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Abstract

In this paper, we determine the different intervals of a positive parameters λ, for which we prove the
existence and non existence of a non trivial solutions for the discrete problem (1.1). Our technical
approach is based on the variational principle and the critical point theory.
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1. Introduction

Let T > 2 be a positive integer and [1, T ]Z denote a discrete interval given by [1, T ]Z := {1, 2, 3, ....., T}.

We consider the discrete Dirichlet anisotropic problem as follows:
−∆

(
|∆u(k − 1)|p(k−1)−2∆u(k − 1)

)
+ |u(k)|p(k)−2u(k) + |u(k)|q(k)−2u(k) =

= λg(k)|u(k)|r(k)−2u(k), for k ∈ [1, T ]Z,

u(0) = u(T + 1) = 0,

(1.1)

where ∆ denotes the forward difference operator defined by ∆u(k) = u(k+1)−u(k), g : [1, T ]Z →
(0,+∞) is a given function, λ is a real parameter such that λ > 0 and p : [0, T ]Z → [2,+∞) and
q, r : [1, T ]Z → [2,+∞) are given functions.
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In the last years, the study of boundary value problems for finite difference equations has cap-
tured special attention, for example view the recent results in the references [1, 2, 3, 4, 5, 20, 19].
This type of problems have an important role in different domains of research, such as mechanical
engineering, control systems, economics, computer science, physics, artificial or biological neural net-
works, cybernetics, ecology and many others. The important tools employed to study this kind of
problem are critical point theory and variational methods [7, 14].

However, there is an increasing interest to the existence results to boundary value problems for
difference equations with p(k)−Laplacian operator, because of their applications in many fields. To
the best of our knowledge, discrete problems involving anisotropic exponents have been discussed for
the first time by Mihăilescu, Rădulescu and Tersain in[22], the authors proved, by using the critical
point theory, the existence of a continuous spectrum of eigenvalues for the problem:{

−∆
(
|∆u(k − 1)|p(k−1)−2∆u(k − 1)

)
= λ|u(k)|q(k)−2u(k), for k ∈ [1, T ]Z,

u(0) = u(T + 1) = 0,
(1.2)

and for the second time by Koné and Ouaro in [15, 18]. After Marek Galewski in ([9, 10, 11, 12])
and G.Molica Bisci and all in [21], have studied the existence of at least one solution, multiplicity
and a sequences of solutions for the problem{

−∆
(
|∆u(k − 1)|p(k−1)−2∆u(k − 1)

)
= λf(k, u(k)), for k ∈ [1, T ]Z,

u(0) = u(T + 1) = 0,

where f : [1, T ]Z × R 7−→ R is a continuous function that checks some conditions.

More recently, in ([24, 6, 16, 17, 8, 13]) the authors have been investigated the existence and
multiplicity of solutions for nonlinear discrete boundary value problems involving p(.)−Laplacian
operator using variational methods.

We note that problem (1.1) is the discrete variant of a kind of the variable exponent anisotropic
problem ([23]){

−div
(
|∇u|p(x)−2∇u

)
+ |u|p(x)−2u+ |u|q(x)−2u = λg(x)|u|r(x)−2u, x ∈ Ω,

u(x) = 0 for x ∈ ∂Ω

where Ω is a bounded domain in RN(N ≥ 3) with Lipschitz boundary. The mappings p, q, r :
Ω̄ → [2,+∞) are Lipschitz continuous functions, while g : Ω̄ → (0,+∞) is a measurable function.

Our analysis mainly concern the existence and the nonexistence of a weak solutions to problem
(1.1) more general than (1.2), with three variable exponents and the weight g under appropriate
assumptions (2.2) below, between the functions exponents p(k), q(k) and r(k). Our aim is to deter-
mine the concerts intervals for the parameter λ for which problem (1.1) has, or not has, a nontrivial
solutions. More precisely, we prove the existence of two positive constants λ∗ and λ∗ with λ∗ ≤ λ∗

such that for each λ ∈ [λ∗,+∞) the problem (1.1) has at least one nontrivial solution, while for any
λ ∈ (0, λ∗) problem (1.1) has no nontrivial solution. For these results, we use some known tools such
as the direct variational methods and the critical point theory.

The rest of this paper is organised as follows, the second section is devoted to mathematical
preliminaries and statement of main results. In the third section we give the mains results and thier
proofs.



Anisotropic discrete problem 12 (2021) No. 1, 521-532 523

2. Preliminaries

Define the T-dimensional Hilbert space (see, [1])

E = {u : [0, T + 1]Z → R , u(0) = u(T + 1) = 0} ,

with the inner product

(u, v) =
T∑

k=0

∆u(k)∆v(k), ∀u, v ∈ E.

The associated norm is defined by

∥u∥ =

(
T∑

k=0

|∆u(k)|2
) 1

2

.

Moreover, it is useful to introduce other norm on E, denoted by |u|m and is namely,

|u|m =

(
T∑

k=1

|u(k)|m
) 1

m

, ∀m ≥ 2. (2.1)

For any function h : [0, T ]Z → [2,+∞), we use the following notations:

h− = min
k∈[0,T ]Z

h(k) and h+ = max
k∈[0,T ]Z

h(k).

In this paper, we study the boundary value problem (1.1) assuming that the functions p, q and r
satisfy the following assumptions:

2 ≤ p− ≤ p+ < r− ≤ r+ < q− ≤ q+. (2.2)

We start with the following auxillary result, which will be used later.

Lemma 2.1. ([22])

(a) For any m ≥ 2 there exists a positive constant Cm such that,

T∑
k=1

|u(k)|m ≤ Cm

T+1∑
k=1

|∆u(k − 1)|m, ∀u ∈ E

(b) There exists two positive constant C1 and C2 such that,

T+1∑
k=1

|∆u(k − 1)|p(k−1) ≥ C1∥u∥p
− − C2, ∀u ∈ E with ∥u∥ > 1
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(c) There exists a positive constant C3 such that,

T+1∑
k=1

|∆u(k − 1)|p(k−1) ≥ C3∥u∥p
+

, ∀u ∈ E with ∥u∥ < 1

(d)
T+1∑
k=1

|∆u(k − 1)|p(k−1) ≤ (T + 1)
(
∥u∥p+ + 1

)
, ∀u ∈ E.

Definition 2.2. We say that λ > 0 is an eigenvalue of problem (1.1) if there exists u ∈ E, such
that u ̸= 0 and

T+1∑
k=1

|∆u(k − 1)|p(k−1)−2∆u(k − 1)∆v(k − 1) +
T∑

k=1

|u(k)|p(k)−2u(k)v(k)

+
T∑

k=1

|u(k)|q(k)−2u(k)v(k) = λ
T∑

k=1

g(k)|u(k)|r(k)−2u(k)v(k).

for any v ∈ E.

If λ > 0 is an eigenvalue of problem (1.1), then the corresponding eigenfunction uλ ∈ E is a weak
solution for the problem (1.1).

To study the boundary value problem (1.1), we define the following functionals, for u ∈ E, we
put:

φ0(u) =
T+1∑
k=1

|∆u(k − 1)|p(k−1) +
T∑

k=1

|u(k)|p(k) +
T∑

k=1

|u(k)|q(k), (2.3)

ψ0(u) =
T∑

k=1

g(k)|u(k)|r(k), (2.4)

φ1(u) =
T+1∑
k=1

|∆u(k − 1)|p(k−1)

p(k − 1)
+

T∑
k=1

|u(k)|p(k)

p(k)
+

T∑
k=1

|u(k)|q(k)

q(k)
, (2.5)

ψ1(u) =
T∑

k=1

g(k)
|u(k)|r(k)

r(k)
, (2.6)

and for any λ > 0 and u ∈ E, we define the functional Iλ as follows:

Iλ(u) = φ1(u)− λψ1(u). (2.7)

With any fixed λ > 0 the functionals Iλ is differentiable in the sense of Gâteaux,(see [22, 12]),
and its Gâteaux derivatives at u reads

(
I

′

λ(u), v
)
=
(
φ

′

1(u), v
)
− λ

(
ψ

′

1(u), v
)
, (2.8)
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for any v ∈ E,

where

(
φ

′

1(u), v
)
=

T+1∑
k=1

|∆u(k − 1)|p(k−1)−2∆u(k − 1)∆v(k − 1)

+
T∑

k=1

(
|u(k)|p(k)−2 + |u(k)|q(k)−2

)
u(k)v(k),

(2.9)

and

(
ψ

′

1(u), v
)
=

T∑
k=1

g(k)|u(k)|r(k)−2u(k)v(k). (2.10)

Remark 2.3. According to definition (2.2) and from equality (2.8), it is clear that uλ is a weak
solution of (1.1) if and only if uλ is a critical point of the functional Iλ.

3. Main results and their proofs

Throughout this paper, we study the boundary value problem (1.1) assuming that the functions
p(.),q(.) and r(.) satisfy the hypotheses given in (2.2) and we have the following results

Theorem 3.1. Assume that the hypothesis (2.2) holds, then there exists a positive constant λ⋆ such
that for any λ ∈ (0, λ⋆) problem (1.1) has no solutions.

Proof .

Put

λ⋆ = inf
u∈E−{0}

φ0(u)

ψ0(u)
, (3.1)

where φ0 and ψ0 are given by (2.3) and (2.4).

Firstly, we show that λ⋆ > 0. By (2.2) we infer that for all k ∈ [1, T ]Z

p(k) < r(k) < q(k),

then for any u ∈ E and k ∈ [1, T ]Z, we have

|u(k)|r(k) ≤ |u(k)|p(k) + |u(k)|q(k) (3.2)

then

T∑
k=1

(
|u(k)|p(k) + |u(k)|q(k)

)
≥

T∑
k=1

|u(k)|r(k),

so
T∑

k=1

(
|u(k)|p(k) + |u(k)|q(k)

)
≥ 1

|g|∞

T∑
k=1

g(k)|u(k)|r(k) (3.3)
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where,

|g|∞ = max
k∈[1,T ]Z

g(k), (3.4)

then we deduce that

φ0(u) ≥
1

|g|∞
ψ0(u), ∀u ∈ E,

or

λ⋆ ≥
1

|g|∞
then λ⋆ > 0.

Secondly, assuming by contradiction that there exists λ ∈ (0, λ⋆) is an eigenvalue of problem
(1.1), which means that there exists uλ ∈ E such that uλ ̸= 0 and I

′

λ(uλ) = 0, so(
φ

′

1(uλ), v
)
= λ

(
ψ

′

1(uλ), v
)
, ∀v ∈ E.

In particular, for v = uλ we get

φ0(uλ) = λψ0(uλ).

Since uλ ̸= 0, it follows that φ0(uλ) > 0 and ψ0(uλ) > 0, then by definition of λ⋆ and the fact
that λ < λ⋆, we infer that:

φ0(uλ) ≥ λ⋆ψ0(uλ) > λψ0(uλ) = φ0(uλ),

the above inequality leads to a contradiction and the proof is completed.
□

Theorem 3.2. Assume that the hypotheses (3.2) holds, then there exists a positive constant λ⋆ such
that λ⋆ ≤ λ⋆ and for any λ ∈ [λ⋆,+∞) the problem (1.1) has at least one non trivial solution.

To show theorem (3.2), we need to prove the following lemmas

Lemma 3.3. If the condition (2.3) is true, then

lim
∥u∥−→0

φ0(u)

ψ0(u)
= +∞.

Proof .

For any k ∈ [1, T ]Z, we have r− ≤ r(k) ≤ r+, then for any u ∈ E, we get:

|u(k)|r(k) ≤ |u(k)|r− + |u(k)|r+ ,
then

g(k)|u(k)|r(k) ≤ |g|∞
(
|u(k)|r− + |u(k)|r+

)
,

where |g|∞ is given by (3.4).
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Thus, summing for k from 1 to T, we get, for any u ∈ E

ψ0(u) ≤ |g|∞

(
T∑

k=1

|u(k)|r− +
T∑

k=1

|u(k)|r+
)
,

using lemma (2.1) (a), we infer that

ψ0(u) ≤ |g|∞

(
Cr−

T+1∑
k=1

|∆u(k − 1)|r− + Cr+

T+1∑
k=1

|∆u(k − 1)|r+
)
,

again by lemma 2.1 (d), we deduce that

ψ0(u) ≤ (1 + T )|g|∞
(
Cr−(1 + ∥u∥r−) + Cr+(1 + ∥u∥r+)

)
. (3.5)

Next, for any u ∈ E, with ∥u∥ < 1, by (2.3) and lemma 2.1 (c), we deduce that

φ0(u) ≥ C3∥u∥p
+

, (3.6)

then for any u ∈ E with ∥u∥ < 1, small enough, from the inequalities (3.5) and (3.6), we get

φ0(u)

ψ0(u)
≥ C3

(1 + T )|g|∞
∥u∥p+

Cr−(1 + ∥u∥r−) + Cr+(1 + ∥u∥r+)
.

Since r+ ≥ r− > p+, passing to the limit as ∥u∥ −→ 0, in the above inequality we prove that

lim
∥u∥−→0

φ0(u)

ψ0(u)
= +∞, and thus lemma (3.3) holds. □

Lemma 3.4. If the condition (2.2) is true, then for any λ > 0, Iλ is coercive.

ie : lim
∥u∥−→∞

(φ1(u)− λψ1(u)) = +∞

Proof .

For any u ∈ E, from (2.5) we have

φ1(u) =
T+1∑
k=1

|∆u(k − 1)|p(k−1)

p(k − 1)
+

T∑
k=1

|u(k)|p(k)

2p(k)
+

T∑
k=1

(
|u(k)|p(k)

2p(k)
+

|u(k)|q(k)

q(k)

)

≥ 1

p+

T+1∑
k=1

|∆u(k − 1)|p(k−1) +
1

max(2p+, q+)

T∑
k=1

(
|u(k)|p(k) + |u(k)|q(k)

)
.

(3.7)

Let s fix such that r+ < s < q−, then for any u ∈ E and k ∈ [1, T ]Z, we get that

|u(k)|p(k) + |u(k)|q(k) ≥ |u(k)|s,

then by (3.7), we get

φ1(u) ≥
1

p+

T+1∑
k=1

|∆u(k − 1)|p(k−1) +
1

max(2p+, q+)
|u|ss. (3.8)
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Next, since g(k)|u(k)|r(k) ≤ |g|∞(|u(k)|r− + |u(k)|r+), then from (2.6) we infer that

ψ1(u) ≤
|g|∞
r−

(
T∑

k=1

|u(k)|r− +
T∑

k=1

|u(k)|r+
)
. (3.9)

By Hölder inequality we prove that, for any u ∈ E

T∑
k=1

|u(k)|r− ≤ T
s−r−

s

(
T∑

k=1

(
|u(k)|r−

) s
r−

) r−
s

= A|u|r−s , (3.10)

and
T∑

k=1

|u(k)|r+ ≤ T
s−r+

s

(
T∑

k=1

(
|u(k)|r+

) s
r+

) r+

s

= B|u|r+s , (3.11)

where

A = T
s−r−

s > 0 and B = T
s−r+

s > 0. (3.12)

Therefore, for any u ∈ E with ∥u∥ > 1, from (2.9) and the above inequalities ((3.8)-(3.11)) and
applying lemma (2.1) (b), we deduce that: for any λ > 0, we have

Iλ(u) ≥ 1

p+

(
C1∥u∥p

− − C2

)
+

1

max(2p+, q+)
|u|ss − λ

|g|∞
r−

(
A|u|r−s +B|u|r+s

)
≥ C1∥u∥p

− − C2

p+
+

|u|ss
2max(2p+, q+)

− λ
A|u|r−s |g|∞

r−

+
|u|ss

2max(2p+, q+)
− λ

B|u|r+s |g|∞
r−

,

so

Iλ(u) ≥
C1∥u∥p

− − C2

p+
−
(
α|u|r−s − β|u|ss

)
− (γ|u|r+s − β|u|ss), (3.13)

where α = Aλ
|g|∞
r−

> 0, γ = Bλ
|g|∞
r−

> 0 and β =
1

2max(2p+, q+)
> 0.

Let h1, h2 :]0,+∞[−→ R two real functions, given by

h1(t) = αtr
− − βts and h2(t) = γtr

+ − βts ∀t > 0.

It is easy to show that h1 and h2 achieves its positive global maximums M1 = h1(t1) and M2 =
h2(t2), where:

t1 =

(
αr−

βs

) 1
s−r−

> 0 and t2 =

(
γr+

βs

) 1
s−r+

> 0,

then we infer that h1(t) ≤M1 and h2(t) ≤M2, ∀t > 0.
Therefore, for any u ∈ E, with ∥u∥ > 1 and λ > 0, by (3.13), we get that
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Iλ(u) ≥
C1∥u∥p

− − C2

p+
−M1 −M2, (3.14)

passing to the limit as ∥u∥ −→ ∞ in (3.14), we infer that lemma (3.4) holds.
□
Proof of theorem (3.2).

Put:

λ⋆ = inf
u∈E−{0}

φ1(u)

ψ1(u)
. (3.15)

Step(1).
We show that λ⋆ > 0.

By (3.2) and from (3.3), we infer that for any u ∈ E,

|u(k)|p(k)

p(k)
+

|u(k)|q(k)

q(k)
≥ |u(k)|r(k)

q(k)
≥ |u(k)|r(k)

q+
,

then

T∑
k=1

|u(k)|p(k)

p(k)
+

T∑
k=1

|u(k)|q(k)

q(k)
≥ r−

q+|g|∞

T∑
k=1

g(k)
|u(k)|r(k)

r(k)

then

φ1(u) ≥
r−

q+|g|∞
ψ1(u), ∀u ∈ E,

so

λ⋆ ≥ r−

q+|g|∞
> 0.

Thus step (1) is verified.

Step(2).
We show that each λ ∈ (λ⋆,+∞) is an eigenvalue of the problem (1.1).

We fix λ ∈ (λ⋆,+∞).
By lemma (3.4), we have Iλ is coercive and is weakly lower semi-continuous. Applying theorem

(theorem 1.2 in[25]) in order to prove that there exists uλ ∈ E as a global minimum point of Iλ and
thus as a critical point of Iλ.

In order to finish the proof of step(2), it is enough to prove that uλ is non trivial. Indeed, since
λ > λ⋆ and by definition of λ⋆ there exists vλ ∈ E such that

φ1(vλ) < λψ1(vλ),

that is
Iλ(vλ) < 0,
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which shows that uλ ̸= 0E and we conclude that there exists a uλ ∈ E with uλ ̸= 0E who is a critical
point of Iλ, or λ is an eigenvalue of the problem (1.1). Thus step(2) is true.

Step(3).
We show that λ⋆ is an eigenvalue of problem (3.4).

For this, we will prove that there exists u⋆ ∈ E such that u⋆ ̸= 0 and I
′

λ⋆(u⋆) = 0.

Let λn > 0 be a minimizing sequence for λ⋆ (i.e λn > λ⋆). By step(2), we deduce that for each
n there exists a sequence {un} ∈ E such that un ̸= 0 and I

′

λn
(un) = 0,

so (
φ

′

1(un), v
)
= λn

(
ψ

′

1(un), v
)
, ∀v ∈ E. (3.16)

Taking v = un, we find that

φ0(un)− λnψ0(un) = 0, (3.17)

passing to the limit as n −→ +∞ in relation (3.17), we have:

lim
n−→+∞

(φ0(un)− λnψ0(un)) = 0. (3.18)

On the other hand, a similar argument as those used in proof of lemma (3.4), we get that

lim
∥un∥−→+∞

(φ0(un)− λnψ0(un)) = +∞. (3.19)

Then, from (3.18) and (3.19) we show that the sequence {un} is bounded in E, since E is a finite
dimensional Hilbert space then there exists a subsequence, still denoted by {un} and u⋆ ∈ E such
that un −→ u⋆ as n −→ +∞.

Therefore, passing to the limit as n −→ +∞ in relation (3.16), we get that(
φ

′

1(u
⋆), v

)
= λ⋆

(
ψ

′

1(u
⋆), v

)
, ∀v ∈ E.

or (
I

′

λ⋆(u⋆), v
)
= 0, ∀v ∈ E.

so u⋆ is a critical point of Iλ⋆ .

It remains to show that u⋆ is non trivial. In fact, if not we have un −→ 0 in E as n −→ +∞ or
∥un∥ −→ 0, then by lemma (3.3), we deduce that:

lim
n−→+∞

(
φ0(un)

ψ0(un)

)
= +∞.

Finally, the equality (3.17) implies that

lim
n−→+∞

(
φ0(un)

ψ0(un)

)
= λ⋆;

which is a contradiction. Consequently u⋆ ̸= 0 and thus λ⋆ is an eigenvalue of the problem (1.1).
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Step(4).

We prove that λ⋆ ≤ λ⋆. Since λ⋆ is an eigenvalue of the problem (3.4), then by theorem (3.1), we
deduce that

λ⋆ /∈ ]0;λ⋆[,

Saw That 0 < λ⋆ therefore λ⋆ ≤ λ⋆. The proof of theorem (3.2) is now completed.

Remark 3.5. We are not able deduce whether λ⋆ = λ⋆ or λ⋆ < λ⋆. Therefore, In the latter case, an
interesting open problem conserns the existence of solutions of problem (1.1) in the interval [λ⋆ < λ⋆).
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[5] G. Bonanno, P. Candito and G. DÁgui, Variational methods on finite dimensional Banach spaces and discrete
problems, Adv. Nonlinear Stud. 14 (2014) 915–939.
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