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Abstract

We use Φ-reflexive property on some geometrical structures(Frölicher spaces, Sikorski spaces and
diffeological spaces) to prove that some results on (X,Υ)-structures. Finally, we introduce P-tangent
bundles, F -tangent bundles and obtain a relation between these bundles and Φ-reflexive property.
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1. Introduction

There are many structures which include manifolds as special cases in the literature. Differential
spaces are introduced by Roman Sikorski in 1971 [11]. In 1980, Jean-Marie Souriau presented the dif-
feological spaces which are developed by Patrick Iglesias and Paul Donato [8]. Alfred Frölicher offered
the Frölcher spaces in 1982 [7]. Batubenge and others (2013) offered reflexive concept. They used
this concept for comparing the subcategories of Frölicher, Sikorski and diffeological structures. They
showed that the categories of reflexive diffeological spaces, Frölicher spaces and reflexive differential
spaces are isomorphic. In the 2015s, Dehghan Nezhad and Shahriyari introduced (X,Υ)-structures
which are a generalization of manifolds, Frölicher spaces, Sikorski spaces and diffeological spaces [3].
The (X,Υ)-structures include all above structures. We focus on diffeology, differential structures (in
the sense of Sikorski), Frölcher structures and (X,Υ)-structures. They can be assumed as special
cases of (X,Υ)-structures [3]. In this paper, we generalize the reflexive concept proposed. This gen-
eralization concept is called Φ-reflexive property. We use this new concept to obtain some interesting
results on some above structures. We introduce P-tangent bundle and F -tangent bundle. Finally,
we obtain a relation between these bundles and Φ-reflexive property.
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2. Preliminaries and notations

In this section, we summarize the general preliminary definitions of (X,Υ)-structures and we
exclude special cases. We introduce the basic concepts using the (X,Υ)-structure. We repeat the
relevant material from [3], [4] and [5], for the convenience of the reader. Throughout this paper,
suppose that M is a non-empty set.

Definition 2.1. (Pseudomonoid)[3] Assume that X is a topological space and assume that Υ is a
collection of continuous maps on open subsets of X into X. The collection Υ is said a pseudomonoid
on X if Υ satisfies the following conditions:

� idX ∈ Υ,

� If f, g are two elements of Υ such that the image of g is a subset of the domain of f, then
f ◦ g ∈ Υ,

� Let f ∈ Υ and let the subset V ⊆ dom(f) is open. Then the restriction map f |V is a member
of Υ.

The pair (X,Υ) is said a pseudomonoid.

Remark 2.2. Clearly, pseudomonoids are a natural generalization of pseudogroups.

Let M be a non-empty set and let X be a topological space. Then a parametrization from X into
M is a map ϕ : U ⊆ X → M where U ⊆ X is an open subset. A cover for M is a collection
A = {(ϕα, Uα)}α∈I of parametrizations of M such that M = ∪α∈Iϕα(Uα).

Definition 2.3. Let Υ be a pseudomonoid on X. An (X,Υ)-atlas on M is a cover A = {(Uα, ϕα)}α∈I
for M such that if ϕα ∈ A , f ∈ Υ and ϕα ◦ f is defined, then ϕα ◦ f ∈ A , A set endowed with an
(X,Υ)-atlas is called an (X,Υ)-structure and denoted by (M,A ) where, A is an (X,Υ)-atlas on
M.

Under the above assumptions, any pseudomonoid (X,Υ) is an (X,Υ)-structure too.

Definition 2.4. (Diffeology)[8] A plot of M is a map p : U ⊆ Rn → M where the subset U
is open, for some n ∈ N. A set D of plots is said a diffeology on M if satisfying the following
properties:

� The constant function p : Rn → {m} ⊆ M is an element of D, for every m ∈ M and for all
n ∈ N.

� Assume that p : U → M is a plot where for any element u ∈ U there exists an open subset
V ⊆ U contains u such that p |V∈ D. Then p ∈ D.

� The map p ◦ F is an element of D, for all p : U ⊆ Rn → M ∈ D and for all smooth map
F : V ⊆ Rm → U ⊆ Rn(m,n ∈ N).

The pair (M,D) is said a diffeological space. The strongest topology on M which every plot is
continuous is said D-topology.

Definition 2.5. (Differential Space)[11] A non-empty family F of real-functions on M, along
with the weakest topology on M is called a Sikorski structure (or differential structure), on M
if the following conditions are being held:
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� All elements of F are continuous functions,

� For every f1, ..., fm ∈ F and F ∈ C∞(Rm), composition F (f1, ..., fm) is an element of F ,

� Assume that f : M → R is a real function where for all m ∈ M, there exists an open subset
Um ⊆ M contains m and a function g ∈ F such that f |Um= g |Um . Then f is an element of
F .

The pair (M,F) is said a Sikorski space (or differential space).

Definition 2.6. (Frölicher spaces)[7] A family of real-value functions F with a collection of
curves C is said a Frölicher structure if F and C satisfy the following properties:

� A curve c : R → M is an element of C if and only if f ◦ c ∈ C∞(R), for any function f ∈ F .

� A real-value function f : M → R is an element of F if and only if for any curve c ∈ C, we
have f ◦ c ∈ C∞(R).

The triple (M, C,F) is called a Frölicher space.

Proposition 2.7. [3] The (X,Υ)-structures are generalization of manifolds, Frölicher spaces, Siko-
rski spaces and diffeological spaces.

3. Φ-reflexive property

In [2], authors offered the concept of reflexive. They used this concept to obtain isomorphisms be-
tween some subcategories of Fölicher, differential and diffeology spaces. In this section, we introduce
a generalization of reflexive concept what is said Φ-reflexive property.

Definition 3.1. [2] Let D0 be a collection of parametrizations p : U ⊆ Rn → M where the subset U
is open, for some n ∈ N. Suppose that F0 is a family of functions f : M → R. Consider two following
sets:

ΠF0 := {p : U → M | U ⊆ Rn is an open subset, n ∈ N where f ◦ p ∈ C∞(U),∀f ∈ F0},
ΦD0 := {f : M → R| f ◦ p ∈ C∞(U),∀(p : U → M) ∈ D0}.

The set D0 or F0 is called reflexive if D0 = ΠΦD0 or F0 = ΦΠF0(resp.).

Definition 3.2. (Reflexive Diffeologies)[2] Assume that D is a diffeology on M . Then D is said
reflexive if and only if D = ΠΦD. Similarly, Let (M,F) be a differential space. Then F is said
reflexive if and only if F = ΦΠF .

Proposition 3.3. [2] Three categories of reflexive diffeological spaces, Frölicher spaces and reflexive
differential spaces are isomorphic.

In the following definition, we propose Φ-reflexive property.

Definition 3.4. Suppose that X,X1, X2 are three topological spaces. An X-parametrization of
M is a map ϕ : U ⊆ X → M where the subset U is open. An X-function is a map from the whole
of M into topological space X.
Let Φ be a continuous X1-parametrizations collection of X2. Consider an X2-functions family F0 on
M and consider a collection of X1-parametrizations P0 of M. Define two following sets:

Φ∗F0 := {X1 − parametrizations p : U → M | for any f ∈ F , f ◦ p ∈ Φ},
Φ∗P0 := {f : M → X2| for any p ∈ P , f ◦ p ∈ Φ}.
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Lemma 3.5. Two operators Φ∗ and Φ∗ are inclusion-reserving and Φ∗Φ
∗P0 ⊇ P0, Φ∗Φ∗F0 ⊇ F0.

Definition 3.6. We say a collection P0 of M has Φ-reflexive property if and only if Φ∗Φ
∗P0 =

P0. Similarly, We say an X-function family F0 on M has Φ-reflexive property if and only if
Φ∗Φ∗F0 = F0.

The Φ-reflexive property defined in Definition 3.6 is a generalization of reflexive property defined in
Definition 3.1 (see the following example).

Example 3.7. Let Φ denote all smooth real-value functions on all open subsets of Rn’s, for all n ∈ N.
Suppose that P0 is a parametrizations collection from some open subsets Rn’s into M. Assume that
F0 is a real-value functions family on M. The sets F0 and P0 have Φ-reflexive property if and only
if they are reflexive by the Definition 3.1.

Proposition 3.8. Suppose that Φ be a continuous X1-parametrizations collection of a topological
space X2. Assume that P0 is an X1-parametrizations collection of M and F0 is a family of X2-
functions on M.

� If F := Φ∗P0, then F has Φ-reflexive property.

� If P := Φ∗F0, then P has Φ-reflexive property.

Proof . We only prove the first statement. It is sufficient to show that Φ∗Φ∗F ⊆ F , by the
Lemma 3.5. Fix f0 ∈ Φ∗Φ∗F . Then f0 ◦ p ∈ Φ for all p ∈ Φ∗F . By the Lemma 3.5, we obtain
Φ∗F = Φ∗Φ

∗P0 ⊇ P0. It follows immediately that f0 ◦ p ∈ Φ for any p ∈ P0. We conclude that
f0 ∈ Φ∗P0 = F . Therefore Φ∗Φ

∗F ⊆ F . By similar arguments, the second statement is proved. 2

Proposition 3.9. Suppose that Φ is a continuous X1-parametrizations collection of a topological
space X2. Then the collection Φ has Φ-reflexive property.

Proof . By the Lemma 3.5, it is sufficient to show that Φ∗Φ
∗Φ ⊆ Φ. Get an arbitrary element

p0 ∈ Φ∗Φ
∗Φ. By definition, for any f ∈ Φ∗Φ, we have f ◦ p0 ∈ Φ. Clearly, idX2 ∈ Φ∗Φ. Therefore

p0 = idX2 ◦ p0 ∈ Φ. This completes the proof. 2

Proposition 3.10. Assume that Φ is a continuous X1-parametrizations collection of a topological
space X2. Suppose that F0 is a family of X2-functions on M and the set P0 is a collection of X1-
parametrizations of M. We will denote the weakest topology on M by TF0 where any members of F0

are continuous maps. We will denote the strongest topology on M by TP0 where all members of P0

are continuous maps. TP0 . If for all elements f ∈ F0 and for all members p ∈ P0, we have f ◦ p ∈ Φ,
then TF0 ⊆ TP0 .

Proof . By the definition of weakest topology, the following set SF0 is a sub-basis of TF0

SF0 = {f−1(W ) ⊆ M |f ∈ F0,W ⊆ X2 is an open subset}.

From the definition of strongest topology, a subset U of M is a member of TP0 if and only if for all
p ∈ P0, p

−1(U) ⊂ X1 is an open subset.
Now, we complete the proof by using above notes. Fix f−1(W ) ∈ SF0 for some f ∈ F0. Get an

arbitrary element p in P . Because f ◦ p ∈ Φ, therefore the set
(
f ◦ p

)−1
(W ) = p−1

(
f−1(W )

)
is open.

It is easily seen that, f−1(W ) is an element of TP0 . Hence TF0 ⊆ TP0 . 2
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Definition 3.11. Suppose that X is a topological space. Let the sets M1, M2 be non-empty sets and
let ζ : M1 → M2 be a map.

� Two X-parametrizations collections P1 of M1 and P2 of M2 are ζ-related, (written P1 ∼ζ P2)
provided ζ#(P1) := {ζ ◦ p|p ∈ P1} ⊆ P2.

� Two X-functions families F1 of M1 and F2 of M2 are ζ-related, (written F1 ∼ζ F2) provided
ζ#(F2) := {f ◦ ζ|f ∈ F2} ⊆ F1.

Proposition 3.12. Consider the above assuming.

� If P1 ∼ζ P2, then the map ζ : (M1, TP1) → (M2, TP2) is continuous.

� If F1 ∼ζ F2, then the map ζ : (M1, TF1) → (M2, TF2) is continuous.

Proof . First, let U be an element of TP2 and let P1 ∼ζ P2. Get an arbitrary element p ∈ P1.
The X-parametrization ζ ◦ p is an element of P2, because P1 ∼ζ P2. Therefore, p

−1
(
ζ−1(U)

)
=

(ζ ◦ p)−1(U) ⊆ X is an open subset. Of course, the subset ζ−1(U) ⊆ M1 is open. It shows that ζ is
a continuous map.

Now, assume that F1 ∼ζ F2.We show that ζ is continuous. Let f−1(V ) be an element of sub-basis
of TF2 where the set V ⊆ X is open and f ∈ F2. Because F1 ∼ζ F2, the function f ◦ ζ is an element
of F1. Therefore the set ζ−1

(
f−1(V )

)
= (f ◦ ζ)−1(V ) ⊆ M1 is an open subset. This completes the

proof. 2

Proposition 3.13. Suppose that Pi is an X-parametrizations collection of Mi and let Fi be an
X-function family on Mi (i = 1, 2, 3). Suppose that ζ1 : M1 → M2 and ζ2 : M2 → M3 are two maps.

� If P1 ∼ζ1 P2 and P2 ∼ζ2 P3, then X-parametrizations collections P1 and P3 are ζ2 ◦ ζ1-related.

� If F1 ∼ζ1 F2 and F2 ∼ζ2 F3, then X-functions families F1 and F3 are ζ2 ◦ ζ1-related.

Proposition 3.14. Assume that Φ be a continuous X1-parametrizations collection of a topological
space X2. Let M1, M2 be non-empty sets and let ζ : M1 → M2 be a map.

i) Let X1-parametrizations collections P1 of M1 and P2 of M2 be ζ-related. Then Φ∗P1 on M1

and Φ∗P2 on M2 are ζ-related, too.

ii) Let X2-functions families F1 on M1 and F2 on M2 be ζ-related. Then Φ∗F1 of M1 and Φ∗F2

of M2 are ζ-related, too.

iii) Let P0 be a collection of X1-parametrizations on M1. Then ζ#ϕ∗ζ#P0 ⊆ ϕ∗P0.

iv) Let F0 be a family of X2-functions on M2, then ζ#ϕ∗ζ
#F0 ⊆ ϕ∗F0.

Proof .

i) Assume that g ∈ ζ#(Φ∗P2). There is f ∈ Φ∗P2 such that g = f ◦ ζ. Suppose that p0 is an
arbitrary element of P1. Since P1 and P2 are ζ-related. It shows that X1-parametrization ζ ◦p0
is a member of P2. Therefore, the continuous map g ◦ p0 = f ◦ ζ ◦ p0 is an element of Φ. Hence
g is in Φ∗P1. It shows that ζ

#(Φ∗P2) ⊆ Φ∗P1.

ii) By similar arguments of i), we can prove this part ii).
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iii) We use the above definitions for this proof: ζ#ϕ∗ζ#P0 = {f ◦ ζ| f ∈ Φ∗ζ#P0} = {f ◦ ζ| ∀p0 ∈
ζ#P0, f ◦ p0 ∈ Φ} = {f ◦ ζ| ∀p ∈ P0, f ◦ ζ ◦ p ∈ Φ} ⊆ Φ∗P0.

iv) In the same arguments of iii), we show that this item: ζ#ϕ∗ζ
#F0 = {ζ ◦ p| p ∈ Φ∗ζ

#F0} =
{ζ ◦ p|f0 ◦ p ∈ Φ,∀f0 ∈ ζ#F0} = {ζ ◦ p|f ◦ ζ ◦ p ∈ Φ,∀f ∈ F0} ⊆ Φ∗F0.

2

Definition 3.15. Let Φ be a continuous X1-parametrizations collection of a topological space X2.
Assume that V ⊆ X1 is an open subset and F0 is a family of X2-functions on M. Suppose that

Φ∗|VF0 := {p ∈ Φ∗F0| dom(p) ⊆ V }, ΦV
∗ F0 := {p ∈ Φ∗F0|dom(p) = V }.

If Φ∗|VΦ∗P0 = P0 (or Φ∗Φ∗|VF0 = F0), then we say that the X1-parametrizations collection P0

(or the X2-functions family F0) has Φ|V -reflexive property. Similarly, an X1-parametrizations
collection P0 (or X2-functions family F0) has ΦV -reflexive property if and only if ΦV

∗ Φ
∗P0 = P0

(or Φ∗ΦV
∗ F0 = F0).

Example 3.16. Suppose that Γn is a pseudomonoid on Rn consists of all local diffeomorphisms of
Rn. If P is a collection of Rn-parametrizations on M where M = ∪p∈Pdom(p). Then the collection
P has Γn-reflexive property if and only if (M,P) is a smooth n-manifold where the collection P is a
maximal atlas on M.

Example 3.17. Assume that the pseudomonoid Γ contains all smooth real-value functions on all
open subsets of R.

� Assume that C (or F) is an R-parametrizations collection of M (or a real-value functions
family on M). Then the collection C (or F) has ΓR-reflexive property if and only if the triple
(M, C,Γ∗C) (or (M,ΓR

∗F ,F)) is a Frölicher space.

Theorem 3.18. Let Φ be a continuous X1-parametrizations collection of a topological space X2 and
assume that V ⊆ X1 is an open subset.

i) Suppose that PV and FV are all collections of X1-parametrizations and all families of X2-
functions on M(resp.) such that they have ΦV -reflexive property. Then two maps ΦV

∗ : FV →
PV and Φ∗|PV : PV → FV are inverses of each other.

ii) Suppose that P|V and F|V are all collections of X1-parametrizations and all families of X2-
functions on M(resp.) such that they have Φ|V -reflexive property. Then two maps Φ∗|F|V :
F|V → P|V and Φ∗|V : P|V → F|V are inverses of each other.

iii) Suppose that PΦ and FΦ are all collections of X1-parametrizations and all families of X2-
functions on M such that they have Φ-reflexive property. Then two maps Φ∗|FΦ

: FΦ → PΦ and
Φ∗|PΦ

: PΦ → FΦ are inverses of each other.

Proof . The proof is straightforward immediate. 2

Corollary 3.19. Let Φ be the collection of all smooth functions f : U ⊆ Rn → R where the subset
U is open, for all n ∈ N. Assume that DΦ is all diffeology structures on M and SΦ is all differential
structures on M , such that they have Φ-reflexive property. Then two maps ϕ∗|DΦ

: DΦ → SΦ

Φ∗|SΦ
: SΦ → DΦ are the inverses each other.
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4. Φ-reflexive property and P-tangent space

Throughout this section, X is a smooth manifold. Let P be a collection of X-parametrizations
of M. Let TP denote the strongest topology on M. A function h : U → R from an open subset of
M to R is said locally P-smooth if and only if for any member p ∈ P , the function h ◦ p is locally
smooth. The set C∞

P (m) denotes all local P-smooth functions on the neighborhoods of m ∈ M.
Assume that F is an X-functions family on M . Consider TF the weakest topology on the set

M such that any members of F are continuous. A function h : U → R from an open subset of M
to R is said locally F -smooth if and only if for any m ∈ U, there are the local smooth functions
f̃m : W ⊆ X → R and fm ∈ F such that h = f̃m ◦ fm on some neighbourhood of m. The notation
C∞

F (m) denotes all local F -smooth functions on neighbourhoods of m ∈ M.
Now, we define an equivalence relation on C∞

P (m)
(
or C∞

F (m)
)
. Let f, g ∈ C∞

P (m)
(
or f, g ∈

C∞
F (m)

)
. Then f ∼ g if and only if there is an element W ∈ TP

(
or W ∈ TF

)
contains m such that

f |W = g|W . The equivalence classes of this relation is denoted by C∞
P (m)

(
or C∞

F (m)
)
.

Definition 4.1. We define P-tangent space at m ∈ M, TP
m(M), be all maps V P

m : C∞
P (m) → R

satisfying two following conditions:

i) V P
m (αh+ βg) = αV P

m (h) + βV P
m (g), (linearity),

ii) V P
m (hg) = V P

m (h)g(m) + h(m)V P
m (g), (Leibniz rule),

for any h, g ∈ C∞
P (m) and for all α, β ∈ R.

Proposition 4.2. Let h ∈ C∞
P (m) be a constant function on some neighborhood of m. Then V P

m (h) =
0 for any V P

m ∈ TP
m(M).

Proof . First, assume that h ≡ 1 on a neighborhood of m. Then we have V P
m (1) = V P

m (1.1) =
V P
m (1).1 + 1.V P

m (1) = 2V P
m (1). Therefore V P

m (1) = 0. Now, consider h ≡ c is a constant function on
some neighborhood of m. Then V P

m (c) = c.V P
m (1) = c.0 = 0. This completes the proof. 2 In the

above definition, if we replace P by F , we obtain the definition of TF
mM. Therefore, we can prove a

similar proposition for constant functions at C∞
F (m).

Definition 4.3. Suppose that X1 and X2 are two smooth manifolds.

� Let Pi be an Xi-parametrizations collection on a non-empty set Mi(i = 1, 2). A map Ψ : M1 →
M2 is said (P1,P2)-smooth if and only if for any p1 ∈ P1 and for all p1(x) ∈ M1 there exists
p2 ∈ P2 and a local smooth map Ψ̃ : U ⊆ X1 → X2 such that Ψ ◦ p1 = p2 ◦ Ψ̃, on some
neighborhood of x.

� Let Fi be an Xi-functions family on a non-empty set Mi(i = 1, 2). A map Ψ : M1 → M2 is
said (F1,F2)-smooth if and only if for any f2 ∈ F2 and for all Ψ(m) ∈ domain(f2) there
exists f1 ∈ F1 and a local smooth map Ψ̃ : U ⊆ X1 → X2 such that f2 ◦ Ψ = Ψ̃ ◦ f1, on some
neighborhood of m.

Proposition 4.4. If the function Ψ : M1 → M2 is (P1,P2)-smooth or (F1,F2)-smooth map. Then
Ψ is continuous.
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Proof . Assume that the function Ψ is a (P1,P2)-smooth. Let W be an arbitrary element of
TP2 . It is sufficient to show that the set Ψ−1(W ) ⊆ M1 is an open subset, i.e. for all p1 ∈ P1,
p−1
1

(
Ψ−1(W )

)
⊆ X1 is an open set.

Get an arbitrary element x ∈ p−1
1

(
Ψ−1(W )

)
. According to the definition of (P1,P2)-smooth. We

have p2 ∈ P2 and a local smooth map Ψ̃ : U → X2 such that Ψ ◦ p1 = p2 ◦ Ψ̃ on some neighborhood
Vx of x. Furthermore, We have p−1

1

(
Ψ−1(W )

)
∩ Vx = (Ψ ◦ p1)−1(W ) ∩ Vx = (p2 ◦ Ψ̃)−1(W ) ∩ Vx =

Ψ̃−1
(
p−1
2 (W )

)
∩ Vx.

By the definition of TP2 and smoothness of Ψ̃, the set Ψ̃−1
(
p−1
2 (W )

)
is an open set. Hence p−1

1

(
Ψ−1(W )

)
is an open set.

(F1,F2)-smooth case is proved by applying similar arguments. This completes the proof 2

Definition 4.5. Suppose that X1 and X2 are two smooth manifolds.

� Let Pi be an Xi-parametrizations collection of a non-empty set Mi(i = 1, 2). If Ψ is (P1,P2)-
smooth. Then derivation of Ψ at m or Ψ∗m : TP1

m M1 → TP2

H(m)M2 is defined by this equation:

Ψ∗m(V
P1
m )h = V P1

m (h ◦Ψ) for all V P1
m ∈ TP1

m M1 and for any h ∈ C∞
P2

(
H(m)

)
.

� Let Fi be an Xi-functions family on a non-empty set Mi(i = 1, 2). If Ψ is an (F1,F2)-
smooth. Then derivation of Ψ at m or Ψ∗m : TF1

m M1 → TF2

H(m)M2 is defined by this equation:

Ψ∗m(V
F1
m )h = V F1

m (h ◦Ψ) for all V F1
m ∈ TF1

m M1 and for any h ∈ C∞
F2

(
Ψ(m)

)
.

Proposition 4.6 (Chain rule). Suppose that X1 and X2 are two smooth manifolds

� Let Pi be an Xi-parametrizations collection of a non-empty set Mi (i = 1, 2, 3). If Θ : M1 → M2

and Ψ : M2 → M3 are (P1,P2)-smooth map and (P2,P3)-smooth map(resp.). Then the map
Ψ ◦ Θ : M1 → M3 is a (P1,P3)-smooth map. For any m ∈ M1, we obtain (Ψ ◦Θ)∗m =
Ψ∗Θ(m)Θ∗m.

� Let Fi be an Xi-functions family on a non-empty set Mi (i = 1, 2, 3). If Θ : M1 → M2 and Ψ :
M2 → M3 are (F1,F2)-smooth map and (F2,F3)-smooth map(resp.). Then Ψ ◦ Θ : M1 → M3

is an (F1,F3)-smooth map. For any m ∈ M1, we obtain (Ψ ◦Θ)∗m = Ψ∗Θ(m)Θ∗m.

Proof . We only prove the first case, the second case (with similar arguments) are left to the reader.
First, we show that Θ ◦ Ψ is a (P1,P2)-smooth. Assume that the arbitrary elements p1 ∈ P1

and p1(x) ∈ M1. Because Ψ is a (P1,P2)-smooth map. Hence, there exists the functions p2 ∈ P2,
local smooth map Ψ̃ : U ⊆ X1 → X2 and Ψ ◦ p1 = p2 ◦ Ψ̃ on some neighborhood Vx of x. By the
(P1,P2)-smoothness of Θ. We conclude that, there exists a local smooth map Θ̃ : V ⊆ X2 → X3 and
an element p3 ∈ P3 such that Θ ◦ p2 = p3 ◦ Θ̃ on some neighborhood VΨ̃(x) of Ψ̃(x). Now, we have

Θ ◦Ψ ◦ p1 = Θ ◦ p2 ◦ Ψ̃ = p3 ◦ Θ̃ ◦ Ψ̃ on Θ̃−1(VΨ̃(x)) ∩ Vx ,some neighborhood of x. Therefore, Θ ◦Ψ
is a (P1,P3)-smooth map.

We prove the equation of derivations. Get V P1
m ∈ TP1

m M1 and h ∈ C∞
P3

(
Θ
(
Ψ(m)

))
. We have(

(Θ ◦Ψ)∗mV
P1
m

)
h = V P1

m (h ◦ Θ ◦ Ψ) = Ψ∗mV
P1
m (h ◦ Θ) = Θ∗Ψ(m)

(
Ψ∗mV

P1
m h). This completes the

proof. 2
The new definitions proposed in this section are natural generalizations of smoothness and tangent

space of manifold theory. The following proposition proves this assertion.

Proposition 4.7. Suppose that (X,A ) is a smooth n-manifold. If C∞(X) denote all smooth func-

tions on X. Then, we have TxX = T
C∞(X)
x X = TA

x X, for any x ∈ X.
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Proof . It is sufficient to show that C∞
A (x) = C∞(x) for all x ∈ X. Let h ∈ C∞

A (x) be an arbitrary
element. By the definition of C∞

A (x), the map h ◦ ϕ is a smooth function for all element of ϕ ∈ A .
The function h is a member of C∞(x), by the smoothness definition in manifold theory.

Conversely, choose h ∈ C∞(x). Because h is a smooth function. Furthermore all elements of A
are smooths. Therefore the function h ◦ ϕ is smooth. So, we have h ∈ C∞

A (x), by the definition of
C∞

A (x). Therefore, C∞(x) = C∞
A (x). It shows that TxX = TA

x X.
For another equality, it sufficient to show that C∞

C(X)(x) = C∞(x). The same reasoning applies
proves this case. 2

Proposition 4.8. Assume that P , F are an X-parametrizations collection and an X-functions fam-
ily on M(resp.). If {m} is an element of TP or TF . Then TP

mM ∼= {0} or TF
mM ∼= {0} (resp.).

Proof . If we prove that all members of C∞
P (m)

(
or C∞

F (m)
)
are constant functions. The assertion

follows by the proposition 4.2.
Since {m} is a member of TP(or TF). It follows that any element of C∞

P (m)
(
or C∞

F (m)
)
is

equivalence to a constant function. Therefore, C∞
P (m)

(
or CF(m)

)
is only constant functions on M.

2

Corollary 4.9. If m is not an element of Im (p) for all p ∈ P . Then we have TP
mM ∼= {0}.

Proposition 4.10. � Assume that P is an X-parametrizations collection of M. Let N ⊆ M be
an open subset. Then P|V is an X-parametrizations collection on N, where P|N := {p|N :
p−1(N) ∩ U → N |the X-parametrization p : U → M is an element of P}. Also, we have

T
P|N
m N = TP

mM for all m ∈ N.

� Assume that that F is an X-functions family on M. Let N ⊂ M be an open subset. Then
F|N is an X-functions family on N, where F|N := {f |N : N → X|the X-function f : M →
X is an element of F}. Also, we have T

F|N
m N = TF

mN for all m ∈ N.

Proof . Because the elements of C∞
F (m) and C∞

P (m) are defined locally and N is an open subset.
The proof is straightforward. 2

Proposition 4.11. Suppose that (X,A ) is a smooth manifold.

� Assume that P is an X-parametrization collection of M. Then any p ∈ P is an (A ,P)-smooth
map. It induces a linear map p∗x : TxX → TP

p(x)M for all x ∈ domain(p).

� Assume that F is an X-functions family on M. Then any X-function f ∈ F is an (F ,A )-
smooth map. It induces a linear map f∗m : TF

mM → Tf(m)X for all m ∈ M.

Proof . Fix ϕ ∈ A and ϕ(x) ∈ domain(p) ⊆ X. If we get p̃ := ϕ : Rn → X and p2 := p. Then
the conditions of (P1,P2)-smoothness definition are being held. Now, p∗x induces a linear map from
TxX to TP

p(x)M because TxX = TA
x X. Similar arguments apply to prove the other item. 2

Definition 4.12. Assume that Φ is a collection of smooth maps Φ : U ⊆ X1 → X2 where X1 and
X2 are two smooth manifold and U is an open subset. Therefore, there exists the family of maps
Φ∗ : TU ⊆ TX1 → TX2 with properties Φ∗(x, Vx) =

(
Φ(x), ϕ∗x(Vx)

)
, where ϕ : U → X2 ∈ Φ is said

tangent to Φ and denoted by TΦ.
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Definition 4.13. � Let F be an X-functions family on the set M. The set TFM = ∪m∈MTF
mM

is called F-tangent bundle of M. The bundle TFM admits a natural TX-functions family by
maps f∗ : TFM → TX with f∗(m,V F

m ) =
(
f(x), f∗m(V

F
m )

)
where the X-function f : M → X

is an element of F .

� Suppose that P is an X-parametrizations collection of M. The set TPM = ∪m∈MTP
mM is called

P-tangent bundle of M. TPM such that admits a natural TX-parametrizations collection by
maps p∗ : TU → TPM with p∗(x, Vx) =

(
p(x), p∗x(Vx)

)
where the X-parametrization p : U →

M is an element of P .

Proposition 4.14. Consider X1, X2 are two smooth manifolds and Φ is a local smooth maps col-
lection from X1 to X2. Let P and F be an X1-parametrizations collection of M and an X2-functions
family on M(resp.). If for any X2-function f ∈ F and for any X1-parametrization p ∈ P we have
f ◦ p ∈ Φ. Then for all elements m ∈ M, we have C∞

F (m) ⊆ C∞
P (m)

Proof . Get [h] ∈ C∞
F (m). So, there are fm ∈ F and f̃m : U ⊆ X → R such that h = f̃m ◦ fm on

some neighborhood Vm of m. Without losing the totality, we can suppose that domain(h) = Vm. By
the Proposition 3.10, Vm ∈ TP . Because fm ◦ p ∈ Φ for any fm ∈ F . Thus h ◦ p = f̃m ◦ fm ◦ p is a
smooth map for all p ∈ P . Therefore h ∈ C∞

P (m) and [h] ∈ C∞
P (m). If [f ] = [g] ∈ C∞

F (m). Then by
the Proposition 3.10 [f ] = [g] ∈ C∞

P (m). This completes the proof. 2

Corollary 4.15. Suppose that the conditions of the previous proposition are being held. We define
the following map: ∆ : TPM −→ TFM, by ∆(m,V P

m ) = (m,V P
m |C∞

F (m)) for all m ∈ M and V P
m ∈

TP
mM. Then ∆ is a smooth map. For any X1-parametrization p ∈ P and for any X2-function f ∈ F ,

we have (f ◦ p)∗ = f∗ ◦∆ ◦ p∗.

Definition 4.16. Assume that P is an X-parametrizations collection of M. The set of all derivation
maps p∗ : TU → TPM defined by p∗(x, Vx) 7→

(
p(x), p∗x(Vx)

)
is said tangent to P and denoted by

TP .
Let F be an X-functions family on M. The set of all derivation maps f∗ : TFM → TX defined

by f∗(m,V F
m ) 7→

(
f(m), f∗m(V

F
m )

)
is said tangent to F and denoted by TF .

Theorem 4.17. Suppose that Φ is a collection of smooth map Φ : U ⊆ X1 → X2 where X1 and X2

are smooth manifolds and the subset U is an open set. Suppose that F and P are an X1-functions
family of M and an X1-parametrizations collection of M . If the following conditions are being held:

� TP
mM = TF

mM for all m ∈ M,

� TP = (TΦ)∗(TF),

� TF = (TΦ)∗(TP).

Then P and F have Φ-reflexive property. Furthermore, we have P = Φ∗F and F = Φ∗P .
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