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Abstract

The system of double equations with three unknowns given by d+ ay + bx+ cx2 = z2, y + z = x2 is
analysed for its infinitely many non-zero distinct integer solutions. Different sets of integer solutions
have been presented. A few interesting relations among the solutions are given.
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1. Introduction

Systems of indeterminate quadratic equations of the form ax + c = u2, bx + d = v2 where
a, b, c, d are non-zero distinct constants, have been investigated for solutions by several authors
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[1, 2] and with a few possible exceptions, most of the them were primarily concerned with rational
solutions. Even those existing works wherein integral solutions have been attempted, deal essentially
with specific cases only and do not exhibit methods of finding integral solutions is a general form.
In [3], a general form of the integral solutions to the system of equations ax + c = u2, bx + d = v2

where a, b, c, d are non-zero distinct constants is presented when the product a ∗ b is a square free
integer whereas the product c ∗ d may or may not a square integer. For other forms of system of
double diophantine equations, one may refer [4-14].

In this paper, we consider the system of double diophantine equation with three unknowns
represented by d+ ay+ bx+ cx2 = z2, y+ z = x2 for determining its many non-zero distinct integers
solutions. A few interesting properties among the solutions are presented.

2. Method of Analysis

The system of double equations to be solved is

d+ ay + bx+ cx2 = z2 (2.1)

y + z = x2 (2.2)

Eliminating y between (2.1) and (2.2), the resulting equation is

(a+ c)x2 + bx+ (d− az − z2) = 0 (2.3)

Treating (2.3) as a quadratic in x and solving for x, we have

x =
1

2(a+ c)
[−b±

√
b2 − 4(a+ c)(d− az − z2)] (2.4)

Let

Y 2 = b2 − 4(a+ c)(d− az − z2) (2.5)

Then (2.4) becomes

Y 2 = DX2 +N (2.6)

where

Y = 2Dx+ b,X = 2z + a,D = a+ c,N = b2 −D(4d+ a2) (2.7)

The initial solution of (2.6) is (X0, Y0).

To find the other solutions of (2.6), consider the pellian

Y 2 = DX2 + 1 (2.8)
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whose general solution is given by

Ỹn =
1

2
fn,D, X̃n =

1

2
√
D
gn,D

where

fn,D = (Ỹ0 +
√
DX̃0)

n+1 + (Ỹ0 −
√
DX̃0)

n+1

gn,D = (Ỹ0 +
√
DX̃0)

n+1 − (Ỹ0 −
√
DX̃0)

n+1

in which (X̃0, Ỹ0) is the initial solution of (2.8).

Applying the lemma of Brahmagupta between the solutions (X0, Y0) and (X̃n, Ỹn) ,we have

Xn+1 =
X0

2
fn,D +

Y0

2
√
D
gn,D

Yn+1 =
Y0

2
fn,D +

X0

2

√
Dgn,D

In view of (2.7) and (2.2),the general values for x and y satisfying (2.1) and (2.2) are given
by

xn+1 =
1

4D
(Y0fn,D +X0

√
Dgn,D − 2b)

yn+1 = x2
n+1 −

1

4
(X0fn,D +

Y0√
D
gn,D − 2a)

zn+1 =
1

4
(X0fn,D +

Y0√
D
gn,D − 2a)

Observations:

❖ D(xn+3 + xn+1) = Ỹ0(2Dxn+2 + b)− b

❖ 2D(xn+5 + 2xn+1) + 3b = 2(Ỹ 2
0 +DX̃2

0 )(b+ 2Dxn+3)

❖ x2
n+3 + x2

n+1 − yn+3 − yn+1 − 2Ỹ0(x
2
n+2 − yn+2) = a(Ỹ0 − 1)

Special Cases:
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Case: (i)

Let a = 0, b = kDβ+1, d = β2, D = 2

Following the procedure similar to the above, the corresponding values of x, y and z satisfying
(2.1) and (2.2)are given by

xn+1 =
1

8
(−k2β+1fn,2 + 2β

√
2gn,2 − k2β+2)

yn+1 = x2
n+1 −

1

4
(2βfn,2 −

k2β+1

√
2

gn,2)

zn+1 =
1

4
(2βfn,2 −

k2β+1

√
2

gn,2)

Some interesting relations among the solutions are presented below:

❖
1

4β2 − k222β+1
(k2β+3x2n+2 + 8βz2n+2 + 8β2) is a Perfect square.

❖
3

2β2 − k222β
(k2β+3x2n+2 + 8βz2n+2 + 8β2) is a Nasty number.

❖
1

4β2 − k222β+1
(k2β+3(x3n+3 + xn+1) + 8β(z3n+3 + 3zn+1) + 4k222β+2) is a Cubical integer.

❖
1

4β2 − k222β+1
(k2β+3(x4n+4+4x2n+2)+ 8β(z4n+4+4z2n+2)+ 3k222β+2+16β2) is a Bi-quadratic

integer.

❖ Define P = k2β+3xn+1 + 8βzn+1 + k222β+2 and Q = 8βxn+1 + k2β+2zn+1 + βk2β+2 .

Note that the pair (P,Q) satisfies the hyperbola P 2 − 2Q2 = 4(4β2 − k222β+1)2

❖ Define R = k2β+3x2n+2 + 8βz2n+2 + 8β2 and Q = 8βxn+1 + k2β+2zn+1 + βk2β+2 .

Note that the pair (R,Q) satisfies the parabola (4β2 − k222β+1)R− 2Q2 = 4(4β2 − k222β+1)2

Case: (ii)

Let a = r2 − s2(r ̸= s), b = kDβ+1, d = r2s2, D = 2
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After performing a few calculations,
xn+1 =

1

4
(−k2β(fn,2 + 2) +

(r2 + s2)√
2

gn,2)

zn+1 =
1

4
(r2 + s2)fn,2 −

k2β

2
√
2
gn,2 −

(r2 − s2)

2

(2.9)

As our interest is on finding integer solutions, the following two choices arise:

Choice: 1

The assumptions r = 2R, s = 2S in (2.9) lead to

xn+1 = −k2β(
(
√
2 + 1)n+1 + (

√
2− 1)n+1

2
)2 +

(R2 + S2)√
2

gn,2

yn+1 = x2
n+1 −R2((

√
2 + 1)n+1 − (

√
2− 1)n+1)2 − S2((

√
2 + 1)n+1 + (

√
2− 1)n+1)2 +

k2β

2
√
2
gn,2

zn+1 = R2((
√
2 + 1)n+1 − (

√
2− 1)n+1)2 + S2((

√
2 + 1)n+1 + (

√
2− 1)n+1)2 − k2β

2
√
2
gn,2

Choice: 2

The assumptions r = 2R + 1, s = 2S + 1 in (2.9) lead to

xn+1 = −k2β

4
(fn,2 + 2) +

1

2
√
2
(2R2 + 2S2 + 2R + 2S + 1)gn,2

yn+1 = x2
n+1 −

fn,2
2

(2R2 + 2S2 + 2R + 2S + 1) +
k2β

2
√
2
gn,2 + (2R2 − 2S2 + 2R− 2S)

zn+1 =
fn,2
2

(2R2 + 2S2 + 2R + 2S + 1)− k2β

2
√
2
gn,2 − (2R2 − 2S2 + 2R− 2S)

Case: (iii)

Let d = n(n+ 1)a2, b = kDβ+1, D = 2

In this case, the corresponding values of x, y and z satisfying (2.1) and (2.2) are given by
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xn+1 =
1

8
(−k2β+1fn,2 + a(2n+ 1)

√
2gn,2 − k2β+2)

yn+1 = x2
n+1 −

1

4
(a(2n+ 1)fn,2 − k2β

√
2gn,2 − 2a)

zn+1 =
1

4
(a(2n+ 1)fn,2 − k2β

√
2gn,2 − 2a)

Case: (iv)

Let a2 + 4d = 0 and D be a non-square.

After performing some calculations, the corresponding integer values of x, y and z satisfying (2.1)
and (2.2) are found to be

xn =
b

4D
(fn,D − 2)

yn = x2
n −

1

4
√
D
(bgn,D − 2a

√
D)

zn =
1

4
√
D
(bgn,D − 2a

√
D)

Case: (v)

Let a2 + 4d = 0 and D = α2

After some algebra, it is observed that there are 2 sets of integer solutions to (2.1) and (2.2) that are
exhibited below:

Set: 1

x = S2, y = S4 − αS2 − hS + A, z = αS2 + hS − A

Set: 2

x = 2(R− S)2, y = 4(R− S)4 − 2α(R2 − S2) + A, z = 2α(R2 − S2)− A

3. Conclusion

In this paper, the process of obtaining non-zero distinct integer solutions to the system of
double equations of degree two with three unknowns has been illustrated. However, there exists
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infinitely many systems of diophantine equations with multidegree and multiple variables. The
successful completion of exhibiting all integers satisfying the requirements setforth in the problem
add further progress to Number Theory.
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