946) 14.97 (0.945) 20.90 (0.946) 23.82 (0.946) 6.56 (0.961) 11.71 (0.962) 16.52 (0.960) 19.04 (0.960)
3 6.58 (0.948) 10.60 (0.947) 14.30 (0.947) 16.10 (0.948) 5.47 (0.960) 9.19 (0.961) 12.59 (0.962) 14.14 (0.961)
4 5.76 (0.947) 8.97 (0.949) 11.82 (0.952) 13.18 (0.951) 5.00 (0.960) 8.04 (0.962) 10.76 (0.962) 12.05 (0.963)
5 5.36 (0.950) 8.19 (0.954) 10.61 (0.953) 11.76 (0.953) 4.66 (0.961) 7.51 (0.964) 9.85 (0.963) 10.94 (0.965)

Table 6: The values of EL and CP for Ys according to the survival and HPD methods for case P-II,
γ = 0.05.

SURVIVAL HPD
n↓ s = 2 s = 4 s = 6 s = 7 s = 2 s = 4 s = 6 s = 7
2 8.31 (0.949) 13.97 (0.950) 19.36 (0.949) 22.01 (0.951) 6.40 (0.959) 11.21 (0.960) 15.86 (0.963) 18.01 (0.964)
3 6.49 (0.949) 10.39 (0.950) 13.96 (0.951) 15.71 (0.952) 5.45 (0.963) 9.08 (0.964) 12.32 (0.965) 13.89 (0.964)
4 5.74 (0.950) 8.91 (0.952) 11.72 (0.953) 13.06 (0.952) 4.98 (0.964) 8.03 (0.963) 10.70 (0.971) 12.02 (0.972)
5 5.37 (0.953) 8.18 (0.9554) 10.58 (0.955) 11.72 (0.954) 4.70 (0.970) 7.52 (0.972) 9.84 (0.975) 10.92 (0.974)

5. Real data analysis

We illustrate the performances of the predictors by considering a real data set (say Y ) on the
daily heat degree (in degrees celsius) of the month of January for three years 2009, 2014, 2018 of Nova
Scotia Province and BACCARO PT Station for government Canada. (the given data are available
at this address: first, log in to the website: www.climate.weather.gc.ca and click on the Historical
Data. The web site of Historical Data will then appear). The Weibull distribution was one of the best
models fitted on Y based on suggestions of Easy Fit software. In more detail, based on the maximum

likelihood approach, we have Y ∼ Weibull(a = 5.4, b = 33.3) with the pdf of f(y) = a
b
y

1
b
−1e−ay

1
b .

From the above expression, it is evident that X = aY
1
b has exponential distribution. The p-value of

the goodness of fit test Kolmogorov-Smirnov of the one-parameter exponential distribution on the
converted data, X, is 0.997 which supports the adequacy of the fitting. From this transformed data

set, it can be shown that r = (5.946, 5.935, 5.959), so we have n = 3 (or N = 6). From T =
n∑

i=1

Ri,i

we also have T = 17.84. It is observed that Ri,i’s are not necessarily ordered, as mentioned earlier
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in the introduction section. Hence, the results obtained in the preceding sections can be applied to
on X and r. Since the mean squared prediction errors of the point predictors are a function of θ,
we estimated the values of the mean squared prediction errors by substituting their respective the
Bayes estimator of θ. In which case from (2.3), the Bayes estimator of θ under PL function, SEL
function and WSEL function, are derived as

θ̂(BP ) = (E(θ2|r))
1
2 =

((N + α)(N + α + 1))
1
2

β + T
=


0.36 for α = β = 0,

0.40 for α = β = 1,

0.41 for α = β = 1.5,

θ̂(BS) = E(θ|r) = N + α

β + T
=


0.34 for α = β = 0,

0.37 for α = β = 1,

0.39 for α = β = 1.5,

θ̂(BW ) = (E(θ−1|r))−1 =
N + α− 1

β + T
=


0.28 for α = β = 0,

0.32 for α = β = 1,

0.34 for α = β = 1.5,

respectively. All the above Bayes estimators are uniqe for the parameter of θ, and so are admissible.
The Bayes estimator of θ under LINEX loss function is

θ̂(BL) = −1

a
lnE(e−aθ|r) = −1

a
ln
[ ∫ ∞

0

e−aθΠ(θ|r)dθ
]
, (5.1)

provided that E(e−aθ|r) exist and is finite. The integral (5.1) does not have an explicit solution.
It must be solved by an appropriate numerical method. Clearly, the mean squared prediction error
under LINEX loss function also does not have a closed form. To this end, to evaluate the performance
of predictors, the bootstrap method is employed.
Finally, we predict the upper record values (s = 3, 4, 6, 7), and their MSPEs as well as the Bayesian
prediction intervals. Tables 7-12 summarize the results from a real data set. Note that in Tables 7-9,
the values in parentheses are the MSPEs. Further, in Tables 10-12, the first entry is the Bayesian
prediction interval and the second entry is the EL.

Table 7: Bayes point predictors for Ys and their MSPEs for noninformative prior based on a real
data.

p = −2 (PL) p = −1 (SEL)
n↓ s = 3 s = 4 s = 6 s = 7 s = 3 s = 4 s = 6 s = 7
3 3.89 (46.56) 6.74 (59.54) 12.31 (93.32) 15.08 (113.72) 10.70 (48.80) 14.27 (74.97) 21.41 (142.16) 24.98 (183.18)

p = 1 (WSEL)
n↓ s = 3 s = 4 s = 6 s = 7
3 5.95 (59.41) 8.92 (82.75) 14.87 (142.16) 17.84 (178.23)

LINEX
a = 1 a = 2

n ↓ s = 3 s = 4 s = 6 s = 7 s = 3 s = 4 s = 6 s = 7
3 3.92 (28.16) 5.10 (51.91) 7.30 (124.18) 8.33 (173.53) 2.76 (44.51) 3.59 (80.69) 5.15 (187.77) 5.89 (259.35)
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Table 8: Bayes point predictors for Ys and their MSPEs for case P-I based on a real data.

p = −2 (PL) p = −1 (SEL)
n↓ s = 3 s = 4 s = 6 s = 7 s = 3 s = 4 s = 6 s = 7
3 3.56 (40.71) 6.17 (52.45) 11.26 (81.45) 13.79 (98.79) 9.42 (32.85) 12.56 (48.74) 18.84 (87.93) 21.98 (111.23)

p = 1 (WSEL)
n↓ s = 3 s = 4 s = 6 s = 7
3 5.38 (48.48) 8.07 (66.76) 13.46 (111.14) 16.15 (137.22)

LINEX
a = 1 a = 2

n ↓ s = 3 s = 4 s = 6 s = 7 s = 3 s = 4 s = 6 s = 7
3 3.56 (22.86) 4.64 (41.98) 6.67 (99.88) 7.64 (139.30) 2.54 (35.61) 3.32 (64.48) 4.78 (149.80) 5.48 (206.77)

Table 9: Bayes point predictors for Ys and their MSPEs for case P-II based on a real data.

p = −2 (PL) p = −1 (SEL)
n↓ s = 3 s = 4 s = 6 s = 7 s = 3 s = 4 s = 6 s = 7
3 3.42 (38.30) 5.93 (49.54) 10.83 (77.08) 13.27 (93.12) 8.93 (28.46) 11.90 (41.72) 17.85 (73.93) 20.83 (92.87)

p = 1 (WSEL)
n↓ s = 3 s = 4 s = 6 s = 7
3 5.16 (44.51) 7.74 (61.22) 12.89 (101.24) 15.47 (124.54)

LINEX
a = 1 a = 2

n ↓ s = 3 s = 4 s = 6 s = 7 s = 3 s = 4 s = 6 s = 7
3 3.42 (20.88) 4.46 (38.29) 6.42 (90.89) 7.38 (126.64) 2.46 (32.33) 3.21 (58.51) 4.63 (135.79) 5.31 (187.39)

Table 10: 95% prediction intervals for Ys and their ELs according to the survival and HPD methods
for noninformative prior based on a real data.

SURVIVAL HPD
n↓ s = 3 s = 4 s = 6 s = 7 s = 3 s = 4 s = 6 s = 7
3 (1.66,33.26) (2.83,41.77) (5.44,58.47) (6.82,66.73) (0.40,25.11) (1.38,30.27) (3.49,43.13) (4.94,59.04)

31.6 38.94 53.03 59.91 24.71 28.89 39.64 54.10

Table 11: 95% prediction intervals for Ys and their ELs according to the survival and HPD methods
for case P-I based on a real data.

SURVIVAL HPD
n↓ s = 3 s = 4 s = 6 s = 7 s = 3 s = 4 s = 6 s = 7
3 (1.52,28.27) (2.61,35.37) (5.04,49.26) (6.33,56.12) (0.90,18.36) (2.38,27.78) (3.84,35.60) (3.99,46.16)

26.75 32.76 44.22 49.79 17.46 25.40 31.76 42.17
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Table 12: 95% prediction intervals for Ys and their ELs according to the survival and HPD methods
for case P-II based on a real data.

SURVIVAL HPD
n↓ s = 3 s = 4 s = 6 s = 7 s = 3 s = 4 s = 6 s = 7
3 (1.47,26.42) (2.52,32.99) (4.87,45.85) (6.12,52.19) (0.45,17.51) (1.98,25.40) (3.15,29.70) (4.32,38.76)

24.95 30.47 40.98 46.07 17.06 23.42 26.55 34.44

According to the results of Tables 7-12, the predictors based on cases P-I and P-II performs better
than the case noninformative prior. More precisely, we conclude that the case P-II is better than the
others. Clearly all the MSPEs are increasing in s. As noticed in the simulation study, here too, the
HPD method has a better performance than the survival method. Thus, the obtained results in this
section confirm the results of the previous one.

6. Conclusion

In this paper, we considered prediction of record values from a future sequence, when the only
observed data are upper RRSS’s. By considering the parent distribution as exponential, we have
derived several Bayes point predictors with respect to both symmetric and asymmetric loss functions.
We have also compared the point predictors in terms of the MSPEs. Results showed that the MSPEs
are decreasing with respect to the sample sizes of upper record values, n, and the predictors under
the SEL function improve when n gets large as compared to the WSEL and PL functions. Next,
our study shows that Bayesian prediction interval obtained based on the HPD method has further
coverage probability and shorter expected length as compared to the survival method. Therefore,
we suggest that whenever n is large then Bayesian prediction approach based on the RRSS scheme
should be used. Also, the performance of predictors based on case P-II are superior than others.
Because Bayesian inference is sensitive to the choice of hyperparameters for informative priors, care
must be taken in the selection of values. Finally, the efficiency of some of the obtained results is
illustrated throughout using real data. The results in the real data section confirm the results of the
simulation section.
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