On Subclass of Analytic Univalent Functions Defined By Fractional Differ-integral Operator I

Rafid Habib Buti ${ }^{\text {a* }}$, Ameen Khlaif Sachit ${ }^{b}$
${ }^{a}$ Department of Mathematics and Computer Applications College of Sciences, University of Al-Muthanna, Samawa, Iraq.
${ }^{b}$ Babil Education Directorate ,Babil, Iraq.

(Communicated by Dr. Ehsan Kozegar)

Abstract

In this paper, we studied and introduced a new subclass of analytic univalent functions defined by differ - integral operator . We obtain distortion bounds, extreme points, and some theorem of this subclass. Keywords: Univalent Function, Fractional Calculus, Differ-integral Operator . Mathematics Subject Classification: Primary 30C45.

1. Introduction

Let $R H B$ denoted the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n},(n \in\{1,2, . .\}) \tag{1}
\end{equation*}
$$

Which are analytic and univalent functions in the unit disk: $U=\{z:|z|<1\}$. RHB , we define the subclass of $R H$ consisting of the functions defined by the form :

$$
\begin{equation*}
f(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n},\left(a_{n} \geq 0, n \in\{1,2, . .\}\right) \tag{2}
\end{equation*}
$$

[^0]Let $g \in R H$ and $f \in R H$ if

$$
\begin{equation*}
g(z)=z-\sum_{n=2}^{\infty} b_{n} z^{n},\left(b_{n} \geq 0, n \in\{1,2, . .\}\right) \tag{3}
\end{equation*}
$$

Then the Hadamard product or (Convolution) Defined by

$$
\begin{equation*}
(f * g)(z)=z-\sum_{n=2}^{\infty} a_{n} b_{n} z^{n}=(f * g)(z) \tag{4}
\end{equation*}
$$

Definition 1: A function $f \in R H$ is said to be in the class $R H_{\nu}^{\mu}(\psi, \beta, \theta, \eta, A)$ if and only if satisfies the condition :

$$
\begin{equation*}
\left|\frac{z\left[H_{0, z}^{\mu, \nu, \eta} f(z)\right]^{\prime \prime}+\theta\left(1-\left[H_{0, z}^{\mu, \nu, \eta} f(z)\right]^{\prime}\right)}{\psi(1-\beta)+z A\left[H_{0, z}^{\mu, \nu, \eta} f(z)\right]^{\prime \prime}+\theta\left(1-\left[H_{0, z}^{\mu, \nu, \eta} f(z)\right]^{\prime}\right)}\right|<1 \tag{5}
\end{equation*}
$$

where $0 \leq \beta<1, A \geq 0, \theta \geq 0,-\infty<\mu<1, \nu<2, \eta \in R, \psi>0$.
and $H_{0, z}^{\mu, \nu, \eta}$ is the fractional differintegral operator of order $\mu(-\infty<\mu<1)$ (see Goyal and Prajapat [1]). For this operator if $H_{0, z}^{\mu, \nu, \eta}: W(n) \rightarrow W(n) \quad(6)$, then

$$
\begin{equation*}
H_{0, z}^{\mu, \nu, \eta} f(z)=z-\sum_{k=n+1}^{\infty} R_{k}(\mu, \nu, \eta) a_{k} z^{k},\left(a_{k} \geqslant 0, n \in \mathbb{N}=\{1,2,3, \ldots\}, z \in U\right) \tag{7}
\end{equation*}
$$

where $R_{k}(\mu, \nu, \eta)=G(\mu, \nu, \eta) M(\mu, \nu, \eta, k) \quad$ (8) and

$$
\begin{equation*}
G(\mu, \nu, \eta)=\frac{(1-\nu)(1-\mu+\mid \eta)}{(1-\nu+\mid \eta)}, M(\mu, \nu, \eta, k)=\frac{\Gamma(k+1)(1-\nu+\eta)_{k}}{(1-\nu)_{k}(1-\mu+\mid \eta)_{k}} \tag{9}
\end{equation*}
$$

Throughout the paper

$$
\begin{equation*}
(a)_{n}=\prod_{k=1}^{n} a+k-1 \text { or }=(a+1)(a+2) \ldots(a+n+1) \tag{10}
\end{equation*}
$$

is the factorial function, or if $a>0$, then $(a)_{n}=\frac{\Gamma(a+n)}{\Gamma(a)}$ (11) (where Γ is Euler's Gamma function).
For $z \neq 0$, (1.5) may be expressed as

$$
H_{0, z}^{\mu, \nu, \eta} f(z)=\left\{\begin{array}{c}
\frac{\Gamma(2-\nu) \Gamma(2-\mu+n)}{\Gamma(2-\nu+\eta)} z^{\nu} J_{0, z}^{\mu, \nu, \eta} f(z) ; 0 \leq \mu<1 \tag{12}\\
\frac{\Gamma(2-\nu) \Gamma(2-\mu+n)}{\Gamma(2-\nu+\eta)} z^{\nu} I_{0, z}^{-\mu, \nu, \eta} f(z) ;-\infty \leq \mu<0
\end{array}\right.
$$

where $J_{0, z}^{\mu, \nu, \eta} f(z)$ is the fractional derivative operator of order $\mu(0 \leq \mu<1)$, while $I_{0, z}^{-\mu, \nu, \eta} f(z)$ is the fractional integral operator of order $-\mu(-\infty<\mu<0)$ introduced and studied by Saigo ([4],[5]). It may be worth noting that, by choosing $-\infty<\mu=\nu<1$ the operator $H_{0, z}^{\mu, \nu, \eta} f(z)$ becomes

$$
\begin{equation*}
H_{0, z}^{\mu, \nu, \eta} f(z)=H_{z}^{\mu} f(z)=\Gamma(2-\mu) z^{\mu} D_{z}^{\mu} f(z) \tag{13}
\end{equation*}
$$

Where $D_{z}^{\mu} f(z)$ is respectively, the fractional integral operator of order $-\mu(-\infty<\mu<0)$ and fractional derivative operator of order $\mu(0 \leq \mu<1)$ considered by Owa[3] and defined by Liouville[2]. Further if $\mu=\nu=0$, then

$$
\begin{equation*}
H_{0, z}^{0,0, \eta} f(z)=f(z) \tag{14}
\end{equation*}
$$

and for $\mu \rightarrow 1^{-}$and $\nu=1$

$$
\begin{equation*}
\lim _{\mu \rightarrow 1^{-}} H_{0, z}^{\mu, 1, \eta} f(z)=z f^{\prime}(z) \tag{15}
\end{equation*}
$$

Theorem 1: A function $f \in R H_{\nu}^{\mu}(\psi, \beta, \theta, \eta, A)$ if and only if

$$
\begin{equation*}
\sum_{n=2}^{\infty} R_{n}(\mu, \nu, \eta)[n(1+A)-(1-A+2 \theta)] a_{n} \leq(1-\beta) \psi \tag{16}
\end{equation*}
$$

where $0 \leq \beta<1, A \geq 0, \theta \geq 0,-\infty<\mu<1, \nu<2, \eta \in R, \psi>0$.
Proof . Assume that the inequality (16) holds true and let $|z|=1$, we have

$$
\left|\frac{z\left[H_{0, z}^{\mu, \nu, \eta} f(z)\right]^{\prime \prime}+\theta\left(1-\left[H_{0, z}^{\mu, \nu, \eta} f(z)\right]^{\prime}\right)}{(1-\beta)+z A\left[H_{0, z}^{\mu, \nu, \eta} f(z)\right]^{\prime \prime}+\theta\left(1-\left[H_{0, z}^{\mu, \nu, \eta} f(z)\right]^{\prime}\right)}\right|
$$

So

$$
\begin{aligned}
& \left|\frac{z\left[-\sum_{n=2}^{\infty} R_{n}(\mu, \nu, \eta)(n-1) a_{n} z^{n-2}\right]+\theta\left(\sum_{n=2}^{\infty} R_{n}(\mu, \nu, \eta) a_{n} z^{n-1}\right)}{(1-\beta) \psi+z\left[A\left(-\sum_{n=2}^{\infty} R_{n}(\mu, \nu, \eta)(n-1) a_{n} z^{n-2}\right)\right]+\theta\left(\sum_{n=2}^{\infty} R_{n}(\mu, \nu, \eta) a_{n} z^{n-1}\right)}\right|<1 \\
& \left|\frac{-\sum_{n=2}^{\infty} R_{n}(\mu, \nu, \eta)(n-1) a_{n} z^{n-1}+\sum_{n=2}^{\infty} \theta R_{n}(\mu, \nu, \eta) a_{n} z^{n-1}}{(1-\beta) \psi+\left[-\sum_{n=2}^{\infty} A R_{n}(\mu, \nu, \eta)(n-1) a_{n} z^{n-1}\right]+\left(\sum_{n=2}^{\infty} \theta R_{n}(\mu, \nu, \eta) a_{n} z^{n}\right)}\right|<1 \\
& \left|\frac{\sum_{n=2}^{\infty} R_{n}(\mu, \nu, \eta)(n-1-\theta) a_{n} z^{n-1}}{(1-\beta) \psi-\sum_{n=2}^{\infty} R_{n}(\mu, \nu, \eta)[A(n-1)-\theta] a_{n} z^{n-1}}\right|<1 \\
& \left|\sum_{n=2}^{\infty} R_{n}(\mu, \nu, \eta)(n-(1+\theta)) a_{n} z^{n-1}\right|<\left|(1-\beta) \psi-\sum_{n=2}^{\infty} R_{n}(\mu, \nu, \eta)[A(n-1)-\theta] a_{n} z^{n-1}\right| \\
& \left|\sum_{n=2}^{\infty} R_{n}(\mu, \nu, \eta)(n-(1+\theta)) a_{n} z^{n-1}\right|-\left|(1-\beta) \psi-\sum_{n=2}^{\infty} R_{n}(\mu, \nu, \eta)[A(n-1)-\theta] a_{n} z^{n-1}\right| \\
& \leq \sum_{n=2}^{\infty} R_{n}(\mu, \nu, \eta)(n-(1+\theta)) a_{n}|z|^{n-1}-(1-\beta) \psi+\sum_{n=2}^{\infty} R_{n}(\mu, \nu, \eta)[A(n-1)-\mu] a_{n}|z|^{n-1}
\end{aligned}
$$

Since $|z|=1$, we get

$$
\sum_{n=2}^{\infty} R_{n}(\mu, \nu, \eta)[n(1+A)-(1-A+2 \theta)] a_{n} \leq(1-\beta) \psi
$$

Conversely ,suppose that is in the class $R H_{\nu}^{\mu}(\psi, \beta, \theta, \eta, A)$

$$
\left|\frac{z\left[H_{0, z}^{\mu, \nu, \eta} f(z)\right]^{\prime \prime}+\theta\left(1-\left[H_{0, z}^{\mu, \nu, \eta} f(z)\right]^{\prime}\right)}{(1-\beta)+z A\left[H_{0, z}^{\mu, \nu, \eta} f(z)\right]^{\prime \prime}+\theta\left(1-\left[H_{0, z}^{\mu, \nu, \eta} f(z)\right]^{\prime}\right)}\right|<1
$$

For all z, we have $|\operatorname{Re}(z)| \leq|z|$, since

$$
\operatorname{Re}\left\{\frac{\sum_{n=2}^{\infty} R_{n}(\mu, \nu, \eta)(n-1-\theta) a_{n} z^{n-1}}{(1-\beta) \psi-\sum_{n=2}^{\infty} R_{n}(\mu, \nu, \eta)[A(n-1)-\theta] a_{n} z^{n-1}}\right\}<1
$$

Choose the value of z on the real axis and let $z \rightarrow 1$ we get

$$
\sum_{n=2}^{\infty} R_{n}(\mu, \nu, \eta)[n(1+A)-(1-A+2 \theta)] a_{n} \leq(1-\beta) \psi
$$

Corollary 2: Let $f \in R H_{\nu}^{\mu}(\psi, \beta, \theta, \eta, A)$ then

$$
a_{n} \leq \frac{(1-\beta)}{R_{n}(\mu, \nu, \eta)[n(1+A)-(1-A+2 \theta)]}
$$

Theorem 3: Let the function f defined by (2) be in the class $R H_{\nu}^{\mu}(\psi, \beta, \theta, \eta, A)$. Then

$$
\begin{gather*}
r-\frac{(1-\beta) \psi}{R_{n}(\mu, \nu, \eta)[2(1+A)-(1-A+2 \theta)]} r^{2} \leq|f(z)| \leq r+\frac{(1-\beta) \psi}{R_{n}(\mu, \nu, \eta)[2(1+A)-(1-A+2 \theta)]} r^{2} \\
0<|z|=r<1 \quad(17) \tag{17}
\end{gather*}
$$

The equality in (17) is attained by the function f given by

$$
f(z)=z-\frac{(1-\beta) \psi}{R_{n}(\mu, \nu, \eta)[2(1+A)-(1-A+2 \theta)]} z^{2}
$$

Proof . Since the function f defined by (2) in the $R H_{\nu}^{\mu}(\psi, \beta, \theta, \eta, A)$, we have from theorem 1

$$
\sum_{n=2}^{\infty} a_{n} \leq \frac{(1-\beta) \psi}{R_{n}(\mu, \nu, \eta)[2(1+A)-(1-A+2 \theta)]}
$$

Thus

$$
\begin{aligned}
& |f(z)|=\left|z-\sum_{n=2}^{\infty} a_{n} z^{n}\right| \leq|z|+\sum_{n=2}^{\infty} a_{n}|z|^{n} \\
& |f(z)| \leq|z|+|z|^{2} \sum_{n=2}^{\infty} a_{n} \\
& |f(z)| \leq r+r^{2} \sum_{n=2}^{\infty} a_{n} \\
& |f(z)| \leq r+\frac{(1-\beta) \psi}{R_{n}(\mu, \nu, \eta)[2(1+A)-(1-A+2 \theta)]} r^{2}
\end{aligned}
$$

Similarly

$$
\begin{aligned}
& |f(z)| \geq|z|+\sum_{n=2}^{\infty} a_{n}|z|^{n} \\
& |f(z)| \geq|z|-|z|^{2} \sum_{n=2}^{\infty} a_{n} \\
& |f(z)| \geq r-r^{2} \sum_{n=2}^{\infty} a_{n} \\
& |f(z)| \geq r-\frac{(1-\beta) \psi}{R_{n}(\mu, \nu, \eta)[2(1+A)-(1-A+2 \theta)]} r^{2}
\end{aligned}
$$

This completes the proof .
Theorem 4: Let $f_{1}(z)=z$ and $f_{n}(z)=z-\frac{(1-\beta) \psi}{R_{n}(\mu, \nu, \eta)[2(1+A)-(1-A+2 \theta)]} z^{n}$ Then f is in the class $R H_{\nu}^{\mu}(\psi, \beta, \theta, \eta, A)$ if and only if can be expressed in the form $f(z)=\sum_{n=1}^{\infty} \sigma_{n} f_{n}(z)$ where $\left(\sigma_{n} \geq 1, \sum_{n=1}^{\infty} \sigma_{n}=1\right.$ or $\left.1=\sigma_{1}+\sum_{n=2}^{\infty} \sigma_{n}\right)$.
Proof . Assume that

$$
\begin{aligned}
& f(z)=\sum_{n=1}^{\infty} \sigma_{n} f_{n}(z) \\
& f(z)=\sigma_{1} f_{1}(z)+\sum_{n=2}^{\infty} \sigma_{n} f_{n}(z) \\
& f(z)=\sigma_{1} z+\sum_{n=2}^{\infty} \sigma_{n}\left(z-\frac{(1-\beta) \psi}{R_{n}(\mu, \nu, \eta)[2(1+A)-(1-A+2 \theta)]} z^{n}\right) \\
& f(z)=\sigma_{1} z+\sum_{n=2}^{\infty} \sigma_{n} z-\sum_{n=2}^{\infty} \sigma_{n} \frac{(1-\beta) \psi}{R_{n}(\mu, \nu, \eta)[2(1+A)-(1-A+2 \theta)]} z^{n} \\
& f(z)=z\left(\sigma_{1}+\sum_{n=2}^{\infty} \sigma_{n}\right)-\sum_{n=2}^{\infty} \sigma_{n} \frac{(1-\beta) \psi}{R_{n}(\mu, \nu, \eta)[2(1+A)-(1-A+2 \theta)]} z^{n} \\
& f(z)=z-\sum_{n=2}^{\infty} \sigma_{n} \frac{(1-\beta) \psi}{R_{n}(\mu, \nu, \eta)[2(1+A)-(1-A+2 \theta)]} z^{n}
\end{aligned}
$$

From theorem 1, $\sum_{n=2}^{\infty} R_{n}(\mu, \nu, \eta)[2(1+A)-(1-A+2 \theta)] a_{n} \leq(1-\beta) \psi$.Then

$$
\begin{aligned}
& \sum_{n=2}^{\infty}\left[\frac{R_{n}(\mu, \nu, \eta)[2(1+A)-(1-A+2 \theta)]}{(1-\beta) \psi}\right] \sigma_{n} \frac{(1-\beta) \psi}{R_{n}(\mu, \nu, \eta)[2(1+A)-(1-A+2 \theta)]} \\
& \sum_{n=2}^{\infty} \sigma_{n}=1-\sigma_{1} \leq 1
\end{aligned}
$$

Conversely ,suppose that $f \in R H_{\nu}^{\mu}(\psi, \beta, \theta, \eta, A)$ implies from theorem 1

$$
a_{n} \leq \frac{(1-\beta) \psi}{R_{n}(\mu, \nu, \eta)[2(1+A)-(1-A+2 \theta)]}
$$

Setting

$$
\begin{aligned}
\sigma_{n} & =\frac{R_{n}(\mu, \nu, \eta)[2(1+A)-(1-A+2 \theta)]}{(1-\beta) \psi} a_{n} \\
a_{n} & =\frac{(1-\beta) \psi}{R_{n}(\mu, \nu, \eta)[2(1+A)-(1-A+2 \theta)]} \sigma_{n} \\
f(z) & =z-\sum_{n=2}^{\infty} a_{n} z^{n} \\
f(z) & =z-\sum_{n=2}^{\infty} \frac{(1-\beta) \psi}{R_{n}(\mu, \nu, \eta)[2(1+A)-(1-A+2 \theta)]} \sigma_{n} z^{n}
\end{aligned}
$$

From

$$
\begin{aligned}
& f_{n}(z)=z-\frac{(1-\beta) \psi}{R_{n}(\mu, \nu, \eta)[2(1+A)-(1-A+2 \theta)]} z_{n} \\
& \frac{(1-\beta) \psi}{R_{n}(\mu, \nu, \eta)[2(1+A)-(1-A+2 \theta)]} z_{n}=z-f_{n}(z) \\
& f(z)=z-\sum_{n=2}^{\infty} \sigma_{n}\left(z-f_{n}(z)\right) \\
& f(z)=z-\sum_{n=2}^{\infty} \sigma_{n} z+\sum_{n=2}^{\infty} \sigma_{n} f_{n}(z) \\
& f(z)=z\left(1-\sum_{n=2}^{\infty} \sigma_{n}\right)+\sum_{n=2}^{\infty} \sigma_{n} f_{n}(z) \\
& f(z)=f_{1} \sigma_{1}+\sum_{n=2}^{\infty} \sigma_{n} f_{n}(z) \\
& f(z)=\sum_{n=2}^{\infty} \sigma_{n} f_{n}(z)
\end{aligned}
$$

This complete the proof .
Now, we shall prove that the class $R H_{\nu}^{\mu}(\psi, \beta, \theta, \eta, A)$ is closed under arithmetic mean . Let the function $f_{r}(r=2,3, \ldots, m)$ define by

$$
\begin{equation*}
f_{r}(z)=z-\sum_{n=2}^{\infty} a_{n, r} z^{n} \tag{18}
\end{equation*}
$$

Theorem 5: Let the function defined f by (2) be in the class $R H_{\nu}^{\mu}(\psi, \beta, \theta, \eta, A)$. For every ($r=$ $2,3, \ldots, m)$,then the arithmetic mean of $f_{r}(r=2,3, \ldots, m)$ is defined by

$$
g(z)=z-\sum_{n=2}^{\infty} c_{n} z^{n}, \quad\left(c_{n} \geq 2, n \geq 2, n \in \mathbb{N}\right)
$$

Also belong to the class $R H_{\nu}^{\mu}(\psi, \beta, \theta, \eta, A)$, where $c_{n}=\frac{1}{m} \sum_{r=2}^{m} a_{n, r}$.

Proof. Since $f_{r} \in R H_{\nu}^{\mu}(\psi, \beta, \theta, \eta, A)$, then from theorem 1 we get

$$
\begin{align*}
& \sum_{n=2}^{\infty} R_{n}(\mu, \nu, \eta)[2(1+A)-(1-A+2 \theta)] a_{n} \leq(1-\beta) \psi \tag{19}\\
& \sum_{n=2}^{\infty} R_{n}(\mu, \nu, \eta)[2(1+A)-(1-A+2 \theta)] c_{n} \\
& \sum_{n=2}^{\infty} R_{n}(\mu, \nu, \eta)[2(1+A)-(1-A+2 \theta)]\left[\frac{1}{m} \sum_{r=2}^{m} a_{n, r}\right] \\
& \frac{1}{m} \sum_{r=2}^{m}\left[\sum_{n=2}^{\infty} R_{n}(\mu, \nu, \eta)[2(1+A)-(1-A+2 \theta)] a_{n, r}\right]
\end{align*}
$$

by (19)

$$
\begin{aligned}
& \leq \frac{1}{m} \sum_{r=2}^{m}(1-\beta) \psi \\
& (1-\beta) \psi \frac{1}{m} \cdot m \\
& \leq(1-\beta) \psi
\end{aligned}
$$

This complete the proof .

References

[1] S.P. Goyal and J.K. prajapat, New class of analytic functions involving certain fractional differ-integral operators, proceedings of 4th Annual conference of the society for special functions and their applications. (Eds: A.K. Agarwal, M.A. Pathan and S.P. Goyal), 4 (2004),27-35.
[2] J. Liouville, Memoire sur and J. Ecole polytech.. Le calcul des differential's a indies quelcongues ,13 (1832) ,71-162.
[3] S.Owa,On the distortion theorems I, Kyungpook Math. J. 18(1978), 53-59.
[4] M. Saigo, Aremark on integral operators involving the Gauss hyper geometric functions, Math. Rep. College General Ed. Kyushu Univ. 11(1978), 135-143.
[5] M. Saigo , A certain boundary valve problem for the Euler- Darbox equation, Math . Japon , 25 (1979), 377385.

[^0]: *Corresponding Author: Rafid Habib Buti
 Email address: Rafidhbuti@yahoo.com, Ameenaltaa198315@gmail.com (Rafid Habib Buti ${ }^{a *}$, Ameen Khlaif Sachit ${ }^{b}$)

