On starlike functions related with the convex conic domain

Rahim Kargar ${ }^{\text {a,* }}$, Janusz Sokół ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics and Statistics, University of Turku, Turku, Finland
${ }^{b}$ University of Rzeszów, College of Natural Sciences, ul. Prof. Pigonia 1, 35-310 Rzeszów, Poland
(Communicated by Madjid Eshaghi)

Abstract

In the present paper, we study a new subclass $\mathcal{M}_{p}(\alpha, \beta)$ of p-valent functions and obtain some inequalities concerning the coefficients for the desired class. Also, by using the Hadamard product, we define a new general operator and find a condition such that it belongs to the class $\mathcal{M}_{p}(\alpha, \beta)$.

Keywords: Analytic functions; p-valent functions; Generalized Bessel function; Gaussian hypergeometric function; Hadamard product.
2010 MSC: 30C45

1. Introduction

Let \mathcal{A}_{p} denote the class of functions f of the form:

$$
f(z)=z^{p}+\sum_{k=p+1}^{\infty} a_{k} z^{k} \quad p \in \mathbb{N}:=\{1,2,3, \ldots\},
$$

which are analytic and p-valent in the unit disk $\Delta=\{z \in \mathbb{C}:|z|<1\}$. Further, we write $\mathcal{A}_{1}=\mathcal{A}$. A function $f(z) \in \mathcal{A}_{p}$ is said to be in the class $\mathcal{M}_{p}(\alpha, \beta)$, if it satisfies

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)<\beta\left|\frac{z f^{\prime}(z)}{f(z)}-p\right|+p \alpha \quad(z \in \Delta) \tag{1.1}
\end{equation*}
$$

[^0]for some $\beta \leq 0$ and $\alpha>1$. Notice that (1.1) follows that
\[

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)<p \alpha \quad(z \in \Delta) \tag{1.2}
\end{equation*}
$$

\]

because β is negative or 0 . Moreover, if we write (1.1) in the following equivalent form

$$
\frac{|F(z)-p|}{\operatorname{Re}\{p \alpha-F(z)\}}<\frac{1}{-\beta} \quad(z \in \Delta)
$$

where

$$
F(z):=\frac{z f^{\prime}(z)}{f(z)} \quad(z \in \Delta)
$$

then we see that the relation between the distance $F(z)$ from the focus p and the distance $F(z)$ from the directrix $\operatorname{Re}\{w\}=p \alpha$ depends on the eccentricity $-1 / \beta$. Therefore, if $f(z) \in \mathcal{M}_{p}(\alpha, \beta)$, then $F(z), z \in \Delta$ lies in a convex conic domain: elliptic when $\beta<-1$, parabolic when $\beta=-1$ and hyperbolic when $-1<\beta<0$, or $F(\Delta)$ is the half-plane (1.2), for $\beta=0$.

The class $\mathcal{M}_{p}(\alpha, \beta)$ cover many subclasses considered earlier by various authors, see [2, 3, 5, 7]. We remark that the class $\mathcal{M}_{1}(\alpha, \beta)=\mathcal{M D}(\alpha, \beta)$ was investigated earlier by J. Nishiwaki and S. Owa [4].

In this work we shall be mainly concerned with functions $f \in \mathcal{A}_{p}$ of the form

$$
\begin{equation*}
\left(\frac{z^{p}}{f(z)}\right)^{\mu}=1-\sum_{k=p}^{\infty} b_{k} z^{k} \quad(\mu>0, z \in \Delta \cup\{1\}), \tag{1.3}
\end{equation*}
$$

where $\left(z^{p} / f(z)\right)^{\mu}$ represents principal powers (i.e. the principal branch of $\left(z^{p} / f(z)\right)^{\mu}$ is chosen).
This paper is organized as follows. In Section 2, we present some inequalities for the class $\mathcal{M}_{p}(\alpha, \beta)$. In Section 3, by using the Hadamard product and applying the generalized Bessel function and the Gaussian hypergeometric function we introduce a new operator which we denote by $\mathcal{I}_{c, d}^{a, b}(p, e, \delta)(z)$. As an application, we prove that the operator $\mathcal{I}_{c, d}^{a, b}(p, e, \delta)(z)$ belongs to the class $\mathcal{M}_{p}(\alpha, \beta)$.

2. Main Results

Our first result is contained in the following:
Theorem 2.1. Let the function f be in the class $\mathcal{M}_{p}(\alpha, \beta)$ and let f be of the form 1.3) for some b_{k} such that

$$
b_{k} \geq 0 \quad \text { for } \quad k \in\{p, p+1, p+2, \ldots\} \quad \text { and } \quad \sum_{k=p}^{\infty} b_{k}<1
$$

Then

$$
\begin{equation*}
\sum_{k=p}^{\infty}[p \mu(\alpha-1)+k(1-\beta)] b_{k} \leq p \mu(\alpha-1) \tag{2.1}
\end{equation*}
$$

where $\beta \leq 0, \mu>0$ and $\alpha>1$.

Proof. Let $f \in \mathcal{M}_{p}(\alpha, \beta)$. A simple calculation gives us

$$
\begin{equation*}
z \frac{\mathrm{~d}}{\mathrm{~d} z}\left(\frac{z^{p}}{f(z)}\right)^{\mu}=\mu\left[p\left(\frac{z^{p}}{f(z)}\right)^{\mu}-\left(\frac{z^{p}}{f(z)}\right)^{\mu+1} \frac{f^{\prime}(z)}{z^{p-1}}\right] . \tag{2.2}
\end{equation*}
$$

Thus, by use of the above relation (2.2), we have

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)<\beta\left|\frac{z f^{\prime}(z)}{f(z)}-p\right|+p \alpha
$$

if and only if

$$
\operatorname{Re}\left(p+\frac{-\frac{z}{\mu} \frac{\mathrm{~d}}{\mathrm{~d} z}\left(z^{p} / f(z)\right)^{\mu}}{\left(z^{p} / f(z)\right)^{\mu}}\right)<\beta\left|\frac{-\frac{z}{\mu} \frac{\mathrm{~d}}{\mathrm{~d} z}\left(z^{p} / f(z)\right)^{\mu}}{\left(z^{p} / f(z)\right)^{\mu}}\right|+p \alpha .
$$

Since f is of the form (1.3), the last inequality may be equivalently written as

$$
\begin{equation*}
\operatorname{Re}\left(p+\frac{1}{\mu} \frac{\sum_{k=p}^{\infty} k b_{k} z^{k}}{1-\sum_{k=p}^{\infty} b_{k} z^{k}}\right)<\frac{\beta}{\mu}\left|\frac{\sum_{k=p}^{\infty} k b_{k} z^{k}}{1-\sum_{k=p}^{\infty} b_{k} z^{k}}\right|+p \alpha \tag{2.3}
\end{equation*}
$$

Now suppose that $z \in \Delta$ is real and tends to 1^{-}through reals, then from the last inequality (2.3), we get

$$
\mu p+\frac{\sum_{k=p}^{\infty} k b_{k}}{1-\sum_{k=p}^{\infty} b_{k}} \leq \beta\left|\frac{\sum_{k=p}^{\infty} k b_{k}}{1-\sum_{k=p}^{\infty} b_{k}}\right|+p \mu \alpha
$$

or equivalently

$$
\mu p+\frac{\sum_{k=p}^{\infty} k b_{k}}{1-\sum_{k=p}^{\infty} b_{k}} \leq \beta \frac{\sum_{k=p}^{\infty} k b_{k}}{1-\sum_{k=p}^{\infty} b_{k}}+p \mu \alpha
$$

which gives 2.1). This competes the proof.
Remark 2.2. Taking $p=\mu=1$ in the above Theorem 2.1, we get the result that was recently obtained by Aghalary et al. [1, Theorem 2.1 with $n=1$].

Next we derive the following:
Theorem 2.3. Let $f \in \mathcal{A}_{p}$ be of the form (1.3) with $\mu>0$. If

$$
\begin{equation*}
\sum_{k=p}^{\infty}[p \mu(\alpha-1)+k(1-\beta)]\left|b_{k}\right|<p \mu(\alpha-1), \tag{2.4}
\end{equation*}
$$

then f is in the class $\mathcal{M}_{p}(\alpha, \beta)$, where $\beta \leq 0$ and $\alpha>1$.
Proof . In the proof of Theorem 2.1, we saw the following inequality

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)-p \alpha<\beta\left|\frac{z f^{\prime}(z)}{f(z)}-p\right|,
$$

which is equivalent to

$$
\operatorname{Re}\left(\frac{\sum_{k=p}^{\infty} k b_{k} z^{k}}{1-\sum_{k=p}^{\infty} b_{k} z^{k}}\right)-p \mu(\alpha-1)<\beta\left|\frac{\sum_{k=p}^{\infty} k b_{k} z^{k}}{1-\sum_{k=p}^{\infty} b_{k} z^{k}}\right| .
$$

Thus, to show that f is in the class $\mathcal{M}_{p}(\alpha, \beta)$, it suffices to prove that

$$
\begin{equation*}
\operatorname{Re}\left(\frac{\sum_{k=p}^{\infty} k b_{k} z^{k}}{1-\sum_{k=p}^{\infty} b_{k} z^{k}}\right)-\beta\left|\frac{\sum_{k=p}^{\infty} k b_{k} z^{k}}{1-\sum_{k=p}^{\infty} b_{k} z^{k}}\right|<p \mu(\alpha-1) . \tag{2.5}
\end{equation*}
$$

Note that from (2.4), we obtain that

$$
1-\sum_{k=p}^{\infty}\left|b_{k}\right|>0
$$

Therefore one can rewrite (2.4) in the following equivalent form

$$
\begin{equation*}
\frac{\sum_{k=p}^{\infty} k\left|b_{k}\right|}{1-\sum_{k=p}^{\infty}\left|b_{k}\right|}-\beta \frac{\sum_{k=p}^{\infty} k\left|b_{k}\right|}{1-\sum_{k=p}^{\infty}\left|b_{k}\right|}<p \mu(\alpha-1) \tag{2.6}
\end{equation*}
$$

Because $\beta \leq 0$, we have

$$
\begin{equation*}
\operatorname{Re}\left(\frac{\sum_{k=p}^{\infty} k b_{k} z^{k}}{1-\sum_{k=p}^{\infty} b_{k} z^{k}}\right)-\beta\left|\frac{\sum_{k=p}^{\infty} k b_{k} z^{k}}{1-\sum_{k=p}^{\infty} b_{k} z^{k}}\right| \leq \frac{\sum_{k=p}^{\infty} k\left|b_{k}\right|}{1-\sum_{k=p}^{\infty}\left|b_{k}\right|}-\beta \frac{\sum_{k=p}^{\infty} k\left|b_{k}\right|}{1-\sum_{k=p}^{\infty}\left|b_{k}\right|} . \tag{2.7}
\end{equation*}
$$

Then (2.6) and (2.7) immediately follow (2.5) and therefore, $f \in \mathcal{M}_{p}(\alpha, \beta)$.
Corollary 2.4. Assume that $f \in \mathcal{A}$ and $(z / f(z))^{\mu}=1-\sum_{k=1}^{\infty} b_{k} z^{k}$ with $\mu>0$. If the function f satisfies the condition

$$
\sum_{k=1}^{\infty}[\mu(\alpha-1)+k(1-\beta)]\left|b_{k}\right|<\mu(\alpha-1)
$$

for some $\beta \leq 0$ and $\alpha>1$, then f is in the class $\mathcal{M} \mathcal{D}(\alpha, \beta)$.
Remark 2.5. The case $p=\mu=1$ in Theorem 2.3 was obtained by Aghalary et al. [1, Theorem 2.2].
Theorem 2.6. A function f of the form $f(z)=z^{p}+\sum_{k=p+1}^{\infty} a_{k} z^{k}$ is in the class $\mathcal{M}_{p}(\alpha, \beta)$, if

$$
\begin{equation*}
\sum_{k=p+1}^{\infty}[p \alpha+\beta+k(1-\beta)]\left|a_{k}\right|<p(\alpha-1), \tag{2.8}
\end{equation*}
$$

for some $\beta \leq 0$ and $\alpha>1$.
Proof. If the function f belong to \mathcal{A}_{p}, then by definition of the class $\mathcal{M}_{p}(\alpha, \beta)$, we have

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)-p \alpha<\beta\left|\frac{z f^{\prime}(z)}{f(z)}-p\right|
$$

if and only if

$$
\operatorname{Re}\left(\frac{p+\sum_{k=p+1}^{\infty} k a_{k} z^{k-p}}{1+\sum_{k=p+1}^{\infty} a_{k} z^{k-p}}\right)-p \alpha<\beta\left|\frac{\sum_{k=p+1}^{\infty}(k-1) a_{k} z^{k-p}}{1+\sum_{k=p+1}^{\infty} a_{k} z^{k-p}}\right| .
$$

Thus, it suffices to show that

$$
\begin{equation*}
\operatorname{Re}\left(\frac{p+\sum_{k=p+1}^{\infty} k a_{k} z^{k-p}}{1+\sum_{k=p+1}^{\infty} a_{k} z^{k-p}}\right)-\beta\left|\frac{\sum_{k=p+1}^{\infty}(k-1) a_{k} z^{k-p}}{1+\sum_{k=p+1}^{\infty} a_{k} z^{k-p}}\right|<p \alpha . \tag{2.9}
\end{equation*}
$$

Note that from (2.8), we have

$$
1-\sum_{k=p+1}^{\infty}\left|a_{k}\right|>0
$$

thus from (2.8) we obtain that

$$
\begin{equation*}
\frac{p+\sum_{k=p+1}^{\infty} k\left|a_{k}\right|}{1-\sum_{k=p+1}^{\infty}\left|a_{k}\right|}-\beta \frac{\sum_{k=p+1}^{\infty}(k-1)\left|a_{k}\right|}{1-\sum_{k=p+1}^{\infty}\left|a_{k}\right|}<p \alpha \tag{2.10}
\end{equation*}
$$

Moreover, we have

$$
\begin{align*}
& \operatorname{Re}\left(\frac{p+\sum_{k=p}^{\infty} k a_{k} z^{k-p}}{1+\sum_{k=p}^{\infty} a_{k} z^{k-p}}\right)-\beta\left|\frac{\sum_{k=p}^{\infty}(k-1) a_{k} z^{k-p}}{1+\sum_{k=p}^{\infty} a_{k} z^{k-p}}\right| \tag{2.11}\\
& \quad \leq \frac{p+\sum_{k=p+1}^{\infty} k\left|a_{k}\right|}{1-\sum_{k=p+1}^{\infty}\left|a_{k}\right|}-\beta \frac{\sum_{k=p+1}^{\infty}(k-1)\left|a_{k}\right|}{1-\sum_{k=p+1}^{\infty}\left|a_{k}\right|}
\end{align*}
$$

Therefore, (2.10) and (2.11) follow (2.9). This completes the proof.
Putting $p=1$ in Theorem 2.6 we have:
Corollary 2.7. If $f \in \mathcal{A}$ satisfies

$$
\sum_{k=2}^{\infty}[\alpha+\beta+k(1-\beta)]\left|a_{k}\right|<\alpha-1
$$

for some $\alpha>1$ and $\beta \leq 0$, then $f \in \mathcal{M D}(\alpha, \beta)$.
At the end of this section, by Theorem 2.6 we consider an example for the class $\mathcal{M}_{p}(\alpha, \beta)$.
Example 2.8. Define the function $f \in \mathcal{A}_{p}$ as follows

$$
f(z)=z^{p}+\sum_{k=p+1}^{\infty} \frac{p^{2}(\alpha-1) e^{i \theta}}{[p \alpha+\beta+k(1-\beta)] k(k-1)} z^{k},
$$

where $\alpha>1, \beta \leq 0$ and $\theta \in \mathbb{R}$. Then the coefficients inequality (2.8) yields

$$
\sum_{k=p+1}^{\infty}[p \alpha+\beta+k(1-\beta)]\left|a_{k}\right|=p^{2}(\alpha-1) \sum_{k=p+1}^{\infty} \frac{1}{k(k-1)}=p(\alpha-1)
$$

which shows $f \in \mathcal{M}_{p}(\alpha, \beta)$.

3. Applications

In [6] Porwal and Dixit considered the function $\mathcal{U}_{d, e, \delta}$ as follows

$$
\mathcal{U}_{d, e, \delta}(z)=2^{d} \Gamma\left(d+\frac{e+1}{2}\right) z^{-d / 2} w_{d, e, \delta}\left(z^{1 / 2}\right)
$$

where $w_{d, e, \delta}$ is called the generalized Bessel function of the first kind of order d and has the familiar representation

$$
w_{d, e, \delta}(z):=\sum_{k=0}^{\infty} \frac{(-1)^{k} \delta^{k}}{k!\Gamma\left(d+k+\frac{e+1}{2}\right)}\left(\frac{z}{2}\right)^{2 k+d} \quad(z, d, e, \delta \in \mathbb{C}) .
$$

It is easy to see the function $\mathcal{U}_{d, e, \delta}$ has the following representation

$$
\begin{equation*}
\mathcal{U}_{d, e, \delta}(z)=\sum_{k=0}^{\infty} \frac{(-1)^{k}(\delta / 4)^{k}}{\left(d+\frac{e+1}{2}\right)_{k}} \frac{z^{k}}{k!}, \tag{3.1}
\end{equation*}
$$

where $d+\frac{e+1}{2} \neq 0,-1,-2, \ldots$ and and $(x)_{n}$ is the Pochhammer symbol defined by

$$
(x)_{n}:= \begin{cases}1, & (n=0) \\ x(x+1)(x+2) \ldots(x+n-1), & (n \in \mathbb{N})\end{cases}
$$

We remark that the function $\mathcal{U}_{d, e, \delta}(z)$ is analytic on \mathbb{C}.
The Gaussian hypergeometric function $F(a, b ; c ; z)$ is given by

$$
\begin{equation*}
F(a, b ; c ; z)=\sum_{k=0}^{\infty} \frac{(a)_{k}(b)_{k}}{(c)_{k}(1)_{k}} z^{k} \quad(z \in \Delta), \tag{3.2}
\end{equation*}
$$

where $a, b, c \in \mathbb{C}$ and $c \neq 0,-1,-2, \ldots$. We note that $F(a, b ; c ; 1)$ converges for $\operatorname{Re}(a-b-c)>0$ and is related to the Gamma function by

$$
F(a, b ; c ; 1)=\frac{\Gamma(c-a-b) \Gamma(c)}{\Gamma(c-a) \Gamma(c-b)} \quad(\operatorname{Re}(c-a-b)>0)
$$

Now by using (3.1) and (3.2) we introduce a new function $\mathcal{I}_{c, d}^{a, b}(p, e, \delta)(z): \mathcal{A}_{p} \rightarrow \mathcal{A}_{p}$ defined by

$$
\mathcal{I}_{c, d}^{a, b}(p, e, \delta)(z)=z^{p}\left(F(a, b ; c ; z) * \mathcal{U}_{d, e, \delta}(z)\right),
$$

where " $*$ " is the well-known Hadamard product. The function $\mathcal{I}_{c, d}^{a, b}(p, e, \delta)(z)$ has the following representation

$$
\mathcal{I}_{c, d}^{a, b}(p, e, \delta)(z)=z^{p}+\sum_{k=p+1}^{\infty}(-1)^{k-p} \frac{(a)_{k-p}(b)_{k-p}(\delta / 4)^{k-p}}{(c)_{k-p}\left(d+\frac{e+1}{2}\right)_{k-p}\left[(1)_{k-p}\right]^{2}} z^{k} .
$$

We set $\mathcal{I}_{c, d}^{a, b}(1, e, \delta)(z) \equiv \mathcal{I}_{c, d}^{a, b}(e, \delta)(z)$. Applying Theorem 2.6 we have the following.
Theorem 3.1. Let $a, b \in \mathbb{C} \backslash\{0\}$ and $e, d \in \mathbb{C}$. Also, assume that $\delta, d+\frac{e+1}{2}>0$ and c is a real number such that $c>|a|+|b|+1$. Then $\mathcal{I}_{c, d}^{a, b}(p, e, \delta)(z) \in \mathcal{M}_{p}(\alpha, \beta)$ if

$$
\begin{equation*}
\sum_{k=p+1}^{\infty}[p \alpha+\beta+k(1-\beta)] \frac{\left|(a)_{k-p}(b)_{k-p}\right|(\delta / 4)^{k-p}}{(c)_{k-p}\left(d+\frac{e+1}{2}\right)_{k-p}[(k-p)!]^{2}}<p(\alpha-1) \tag{3.3}
\end{equation*}
$$

Proof. Let $f(z)=z^{p}+\sum_{k=p+1}^{\infty} a_{k} z^{k} \in \mathcal{A}_{p}$. By virtue of Theorem 2.6, it suffices to show that

$$
\sum_{k=p+1}^{\infty}[p \alpha+\beta+k(1-\beta)]\left|\frac{(-1)^{k-p}(a)_{k-p}(b)_{k-p}(\delta / 4)^{k-p}}{(c)_{k-p}\left(d+\frac{e+1}{2}\right)_{k-p}\left[(1)_{k-p}\right]^{2}}\right|<p(\alpha-1) .
$$

Some reductions give (3.3)
Setting $p=1$ in Theorem 3.1, we have:

Corollary 3.2. If $a, b \in \mathbb{C} \backslash\{0\}, e, d \in \mathbb{C}, \delta, d+\frac{e+1}{2}>0$ and c is a real number such that $c>$ $|a|+|b|+1$, then a sufficient condition for $\mathcal{I}_{c, d}^{a, b}(e, \delta)(z) \in \mathcal{M D}(\alpha, \beta)$ is that

$$
\sum_{k=2}^{\infty}[\alpha+\beta+k(1-\beta)] \frac{\left|(a)_{k-1}(b)_{k-1}\right|(\delta / 4)^{k-1}}{(c)_{k-1}\left(d+\frac{e+1}{2}\right)_{k-1}[(k-1)!]^{2}}<\alpha-1
$$

If we take $\beta=0$ in Corollary 3.2, we have the following result:
Corollary 3.3. If $a, b \in \mathbb{C} \backslash\{0\}, e, d \in \mathbb{C}, \delta, d+\frac{e+1}{2}>0$ and c is a real number such that $c>$ $|a|+|b|+1$, then a sufficient condition for $\mathcal{I}_{c, d}^{a, b}(e, \delta)(z) \in \mathcal{M}(\alpha)$ is that

$$
\sum_{k=2}^{\infty}[\alpha+k] \frac{\left|(a)_{k-1}(b)_{k-1}\right|(\delta / 4)^{k-1}}{(c)_{k-1}\left(d+\frac{e+1}{2}\right)_{k-1}[(k-1)!]^{2}}<\alpha-1 .
$$

The class $\mathcal{M}(\alpha)$ was considered by Uralegaddi et al. [7], Nishiwaki and Owa [3], and Owa and Nishiwaki [5].

Acknowledgments

We would like to thank the referee for his/her careful reading of our manuscript.

References

[1] R. Aghalary, A. Ebadian and Z. Orouji, Certain properties of rational functions involving Bessel functions, Tamkang J. Math. 43 (2012) 391-398.
[2] R. M. Ali, M. Hussain, V. Ranichandran and K. G. Subramanian, A class of multivalent functions with positive coefficients defined by convolution, J. Ineq. Pure. Appl. Math. 6 (2005) 1-9.
[3] J. Nishiwaki and S. Owa, Coefficient inequalities for analytic functions, Int. J. Math. Math. Sci. 29 (2002) 285-290.
[4] J. Nishiwaki and S. Owa, Certain classes of analytic functions concerned with uniformly starlike and convex functions, Appl. Math. Comp. 187 (2007) 350-357.
[5] S. Owa and J. Nishiwaki, Coefficient estimates for certain classes of analytic functions, J. Ineq. Pure. Appl. Math. (2002) 1-5.
[6] S. Porwal and K. K. Dixit, An application of generalized Bessel functions on certain analytic functions, Acta Univ. M. Belii Ser. Math. 2013 (2013) 51-57.
[7] B. A. Uralegaddi, M. D. Ganigi and S. A. Sarangi, Univalent functions with positive coefficients, Tamkang J. Math. 25 (1994) 225-290.

[^0]: *Corresponding author
 Email addresses: rakarg@utu.fi, rkargar1983@gmail.com (Rahim Kargar), jsokol@ur.edu.pl (Janusz Sokół)

